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Abstract
Over the last decade, a body of research investigated enri-
ching touch actions by using finger orientation as an additi-
onal input. Beyond new interaction techniques, we envision
new user interface elements to make use of the additio-
nal input information. We define the fingers orientation by
the pitch, roll, and yaw on the touch surface. Determining
the finger orientation is not possible using current state-of-
the-art devices. As a first step, we built a system that can
determine the finger orientation. We developed a working
prototype with a depth camera mounted on a tablet. We
conducted a study with 12 participants to record ground
truth data for the index, middle, ring and little finger to eva-
luate the accuracy of our prototype using the PointPose [3]
algorithm to estimate the pitch and yaw of the finger. By
applying 2D linear correction models, we further show a
reduction of RMSE by 45.4% for pitch and 21.83% for yaw.
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Introduction & Background
Touchscreens are used in a large number of devices where
they replaced physical buttons, sliders, and knobs. More-
over, a number of laptops with touchscreens are available
where the touchscreen can be used as an alternative input
to mouse and keyboard. However, today’s touchscreens
are mostly limited to 2D input. A body of research aimed to
extend the throughput of a single touch action.

Figure 1: The prototype with the
8.4-inch tablet with the depth
camera.

Colley and Häkkilä [1] investigated to use the finger type as
additional information. In their prototype setup, they used
a LEAP Motion to detect by which finger the phone was
touched to trigger different actions based on the finger type.

Work by Xiao et al. [5] and Kratz et al. [3] both proposed to
use the finger orientation as additional information. Ho-
wever, while Xiao et al. used the capacitive image from
the touchscreen to estimate the pitch and yaw of the tou-
ching finger, Kratz et al. [3] used a depth camera attached
above the touch screen to gain additional information about
the finger orientation. One downside of the method by
Xiao et al. [5] is that the device’s operating system needs
to be modified. In contrast, the method by Kratz et al. [3]
can be applied to any touchscreen by using a depth ca-
mera. Xiao et al. [5] reported their method leads to a pitch
error of 9.7◦ and a yaw error of 26.8◦ for their prototype.
Kratz et al. [3] did not report an error; rather they reported
the variation of the measurements within 7.5 seconds in
which the participants were asked not to move their finger.
Thus a comparison is not possible. With this work we de-
termine the accuracy of the PointPose method proposed by
Kratz et al. [3]. Further, we incorporate the idea by Colley
and Häkkilä [1] into the PointPose evaluation. Thus we in-
vestigated not the accuracy using the index finger, but also
determine the accuracy of the finger orientation using the
middle, ring and little finger.

Based on previous work, our aim is it to build a low-cost
prototype which can detect the pitch and yaw of the finger.
Such a system is needed when designing and testing new
UI elements which take the finger orientation and finger
type into account. We envision the proposed apparatus to
complement paper prototypes to investigate the possible
use and feasibility of pitch and yaw already in the design
process. Further, this can help to model the correlation be-
tween the finger orientation and the touch point as shown
by Holz and Baudisch [2]. By using a depth camera, we can
detect the fingers orientation on any flat surface. In con-
trast to vague and imprecise interaction (e.g. interaction
with a secondary task), fine-grained interaction needs high
precession. Therefore, we studied the accuracy of Point-
Pose [3] and show how to further improve the accuracy.
Thus, this work contributes (1) an analysis of PointPose’s
using the index, middle, ring and pinky finger, and (2) an
offset model to reduce the error of PointPose.

Prototype
For our prototype, shown in Figure 1, we use a Samsung
Galaxy Tab Pro 8.4 which offers 2560 × 1600 px on an 8.4-
inch screen resulting in 359.39PPI. As a depth camera, we
use an Intel RealSense F200. The camera has a minimum
sensing distance of 20 cm and a resolution of 640 × 480 px
at 120FPS. We use the RealSense F200 due to its small
minimum distance in comparison to other available depth
sensors. However, we needed to overcome the 20 cm be-
tween the tablets screen and the depth sensor. Therefore,
we 3D printed a mount for the tablet and laser cutted a con-
nection plate to attach the camera to the tablet. We firmly
connected the parts using metal screws.

Experiment
To evaluate the accuracy of our setup with the algorithm
proposed by Kratz et al. [3] we collected ground-truth data



by conducting an experiment. The ground-truth was deter-
ment by three RGB cameras to always get a clear view.

Figure 2: The study app is
showing instructions to perform a
30◦ input at one specific position.

Apparatus
We record the ground-truth data using three RBG came-
ras which we fixed on a wooden frame. We mounted one
camera on top of the tablet, one on the left and one on the
right (see Figure 3). The top camera was used to determine
the fingers yaw while the left and right were used to deter-
mine the fingers pitch. We needed two cameras to deter-
mine pitch because when we insert extreme yaw angle one
camera was always covered by the rest of the hand. We
used three Microsoft Lifecam HD 3000 which recorded with
1280 × 720@ 30FPS. We replaced the flexible parts of the
original camera mount with a non-flexible plastic connector
(see Figure 3). The three camera streams were used to la-
ter determine the real finger orientation through a manual
labeling process. We developed an Android application,
which displays red crosshairs indicating the touch position.
The crosshair further indicated which finger yaw angle the
participant should perform, see Figure 2.

Design & Task
We designed the study using a repeated-measures de-
sign with four independent variables (IVs): TARGETS, YAW,
PITCH, and FINGER. We randomized the order of FINGER,
and within FINGER we randomized TARGETS and YAW. To
cover a broad range of possible positions, we used 20 TAR-
GETS arranged in a 4 × 5 grid on the tablet. The targets
further represented five PITCH input angles: 15◦, 30◦, 45◦,
60◦ and 75◦. Xiao et al. [5] found that a pitch of 90◦ can-
not be detected with long nails. Thus we did not investigate
angles steeper than 75◦. Further, we used five YAW input
angles: −60◦, −30◦, 0◦, 30◦ and 60◦. Mayer et al. [4] found
a comfort input zone of yaw for the right hand ranging from
−33.75◦ to 101.25◦, for the right hand. To not stress the

Figure 3: The wooden frame with the attached web cameras
which we used for ground truth recording in our study.

participates too much we limited the range to −60◦ and to
built a symmetric model to 60◦ on the other extreme. Furt-
her, all input tasks were performed with four FINGERs: in-
dex, middle, ring and little finger. Thus we had a design with
20× 5× 5× 4 = 2000 conditions.

Performing a specific pitch angle is not easy. To overcome
this issue Xiao et al. [5] used laser cutted stabilizers which
they placed below the participants’ finger. However, this
is not possible using the camera based approach, as the
stabilizers would influence the depth image. Thus we de-
cided to let participants input a movement and determine
the PITCH angle in the post processing. Therefore we as-
ked half of the participants to start with a pitch close to 0◦

and then change the pitch of the finger up to a steep angle
close to 90◦. The other half was asked to move from 90◦

down to 0◦ pitch. We specified these two movements to
reduce an effect of the finger moving only in one direction.



Figure 4: A participant while performing the task.

Procedure
First, we welcomed our participants and informed them
about the procedure of the study. Second, we asked them
to fill in a consent form and a questionnaire with demo-
graphic data. Afterward, the experimenter marked each
finger with two red dots on the left and right side and on top
of the finger to later calculate the finger orientation. Then,
we explained that they have to touch the center of the red
crosshair while aligning the finger with the longer red line
indicating the yaw angle; they moved the finger slowly up
or down to input several pitch angles (see Figure 4). We
reimbursed the participants with e5.

Participants
We recruited 12 participants (3 female) which were aged
between 22 and 35 (M = 25.83, SD = 3.31). All partici-
pants used their right hand.

Results
First, we corrected the camera lens distortion for the three
recorded RGB-camera streams. Second, we manually la-
beled the finger posture with the help of the red markers

Pitch Yaw

RMSE M SD RMSE M SD

Index 15.7 −10.8 11.4 11.9 2.8 11.7
Middle 17. −10.5 13.4 14.7 3.4 14.3
Ring 13.8 −7.4 11.7 11.2 3.5 10.7
Little 14.8 −9.8 11.1 10.8 3. 10.4

Mean 15.4 9.6 11.9 12.2 3.16 11.8

Table 1: The RMSE and standard division for pitch and yaw per
finger.

on the finger for each of the five PITCH angles. Due to the
continuous change of the pitch angle, we were able to label
accurate PITCH angles. However, for the YAW angles,s we
were bound to the participants’ accuracy (M = 3.1◦, SD
= 9.9◦). For the modeling, we used the yaw angles actually
performed by the participants, not the initial categories.

Using the depth images, we determined the pitch and yaw
with the PointPose algorithm [3]. Due to the manual labeling
and noise in the depth data, we removed outliers where
the distance between ground-truth and predicted angles is
more than two standard deviations away from the average.
This was done for pitch and yaw individually. In total, we
removed 8.2% of the data. Then, we calculated the root-
mean-square error (RMSE) for each finger, see Table 1.
The average RMSE is 15.4◦ for pitch and 12.2◦ for yaw.

The PointPose algorithm [3] was evaluated regarding pre-
cession over time. The evaluation of Kratz et al. [3] used
an alignment task where the target was presented and the
participant had to move a cursor to overlap with the target.
Whereby the cursor could be manipulated through either
pitch or yaw input. Accuracy was determined by measuring
the variation of a 7.5 sec recording where the participants
had to hold the alignment.



(a) Index finger (b) Middle finger (c) Ring finger (d) Little finger

Figure 5: The scatterers are showing the points where we gained data samples from the study. The underlining plain represents the correction
model for the pitch correction based on pitch and yaw of the depth camera.

f(α, β) = aα2 + bβ2 + cαβ + dα+ eβ + f

Equation 1: The modeling function, α and β are the pitch and
yaw values of result gain by the PointPose algorithm using the
depth camera point cloud.

Comparing our results with the results reported by Kratz
et al. [3] is hard because Kratz et al. averaged over 7.5
seconds whereby we used a concrete error not the vari-
ance while holding the finger. Further, Kratz et al. [3] used
7 steps for yaw ranging from −30◦ to 30◦ and 5 steps for
pitch ranging from 50◦ to 75◦. On average they reported a
change in variation of M = −.92◦ (SD = 6.36◦) for pitch
and M = −2.52◦ (SD = 14.67◦) for yaw.

Modelling
In the following, we present our model to reduce the error
through offset correction. We modeled the offset with a full
second order two-dimensional polynomial, as in Equation 1.
We choose Equation 1 after a one-dimensional polynomial
fitted less accurate and the visual inspection suggested a
more complex underlying behavior. Furthermore, a more

complex function led to overfitting. The pitch and yaw off-
set corrections are modeled independently from each ot-
her. Thus we fitted 8 functions, 4 fingers × 2 degrees of
orientation (pitch/yaw). However, the correction model for
pitch and yaw is based on both pitch and yaw angles gai-
ned from the depth camera as the α and β input for the
Equation 1. Whereby we used the predicted angles by the
depth camera for α and β, results are shown in Figure 5 for
the pitch correction and in Figure 6 for the yaw correction.
We validated the improvements for all functions by the use
of leave p out cross validation with p = 3, which is a split
of 75% : 25% for train and test.

Pitch in % Yaw in %

Index 41.8 15.2
Middle 43. 16.5
Ring 40.4 13.9
Little 41.5 13.2

Mean 41.7 14.7

Table 2: The reduction of RMSE when applying the correction
models to pitch and yaw.



(a) Index finger (b) Middle finger (c) Ring finger (d) Little finger

Figure 6: The scatterers are showing the points where we gained data samples from the study. The underlining plain represents the correction
model for the yaw correction based on pitch and yaw of the depth camera.

For the pitch correction, we achieved an average reduction
of the RMSE of 41.7%, all results are listed in Table 2. The
overall remaining pitch error improved from M = −9.6◦ wit-
hout correction model to M = −.9◦ with correction model.
For the yaw correction, we achieved an average reduction
of the RMSE of 14.7%, all results are listed in Table 2. The
overall remaining yaw error improved from M = 3.2◦ without
correction model to M = .2◦ with correction model.

For the final model we used the training and test data to
fit the model, we achieved an RMSE reduction by 45.4%
for pitch and 21.83% for yaw. Further the fitness of the
pitch correction functions for the four fingers functions is
R2 = [.50 .45 .49 .54] (see Figure 5), and for the four
yaw functions the fitness is R2 = [.63 .58 .67 .76] (see
Figure 6).

Discussion and Implications
In a first step, we recorded ground truth data pitch and yaw
to determine the accuracy of PointPose. In a second step,
we applied offset models to correct the mean error of the
PointPose method.

We showed that the root-mean-square error without cor-
rection is 11.75◦ for pitch. This results in an offset of 13.1%
of the possible pitch input range which is from 0◦ to 90◦.
Further, in our study, we explored the yaw range between −60◦

and 60◦ resulting in an RMSE of 8.74◦ and an average off-
set of 7.3%. Thus high precision input is not possible with
the proposed method. Even for imprecise input, we see a
lack of feasibility to use this method.

We also show that the predicted results are more accurate
close to the center of the observed input space (pitch = 70◦

and yaw = 0◦), see Figure 5 and Figure 6. For the pitch
correction, we can see an overall trend of a larger pitch
error with yaw values away from the center. Further, we
can observe that this is radially symmetric (see Figure 5).
Also for the yaw correction, we see an overall drift in the
mean data (see Figure 6). To correct the drift and improve
the predicted accuracy, we applied one offset model per
pitch/yaw and finger and thereby reduction of RMSE for
pitch by 45.4%, and for yaw by 21.83%.

When comparing our results with correction and the results
reported by Xiao et al. [5], we achieve a similar pitch error



and smaller yaw error. Their method leads to a pitch error
of 9.7◦ while our method achieved 11.75◦. For the yaw er-
ror, Xiao et al. [5] reported 26.8◦ while our method achieved
a three times smaller yaw error of 8.74◦.

We used the tablet to display targets, not for the actual re-
cognition nor the model. Thus, the touch position was not
taken into account in the analysis nor the offset correction.
Doing so allows using the depth camera also without a ta-
blet. Thus, mounting the depth camera onto a not touch
sensitive surface is possible; this can be useful for system
prototyping when building a first fully functional apparatus.
We envision using our approach even in earlier stages e.g.
when designing new UI interfaces using paper prototypes.
Here, the behavior of the finger orientation can be obser-
ved, and the UI can be designed adaptive to the input.

Conclusion
As a first step, we build a prototype to determine the accu-
racy of the algorithm by Kratz et al. [3]. As a second step,
we showed a reduction of RMSE by 45.4% for pitch and
21.83% for yaw with our offset correction model. Further,
we showed that the algorithm proposed by Kratz et al. [3]
also could determine the pitch and yaw of the middle, ring,
and little finger with an equal accuracy.

We build a prototype which can be applied to any flat sur-
face to determine the yaw and pitch of the finger. This is
especially handy when working with paper prototypes to in-
vestigated new interaction techniques that take the finger
orientation into account.

With Google’s Project Tango1 we saw the first mobile de-
vice equipped with a built-in depth camera. Even if their
camera is a back-facing camera, they showed the feasibility

1https://get.google.com/tango/ (last acceded: 06-23-2017)

of the hardware setup and further that today’s mobile devi-
ces have the computational power to process depth camera
data in real time. Thus building a compact mobile device
with a front facing depth camera would be the next step to
gain the finger orientation for additional input.

Future Work
Based on the new offset models the next step is to evaluate
these with specific applications. The aim is to determine if
our setup can be used in prototypes to investigate possi-
ble features of future screens. We especially see potential
by enhancing paper prototypes to observe how the finger
orientation changes with different UI’s and how feasible it is
to input specific pitch and yaw postures in UI’s which make
use of this kind of input. The problem of determining the fin-
ger type is one open issue which we aim to address in the
future.
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