
Estimating the Finger Orientation on Capacitive
Touchscreens Using Convolutional Neural Networks

Sven Mayer, Huy Viet Le, Niels Henze
University of Stuttgart, Stuttgart, Germany
{firstname.lastname}@vis.uni-stuttgart.de

ABSTRACT
In the last years, touchscreens became the most common in-
put device for a wide range of computers. While touchscreens
are truly pervasive, commercial devices reduce the richness
of touch input to two-dimensional positions on the screen.
Recent work proposed interaction techniques to extend the ri-
chness of the input vocabulary using the finger orientation.
Approaches for determining a finger’s orientation using off-
the-shelf capacitive touchscreens proposed in previous work
already enable compelling use cases. However, the low esti-
mation accuracy limits the usability and restricts the usage
of finger orientation to non-precise input. With this pa-
per, we provide a ground truth data set for capacitive touch
screens recorded with a high-precision motion capture sy-
stem. Using this data set, we show that a Convolutional Neu-
ral Network can outperform approaches proposed in previous
work. Instead of relying on hand-crafted features, we trained
the model based on the raw capacitive images. Thereby we
reduce the pitch error by 9.8% and the yaw error by 45.7%.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies.

Author Keywords
Finger orientation; touchscreen; mobile device; capacitive
sensing.

INTRODUCTION
Over the last years, touchscreen input evolved to the main me-
chanism for mobile devices. Through direct touch, users can
intuitively interact with the user interface (UI). UI elements
can simply be selected by touching them. Recent capacitive
touchscreens sense touch input by measuring a change in ca-
pacitance when a finger touches the display. These measure-
ments are translated into a 2D point by the touchscreen con-
troller. Since the measured capacitance is omitted afterward,
touchscreen input is limited to 2D input.

Commercial devices, as well as previous research, presented
a wide range of novel interaction techniques. Already in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of t his work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISS ’17, October 17–20, 2017, Brighton, United Kingdom
©2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4691-7/17/10. . . $15.00
DOI: https://doi.org/10.1145/3132272.3134130

yaw

pitch

Figure 1. Finger orientation input with pitch (red) and yaw (green)
input can enlarge the input space for mobile devices.

Image source: [27].

first version of Android and iOS, they leveraged the time di-
mension to provide the long press. With the iOS 6s in 2015,
Apple introduced 3D Touch which adds a pressure dimen-
sion the interaction. Both methods are used to modify the
touch input and alter the action. Roudaut et al. [35] presen-
ted a technique to use the roll of the finger to scroll through
lists. Xiao et al. [41] and Zaliva [42] proposed using the fin-
ger orientation to increase the richness of the touch input. A
larger input vocabulary enables a richer interaction and the-
reby enables new ways to manipulate potential applications.

The finger orientation can deliver up to three additional di-
mensions: pitch, roll, and yaw. Pitch is the angle between the
finger, and the horizontal touch surface and yaw is the angle
between the finger and the vertical axis. Pitch is presented in
red and yaw in green in Figure 1. These additional dimensi-
ons are especially useful when interacting with smartwatches.
For smartwatches, the finger orientation instead of the finger
position could be the main input.

Previous work proposed algorithms to determine pitch and
yaw to use it as an additional input modality. However, deter-
mining a finger’s orientation using off-the-shelf devices and
existing algorithms is still not precise. Due to the high po-
tential of using finger orientation as an additional input, we
aim to improve the algorithms proposed by previous work. In
this paper, we present a range of machine learning models to
estimate the fingers’ pitch and yaw angle.

mailto:Permissions@acm.org
https://doi.org/10.1145/3132272.3134130

To summarize, this paper contributes the following:

1. A more precise estimation of the fingers’ pitch and yaw
orientation using the raw capacitive sensor data and a ma-
chine learning approach;

2. A labeled raw capacitive sensor data set that enables other
researchers to build their own machine learning models and
further improve our results.

In the following sections, we review previous work that aims
to expand the touchscreen vocabulary. We then present the
details of our study design and the data set we collected in our
experiment. Next, we interpret and discuss the implications
of the data obtained. Finally, we present how we built our
new finger orientation estimation using machine learning.

RELATED WORK
Previous work presented a wide range of novel modalities to
enhance touch input on touchscreen devices. Amongst others,
this includes using the finger shape [31] and size [3], part of
the hand [12], pressure [33], and the shear force [11]. Furt-
her work also used additional sensors to offer additional in-
put modalities. For example, Le et al. used a Back-of-Device
(BoD) touch panel to enhance one-handed smartphone inte-
raction [22, 25] and further presented a novel smartphone pro-
totype that registers touch input on the whole device surface
to enable use cases such as grip recognition or touch input on
the whole device surface [23]. Colley and Häkkilä [6] used
a Leap Motion on the bottom side of a smartphone to ex-
plore finger specific interaction on smartphones. Wilkinson
et al. [38] used a wrist-worn inertial measurement unit to add
expressiveness to touch-based interactions.

Evaluations of the input modalities mentioned above have
shown that they are already suitable for frequent use. One in-
put modality which was investigated in a wide range of prior
work, and is still not usable in typical smartphones, is the use
of the finger’s pitch and yaw angle. While Mayer et al. [27]
investigated the ergonomic constraints of the input modality,
a number of researchers [19, 34, 41, 42] presented different
approaches to estimate the finger orientation on commodity
smartphones. Being able to determine the finger orientation
enables use cases such as increasing touch targeting accuracy
using the pitch angle [16], manipulating 3D objects, zooming,
or setting values on a small touchscreen (e.g., smartwatch)
by twisting the finger. Kratz et al. [19] attached a depth ca-
mera above the touchscreen to estimate the finger orientation
and showed that users could consistently select and hold gi-
ven target positions. While the estimation works adequately,
this approach requires an additional depth camera attached
to the device which mainly is a prototyping tool. Further,
Mayer et al. [28] recently modded the systematic error using
ground truth data to improve the initial approach. Rogers et
al. [34] built a custom device based on conventional capaci-
tive sensors to show the feasibility of estimating the finger
orientation. Further approaches could use touchscreens that
sense the fingers proximity to the display (e.g. Hinckley et
al. [14] and Samsung’s AirView) to reconstruct the 3D fin-
ger position. Other approaches could attached mirror to the

front-camera display to capture the finger orientation when
touching the display similar to Wong et al.’s work [40].

To enable finger orientation estimation on off-the-shelf
smartphones without the need for additional sensors, resear-
chers started to use the capacitive images provided by capa-
citive touchscreens. A capacitive image describes the diffe-
rences in electrical capacitance between a baseline measure-
ment when no finger is touching the screen, and a current
measurement when a finger touches the screen. An example
is shown in Figure 2. Amongst others, previous work used
these images for biometric user identification [10, 17], hand
grip recognition [5, 24], and envisioned a wide range of ot-
her use cases such as determining user’s handedness, adaptive
UIs based on finger position, or predicting user actions [23].
Zaliva et al. [42] used a sliding window approach combined
with an artificial neural network to estimate the finger’s pitch
and yaw orientation. However, this was done on a table top
and used a sliding window approach to calculate the pitch and
yaw angle of the finger. Due to the sliding window approach,
an unavoidable latency is introduced while absolute input ba-
sed on finger orientation is not possible. Similar to our work,
Xiao et al. [41] used Gaussian process (GP) to estimation the
pitch angle based features gained from the capacitive images
of an off-the-shelf smartphone. However, for yaw, they used
a simple heuristic. Their evaluation revealed an accuracy that
is still not suitable for daily use.

While in 2011 Henze et al. [13] showed that touch screen
offsets can be models using a polynomial function, Weir et
al. [37] later showed that GPs are suitable to model the offsets
for two-handed interaction and even improve the touch accu-
racy. Recently Murray-Smith [29] proposed using CNNs to
improve touchscreens’ capabilities further. With this recent
progress in machine learning, CNNs are now the state-of-
the-art approach to train models based on images [20]. As
CNNs require a large data set to be trained on [36], we con-
ducted a study to collect a large number of capacitive images
that are automatically labeled with pitch and yaw angles by
a motion capture system as ground truth. Based on this data
set, we train estimation models using different machine le-
arning algorithms, starting from the recent work by Xiao et
al. [41] over established machine learning algorithms such as

0 5 10

0

5

10

15

20

25

(a) 23◦,−42◦
0 5 10

0

5

10

15

20

25

(b) 23◦, 41◦
0 5 10

0

5

10

15

20

25

(c) 17◦, 4◦
0 5 10

0

5

10

15

20

25

(d) 80◦, 3◦

Figure 2. For different capacitive images form a Nexus 5 with different
finger orientations. The labels represent the finger orientations pitch,

yaw.

Figure 3. The study setup showing the Nexus 5 and the aluminum
profiles where the cameras are firmly mounted to.

k-nearest neighbor (kNN) and Random Forest (RF) and even-
tually showing the best results with CNNs.

DATA COLLECTION STUDY
In this study, we collect capacitive images and respective fin-
ger orientation angles as ground truth using a motion capture
system. We followed the approach by Holz and Baudisch [15]
to collect ground truth data of the finger orientation. Specifi-
cally, a finger orientation consists of a pitch angle and a yaw
angle. We define pitch as the angle between the finger and the
horizontal touch surface. The pitch is 0◦ when the finger is
parallel to the touch surface, i.e., the entire finger touches the
surface. The yaw angle represents the angle between the fin-
ger and the vertical axis. Yaw is 0◦ when the finger is parallel
to the long edge of the phone and increases when the finger is
rotated counterclockwise.

Apparatus
The apparatus, shown in Figure 3, includes an LG Nexus 5
smartphone, eight OptiTrack Prime 13W motion capture ca-
meras, and one PC to operate the OptiTrack. We modified
the Android kernel of the LG Nexus 5 as described by Le et
al. [24] to gain access to the capacitive images. Using our
Android application, we recorded the 15× 27 pixel image at
20 fps as well as the respective 2D touch point provided by
the Android SDK. While recording, the Android application
instructs participants to touch on a red 2 × 2 cm crosshair as
shown in Figure 4. To further record the respective 3D finger
orientation in relation to the orientation of the smartphone,
we attached a rigid body with 3 markers each onto the par-
ticipant’s index finger and the smartphone. This enables the

Figure 4. A close up of a participants hand while performing the study.
On the participants index finger we attacked the ridget body to track

the finger orientation.

motion capture system to reconstruct the pitch and yaw angle
of the finger, and record them at 240 fps. Based on this infor-
mation, the experimenter could monitor all orientations that
were covered by the participants live on the PC.

Design & Task
The experiment consists out of two phases, the tapping phase
in which participants tapped the screen repeatedly, and the
moving phase in which participants altered the finger tip wit-
hout removing the finger from the screen. Since the resolu-
tion of the capacitive image is low, we hypothesized that the
blob representing the finger could look different depending
on whether the touch is performed in the center of a pixel,
or on the pixel borders. Thus, touches in each phase were
performed on a pixel center and on pixel borders, which was
represented by the red cross-hair. In total, this results in 2×2
tasks which are counterbalanced using a Latin square.

Participants
We recruited 35 participants (7 female) through our univer-
sity’s mailing list. Due to due to technical issues we excluded
two participants. For the remaining 33 participant (7 female)
the age ranged from 20 to 33 years (M = 22.9, SD = 3.4).
All of them had either no visual impairment or corrected to
normal vision. None of the participants had any locomotor
disabilities. Further, all participants were right handed. Only
participants with short fingernails were invited to participate,
as this was stated to be an issue by Xiao et al. [41]. Therefore
participants were able to cover the full pitch range from 0◦

and 90◦.

Procedure
After signing the consent form and filling out a demographic
questionnaire, we attached the reflective rigid body markers
to the participant’s index finger. Participants were then in-
structed to touch the display with their index finger, while
slowly altering the pitch and yaw angle of the finger. In the
moving phase, they were instructed not to remove the finger
while altering the orientation. In the tapping phase, they were
instructed to altering the orientation then touch the screen lift
off the finger and repeat the procedure. This was done until

0 10 20 30 40 50 60 70 80 90
Ground truth pitch in degree

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Sa

m
pl

es
 p

er
 p

itc
h

de
gr

ee

Figure 5. The blue counts are representing the distribution of pitch
samples which we used for the modeling. The yellow area represents
the distribution of pitch samples we recorded in our study. The are in

between in obtained by flipping the yaw data.

the experimenter confirms that all angles between 0◦ and 90◦

for pitch and −90◦ to 90◦ degrees for yaw was covered. A
degree counts as covered when at least 20 capacitive images
for that degree were recorded. Using the live monitor appli-
cation, the experimenter instructed the participants to cover
all angles and ensured that the recordings were complete.

MODELING
In a pre-processing step, we mapped the capacitive data re-
cord on the phone with the OptiTack recorded on the PC. As
the capacitive images are recorded at 20 fps, and the OptiTack
samples are recorded at 240 fps, we used the closest OptiTack
sample for each capacitive image. This resulted in an average
offset of 25µsec (SD = 162µsec).

As the first step, we removed all samples from the tapping
condition. The sampling rate 20 fps did often only capture
the finger while moving but not the finger fully touching the
touchscreen. As the second step, we followed Xiao et al. [41]
and filtered noise below 3 pF (picofarad). The sample distri-
bution is shown in Figure 6 for yaw and the pitch distribu-
tion in Figure 5. As Mayer et al. [27] found that yaw input
beyond −33.75◦ falls into a non-comfort zone, we recorded
fewer samples towards yaw = −90◦. To compensate for this
effect, we added vertically flipped versions of all initial capa-
citive images to our data set to balance the yaw samples. We
then performed a blob detection on the capacitive images; the
biggest blob was 15 × 22. We cropped all blobs and pas-
ted the blobs into the upper left corner of an empty 15 × 22
image (referred to as blob image). The blob detection omit-
ted all blobs that were not greater than one pixel of the image
(4.1 × 4.1mm) as these can be considered as the noise of the
capacitive touchscreen. We used the pixel values of the blob
images as input features for the model. In total, our data set
consists of 457, 268 blob images.

For all models, we derived training and test sets using an
80%:20% split by participants respectively. As we had 33
participants in total, we split them into the train and test set.
The first 26 participants were used for training, and remaining
7 participants were used for testing. For all models, we used

90.0 67.5 45.0 22.5 0.0 22.5 45.0 67.5 90.0
Ground truth yaw in degree

0

500

1000

1500

2000

2500

3000

3500

4000

Sa

m
pl

es
 p

er
 y

aw
 d

eg
re

e

Figure 6. The blue counts are representing the distribution of yaw
samples which we used for the modeling. The yellow area represents

the distribution of yaw samples we recorded in our study. The area in
between in obtained by flipping the yaw data.

an optimizer function to reduce the root mean squared error
(RMSE).

Feature-Based Approach
The recent feature-based approach by Xiao et al. [41] uses
42 features extracted from the capacitive image to estimate
the pitch and yaw angle. For the pitch angle, they used a GP
regression. We reimplemented these 42 features. However,
when feeding them to the GP, we hit the limits of GP due to
a training time of O(n3) and memory scaling of O(n2) [21].
Since Xiao et al. recorded 1,224 samples to train their model,
a GP regression worked for their in comparatively small data
set to estimate pitch. However, with our data set, which is 373
times larger, training GPs on the full data set is not feasible
anymore.

To train a GP we used a subset of our data set. To not vary
the number of reference points, we used only samples which
have the properties of the original implementation, pitch: 0◦
to 90◦ in 15◦ steps and yaw: −60◦ to 60◦ in 15◦ steps. Since
no pitch = 0◦ samples have been recorded in our study the
following comparison lacks the 0◦ validity. Further, we used
±1◦ for pitch and yaw to create a data set to implement the
approach presented by Xiao et al. [41]. This resulted in a
4, 977 samples large data set. We divided the data set in a
train- and a test- data set. For each reference point, 75% are
used for training and 25% for testing. This ensured that each
original reference point was trained and tested, resulting in
3, 711 training samples and 1, 266 test samples. As Xiao et
al. [41] did not report how many trainings samples they recor-
ded, we can not ensure the same size. However, they reported
that the test set contained 1, 224 samples, which is roughly
the amount we use for testing. Due to the proprietary imple-
mentation1, Xiao et al. [41] did not report which kernel or
parameters they used. Thus we used the trial-and-error met-
hod [7] combined with a grid search to find parameters for the
GP reimplementation of Xiao et al. [41]. To train our reim-
plemented GP, we used scikit-learn2.
1qeexo.com/moreproducts - last accessed 08-26-2017
2scikit-learn.org/stable/modules/gaussian_process.
html

http://qeexo.com/moreproducts
http://scikit-learn.org/stable/modules/gaussian_process.html
http://scikit-learn.org/stable/modules/gaussian_process.html

0 10 20 30 40 50 60 70 80 90
Ground truth pitch in degree

0

10

20

30

40

50
A

b
so

lu
t

m
e

a
n

 p
it

ch
 e

rr
o

r
in

 d
e

g
re

e

Figure 7. The remaining pitch error when using out CNN + L2 model.
The gray area shows the 95% CI.

To make use of the rich dataset we collected, we additio-
nally decided to use pseudo-implementation of the approach
by Xiao et al. [41]. We use a simple k-nearest neighbor (kNN)
approach as well as a Deep Neural Network (DNN) approach.
For yaw Xiao et al. used the ellipsoid of the blob with a 90◦

correction when the pitch is larger than 50◦.

Pitch Estimation Using Features
For the GP reimplementation of Xiao et al. [41] using their 42
features we found that a RationalQuadratic3 kernel performed
best with Alpha = .01 and LengthScale = 100.

For the pseudo implementation we replaced the GP with a
kNN, and a DNN. (1) For the kNN estimation approach using
the features by Xiao et al. we achieved the best results using
k = 129. We used a change RMSE smaller than ε = .001 as
a stopping criteria. (2) For the DNN we used a two ReLu [30]
layer structure with 100 and 50 neurons respectively. To
train our model we used an Adagrad Optimizer [8] with an
exponential decay learning rate (LearningRate = .01 and
DecayRate = .2). We initialized the weights using the Xa-
vier initialization scheme [9] while the biases were initialized
with .01.

Yaw Estimation Using Features
For the GP reimplementation we use the S1 ellipsoid feature
with the heuristic described by Xiao et al. [41] to estimate
yaw.

The simple heuristic is based on the estimated pitch however
we also want to take full advantage of the large data set. Thus,
for the pseudo implementation we used the simple heuristic
using S1 ellipsoid feature as well a kNN and a RF model for
the yaw estimation. We performed a grid search for kNN
and RF. We again used an ε = .001 as an early stopping in
RMSE change. For kNN, the best results were achieved with
a k = 109 while Estimators = 79 performed the best for
RF .

Representation Learning Approaches
3scikit-learn.org/stable/modules/
generated/sklearn.gaussian_process.kernels.
RationalQuadratic.html

90.0 67.5 45.0 22.5 0.0 22.5 45.0 67.5 90.0
Ground truth yaw in degree

0

5

10

15

20

25

30

A
b

so
lu

t
m

e
a

n
 y

a
w

 e
rr

o
r

in
 d

e
g

re
e

Figure 8. The remaining yaw error when using out CNN + L2 model.
The gray area shows the 95% CI.

We propose a new way to determine the pitch and yaw of
the touching finger. This method uses DNNs with the raw
capacitive blob values as input also known as representation
learning [1]. Thus we first applied a blob detection to identify
the touching finger and then directly feed the 15 × 22 sized
blob into the DNN to estimate the pitch and the yaw of the
finger.

Beyond the feature-based baseline, we implemented two ba-
selines that use the raw pixels of the blob to estimate pitch
and yaw. Therefore, we trained kNN and RF models to es-
timate pitch and yaw independent from each other. We used
the implementations of scikit-learn4.

We implemented a neural network for classification using
TensorFlow5 1 and tested different network configurations by
varying the amount of neurons and layers, activation functi-
ons, and optimizers provided by TensorFlow. We trained 6
different neural network structures: two DNNs one for pitch
and one for yaw and one DNN and three CNNs which esti-
mate pitch and yaw at the same time. Further, we used early
stopping to prevent overfitting for all neural networks [4].
TensorFlow has a large amount of parameter for their functi-
ons if the parameter is not reported in the following section
we used the standard parameter of TensorFlow version 1.2.1.
We applied the trial-and-error method [7] to find the best pa-
rameters for our models.

k-nearest neighbor (kNN): We started using kNN regres-
sion as a baseline estimation for pitch and yaw interdepen-
dently. We performed a grid search to identify the best k
for the two models. For pitch, we found that k = 180 for
pitch and k = 278 for yaw performed best.

Random Forest (RF): As a more advanced model than
kNN, we used two RFs as a second baseline to estimate
pitch and yaw interdependently. We performed a grid se-
arch to identify the best i number of trees in the forest for
the two models. For pitch, we found that i = 85 for pitch
and i = 17 for yaw performed best.

4scikit-learn version v0.19.0: scikit-learn.org
5tensorflow version v1.2.1: tensorflow.org

http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
http://scikit-learn.org
http://tensorflow.org

Pitch Yaw Overall
Method RMSE MAE SD RMSE MAE SD RMSE
GP reimplementation of Xiao et al. [41]* 14.74 11.78 14.38 56.58 40.51 39.51 −
pseudo implementation of Xiao et al. [41]∗∗ 14.19 11.58 8.21 44.53 33.39 29.46 −
kNN 13.96 11.25 8.27 33.07 23.06 23.7 −
RF 12.99 10.24 7.99 28.55 20.89 19.46 −
DNN 13.05 10.25 8.07 27.10 19.53 18.79 −
Combined DNN 13.44 10.71 8.13 26.98 19.51 18.4 29.74
CNN 12.80 10.03 7.96 24.5 17.6 17.04 27.43
CNN + L2 12.8 10.09 7.88 24.19 17.62 16.58 27.16
CNN + L2 + BatchNorm 12.75 9.99 7.92 24.48 18.33 16.24 27.59

Table 1. The best results for all tested estimation models. Errors are reported in angular degree error. ∗) These results have been achieved with a small
subset of the original data set (1.4%). ∗∗) For the reported values we used a DNN instated of a GP regression for the pitch estimation as the data set

was to big for a GP.

Deep Neural Network (DNN): We used two DNNs, one to
estimate pitch and one for yaw. We achieved the best re-
sults using a 3-layer DNN. We used a ReLu-ReLu-Sigmoid
structure, with 500, 300, 200 neurons respectively. To train
our model, we used an AdaGrad Optimizer[8] with a ex-
ponential decay learning rate (LearningRate = .01 and
DecayRate = .2). We initialized our weights using Xavier
initialization scheme [9] while the biases were initialized
with .01.

Combined DNN: For a DNN with 2 output neurons to es-
timate pitch and yaw at the same time, we achieved the
best results using a 3-layer DNN. As layers, we used a
ReLu-Relu-Sigmoid structure, with 1200, 800, and 400
neurons respectively. We initialized the weights using the
Xavier initialization scheme [9] while the biases were ini-
tialized with .01. As optimizer we used a Adagrad Opti-
mizer [8] combined with a exponential decay learning rate
(LearningRate = .01 and DecayRate = .2).

Convolutional Neural Network (CNN): Next, we used a
CNN with 2 output neurons to also estimate pitch and yaw
at the same time. As CNNs are designed for image-like
data, this was the next obvious step for us. We used 3 con-
volution layer each with 2 × 2 max-pooling and a ReLu
activation function. All convolutional layers have a filter
size of 7 × 7 and 32, 72 and 160 filter banks respectively
for the three layer, followed by 2 fully connected layers
(FCLs). The first FCL uses a softplus6 activation function.
We used 2000 output neurons for the first FCL and initi-
alized the weights using Xavier initialization scheme [9]
while the biases were initialized with .01. As optimizer
we used a Momentum Optimizer [32] using a momen-
tum of .9 combined with a exponential decay learning rate
(LearningRate = .02 and DecayRate = .1).

CNN + L2: To improve our first CNN, we applied L2 Re-
gularization [2]. An L2 Regularization of .015 for the two
FCLs performed best with an extra change in the network

6The softplus function is defined as softplus(x) = log(1 + exp(x))

structure. We changed the filter size from 7×7 of all convo-
lutional layers in cmparcion to the previous model to 6× 6
as is yield better accuracy.

CNN + L2 + BatchNorm: In the last model we added batch
normalization [18] to CNN model with L2 Regularization.
We used the same structure as the CNN with L2 Regula-
rization model with enabled scale as well as an optimizer,
exponential decay learning rate, and L2 Regularization.

RESULTS
All results of our 2 baseline approaches (kNN and RF), 5
Neural Network (NN) approaches as well as the results of
the best estimation for reimplementation and pseudo imple-
mentation using the features proposed by Xiao et al. [41] are
presented in Table 1.

Feature-Based Approaches
We used a subset of our data set to train and test the reimple-
mentation due to the limitations of GPs and the full data sat
for the pseudo implementation.

Reimplementation
For the reimplementation we achieved a RMSE of 14.74◦

(MAE = 11.78◦, SD = 14.38◦) for pitch usning a GP and
a RMSE of 56.58◦ (MAE = 40.51◦, SD = 39.51◦) for yaw
using the simple heuristic.

Pseudo implementation
For the pseudo implementation we achieved a RMSE of
16.14◦ (MAE = 13.2◦, SD = 9.28◦) using kNN. The DNN
estimator using features, which replaced the original GP,
achieved a RMSE of 14.19◦. Thus, the DNN using the fe-
atures by Xiao et al. [41] outperforms the kNN with features
by 13.7%.

The simple heuristic to estimate the yaw of the finger propo-
sed by Xiao et al. [41] achieved a RMSE of 44.53◦. Furt-
her, we achieved a RMSE of 31.77◦ (MAE = 22.96◦, SD =
21.96◦) when we use a kNN as an estimator. And a RF model
achieved a RMSE of 31.75◦ (MAE = 22.95◦, SD = 21.94◦).

Thus our baseline comparisons using kNN and RF both per-
formed better than the simple heuristic by 28.7%.

Representation Learning Approaches
Next, we again used kNN and RF as a baseline estimator.
However, now we are using the raw blob values. For the kNN
baseline, we achieved a remaining RMSE of 13.96◦ for pitch
and 33.07◦ for yaw. For the Random Forest (RF) baseline,
we achieved a remaining RMSE of 12.99◦ for pitch and 28.5◦

for yaw. The RF using the raw blob outperforms the simple
heuristic using features by 8.5% for pitch and by 36.% for
yaw.

With our first with two separate DNNs, one for pitch and one
for yaw, we achieved a RMSE of 13.05◦ for pitch and 27.10◦

for yaw. We further achieved similar results when using a
DNN to predict pitch and yaw at the same time this resulted
in an overall RMSE of 29.74◦.

Then we used three different types of CNN. A simple CNN
outperformed the DNN by 7.8%. We further were able to
reduce the RMSE to 27.16◦ when using a CNN with L2 Re-
gularization. However, when applying batch normalization to
the previous model, the overall result dropped to a RMSE of
27.59◦.

Thus the estimator with CNN and L2 Regularization perfor-
med best with an overall RMSE error of 27.16◦. The error
distribution for pitch is shown in Figure 7 and for yaw in Fi-
gure 8.

DISCUSSION
In this work, we collected a data set automatically labeled by
a motion capture system in the context of a study. In total,
we used 457, 268 labeled samples to train our models. Ho-
wever, Figures 5 and 6 indicate an unequal distribution for
pitch and yaw samples. Results by Mayer et al. [27] indicate
that performing low pitch can be hard even in the yaw range
observed in this paper. Further, they stated that performing
yaw angles outside of the range −33.75◦ to 101.25◦ is signi-
ficantly harder for right-handed people than performing yaw
angles within the range. Since we had 31 right-handed parti-
cipants, this explains the the unequal sample distribution for
the yaw samples.

Using our labeled data set, we evaluated the feature-based ap-
proach both the GP reimplementation as well as the pseudo
implementation, and further presented multiple models in-
cluding two baseline approaches (k-nearest neighbor (kNN)
and Random Forest (RF)), and five different Neural Networks
(NNs). In contrast to Xiao et al. [41], we used the raw capa-
citive image instead of feature engineering. Even the two ba-
seline approaches using representation learning yield a lower
estimation error than the two feature-based approach imple-
mentations.

In contrast to all other models, we trained the GP reimple-
mentation with a subset of the data set which makes a real
comparison hard. However, the RMSE for the GP pitch esti-
mator is in the same range as the other models. On the other
hand, the SD is 175% larger than the second worst pitch SD.
Further, the simple heuristic for yaw performed worth for the

GP reimplementation throughout all other yaw estimations.
Additionally, the SD is the highest which is 134% larger than
the second worst yaw SD.

A comparison of our results with the pseudo implementation
of Xiao et al. [41] revealed that the pseudo implementation
of the feature-based approach performed worse by 16.2% for
pitch and 19.7% for yaw. Since our data set consists out of
457, 268 labeled samples, we have a large variance compared
to their data set which consists of only 1,224 test samples.
Further, they trained and evaluated their model in 15◦ steps
while our model was trained and evaluated on a floating point
level of precision. As shown in Figures 5 and 6, we cover the
full pitch (from 0◦ to 90◦ degrees) and yaw range (from−90◦
to 90◦) in 1◦ steps.

Both our baselines (kNN and RF) using the raw capaci-
tive image outperformed our implementations of the feature-
based approach which are using the features proposed by
Xiao et al. [41]. Using five different NNs, we showed that
we could further improve the estimation accuracy. We star-
ted with two separate DNNs to predict pitch and yaw. We
achieved similar estimation results using one combined DNN.
Eventually, we used Convolutional Neural Networks (CNNs)
to further improve the finger orientation estimation accuracy
of the combined DNN by 7.8% in RMSE. Overall, we redu-
ced the pitch RMSE by 9.8% and the yaw RMSE by 45.7%
in comparison to the best feature-based approach.

While this is a step towards a precise estimation of the finger
orientation, there is still a remaining error in both pitch and
yaw which could result in jitter. This could limit the usabi-
lity and restrict the usage of finger orientation to non-precise
input. One reason includes the limitation of the touch sen-
sor. With a pixel size of 4.1 × 4.1mm, the capacitive image
still has a low-resolution which restricts the performance of
the estimation. While we removed the majority of the tou-
chscreen noise, the remaining noise still affects the estima-
tion precision negatively. This could be improved by using a
more precise high-resolution touch sensor. Further, William-
son [39] showed that increasing the sensing range above the
display surface enables, for instance, to detect if two fingers
belong to the same hand and Hinckley et al. [14] used an in-
creasing the sensing range to sense a finger before the accen-
tual touch and thereby enables new interaction techniques.
Both enables detection of the whole finger without actually
touching the display which can be used to model the finger
shape and thus also orientation. This technology is already
available in commercial smartphones, such as the Samsung
Galaxy S4 which has the Air View feature. Better sensing
range was well as a higher resolution could improve the ca-
pabilities to detect the finger orientation.

One limitation of our current model is that it is only trai-
ned with samples where the whole finger was captured by
the touch sensor. Thus, we assume a drop in accuracy when
touching close to the screen edges where only part of the fin-
ger is visible. This should be investigated in further develop-
ments. Our data set could be used to train models which take
edge inputs into account by cropping the images and thereby
simulating edge inputs.

THE FINGER ORIENTATION DATA SET AND MODEL
The data set collected in this paper is freely available under
a GPL license7 and available on GitHub8. The data set con-
tains the full capacitive image as well as the labels for pitch
and for yaw which we automatically labeled by a motion cap-
ture system in the context of our study. Further, we provide
the scripts for prepossessing, train and testing on GitHub. The
prepossessing scripts include the blob detections using scikit-
image’s implementation9 of find contours by Lorensen and
Cline [26]. Training and testing scripts of the method using a
CNN with L2 Regularization are also published. Finally, the
model which performs best is released together with data set
and code. The model can directly be deployed using Ten-
sorFlow Mobile10 directly to mobile devices (Android and
iOS) and prototyping platforms such as the Raspberry Pi. The
data is published in CSV files, and the code is written in Py-
thon 3.6 using TensorFlow version 1.1.0.

CONCLUSION
In this paper, we collected a data set of capacitive images
which represents the change in capacitance caused by fingers
touching the display in different finger orientations. These
images are labeled with the pitch and yaw angles of the finger
through a high-precision motion capture system. The feature-
based approach by Xiao et al. [41] is based on a Gaussian pro-
cess (GP) and a simple heuristic to estimate the finger orien-
tation using a set of engineered features. In contrast, our mo-
del uses the representation approach using a Convolutional
Neural Network (CNN) trained with raw capacitive images.
We showed that this reduces the estimation error for pitch by
9.8% and yaw by 45.7% in RMSE when comparing to our
pseudo implementation of the Xiao et al. [41] approach using
their features. Besides the data set, one outcome of this work
is an improved finger orientation estimation model that can
be readily deployed to Android and iOS devices. We are pu-
blicly releasing the model for others to deploy them on their
mobile devices, as well as the data set for further usage.

Using the latest machine learning algorithms and further ad-
ditional methods, we showed a noticeable improvement over
previously presented approaches. The next steps to improve
finger orientation estimation on mobile devices would include
using a touchscreen that provides a higher capacitive image
sampling resolution. Moreover, using touchscreens with sen-
sing capabilities above the display would enable a recon-
struction of the full finger and provide more vital information
to estimate the finger orientation.

ACKNOWLEDGMENTS
This work is financially supported by the German Research
Foundation (DFG) within Cluster of Excellence in Simulation
Technology (EXC 310/2) at the University of Stuttgart and
the MWK Baden-Württemberg within the Juniorprofessuren-
Programm.
7gnu.org/licenses/gpl-3.0.en.html
8github.com/interactionlab/
Capacitive-Finger-Orientation-Estimation
9scikit-image.org/docs/dev/api/skimage.measure.
html#skimage.measure.find_contours

10tensorflow.org/mobile/

REFERENCES
1. Bengio, Y., Courville, A., and Vincent, P. Representation

learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine
Intelligence 35, 8 (Aug 2013), 1798–1828.

2. Bilgic, B., Chatnuntawech, I., Fan, A. P., Setsompop, K.,
Cauley, S. F., Wald, L. L., and Adalsteinsson, E. Fast
image reconstruction with l2-regularization. Journal of
Magnetic Resonance Imaging 40, 1 (2014), 181–191.

3. Boring, S., Ledo, D., Chen, X. A., Marquardt, N., Tang,
A., and Greenberg, S. The fat thumb: Using the thumb’s
contact size for single-handed mobile interaction. In
Proceedings of the 14th International Conference on
Human-computer Interaction with Mobile Devices and
Services, MobileHCI ’12, ACM (New York, NY, USA,
2012), 39–48.

4. Caruana, R., Lawrence, S., and Giles, C. L. Overfitting
in neural nets: Backpropagation, conjugate gradient, and
early stopping. In Advances in neural information
processing systems (2001), 402–408.

5. Chang, W., Kim, K. E., Lee, H., Cho, J. K., Soh, B. S.,
Shim, J. H., Yang, G., Cho, S.-J., and Park, J.
Recognition of grip-patterns by using capacitive touch
sensors. In IEEE International Symposium on Industrial
Electronics, vol. 4, IEEE (2006), 2936–2941.

6. Colley, A., and Häkkilä, J. Exploring finger specific
touch screen interaction for mobile phone user
interfaces. In Proceedings of the 26th Australian
Computer-Human Interaction Conference on Designing
Futures: The Future of Design, OzCHI ’14, ACM (New
York, NY, USA, 2014), 539–548.

7. Coulibaly, P., Anctil, F., and Bobe, B. Daily reservoir
inflow forecasting using artificial neural networks with
stopped training approach. Journal of Hydrology 230, 3
(2000), 244 – 257.

8. Duchi, J., Hazan, E., and Singer, Y. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research 12
(July 2011), 2121–2159.

9. Glorot, X., and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In In
Proceedings of the International Conference on
Artificial Intelligence and Statistics. Society for Artificial
Intelligence and Statistics, vol. 9 of AISTATS’10,
JMLR.org (2010), 249–256.

10. Guo, A., Xiao, R., and Harrison, C. Capauth:
Identifying and differentiating user handprints on
commodity capacitive touchscreens. In Proceedings of
the 2015 International Conference on Interactive
Tabletops & Surfaces, ITS ’15, ACM (New York, NY,
USA, 2015), 59–62.

11. Harrison, C., and Hudson, S. Using shear as a
supplemental two-dimensional input channel for rich
touchscreen interaction. In Proceedings of the SIGCHI

http:// gnu.org/licenses/gpl-3.0.en.html
http://github.com/interactionlab/Capacitive-Finger-Orientation-Estimation
http://github.com/interactionlab/Capacitive-Finger-Orientation-Estimation
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours
http://tensorflow.org/mobile/

Conference on Human Factors in Computing Systems,
CHI ’12, ACM (New York, NY, USA, 2012),
3149–3152.

12. Harrison, C., Schwarz, J., and Hudson, S. E. Tapsense:
Enhancing finger interaction on touch surfaces. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST ’11,
ACM (New York, NY, USA, 2011), 627–636.

13. Henze, N., Rukzio, E., and Boll, S. 100,000,000 taps:
Analysis and improvement of touch performance in the
large. In Proceedings of the 13th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’11, ACM
(New York, NY, USA, 2011), 133–142.

14. Hinckley, K., Heo, S., Pahud, M., Holz, C., Benko, H.,
Sellen, A., Banks, R., O’Hara, K., Smyth, G., and
Buxton, W. Pre-touch sensing for mobile interaction. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, ACM (New
York, NY, USA, 2016), 2869–2881.

15. Holz, C., and Baudisch, P. The generalized perceived
input point model and how to double touch accuracy by
extracting fingerprints. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’10, ACM (New York, NY, USA, 2010), 581–590.

16. Holz, C., and Baudisch, P. Understanding touch. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, ACM (New
York, NY, USA, 2011), 2501–2510.

17. Holz, C., Buthpitiya, S., and Knaust, M. Bodyprint:
Biometric user identification on mobile devices using
the capacitive touchscreen to scan body parts. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, ACM
(New York, NY, USA, 2015), 3011–3014.

18. Ioffe, S., and Szegedy, C. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. CoRR abs/1502.03167 (2015).

19. Kratz, S., Chiu, P., and Back, M. Pointpose: Finger pose
estimation for touch input on mobile devices using a
depth sensor. In Proceedings of the 2013 ACM
International Conference on Interactive Tabletops and
Surfaces, ITS ’13, ACM (New York, NY, USA, 2013),
223–230.

20. Krizhevsky, A., Sutskever, I., and Hinton, G. E.
Imagenet classification with deep convolutional neural
networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems,
Curran Associates, Inc. (Lake Tahoe, NV, USA, Dec.
2012), 1097–1105.

21. Lawrence, N., Seeger, M., and Herbrich, R. Fast sparse
gaussian process methods: The informative vector
machine. In Proceedings of the 15th International
Conference on Neural Information Processing Systems,
NIPS’02, MIT Press (Cambridge, MA, USA, 2002),
625–632.

22. Le, H. V., Bader, P., Kosch, T., and Henze, N.
Investigating screen shifting techniques to improve
one-handed smartphone usage. In Proceedings of the 9th
Nordic Conference on Human-Computer Interaction,
NordiCHI ’16, ACM (New York, NY, USA, 2016),
27–37.

23. Le, H. V., Mayer, S., Bader, P., Bastian, F., and Henze,
N. Interaction methods and use cases for a full-touch
sensing smartphone. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’17, ACM (New York, NY,
USA, 2017), 2730–2737.

24. Le, H. V., Mayer, S., Bader, P., and Henze, N. A
smartphone prototype for touch interaction on the whole
device surface. In Proceedings of the 19th International
Conference on Human-Computer Interaction with
Mobile Devices and Services Adjunct, MobileHCI ’17,
ACM (New York, NY, USA, 2017).

25. Le, H. V., Mayer, S., Wolf, K., and Henze, N. Finger
placement and hand grasp during smartphone
interaction. In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’16, ACM (New York, NY, USA,
2016), 2576–2584.

26. Lorensen, W. E., and Cline, H. E. Marching cubes: A
high resolution 3d surface construction algorithm. In
Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques,
SIGGRAPH ’87, ACM (New York, NY, USA, 1987),
163–169.

27. Mayer, S., Gad, P., Wolf, K., Wozniak, P. W., and Henze,
N. Understanding the ergonomic constraints in
designing for touch surfaces. In Proceedings of the 19th
International Conference on Human-Computer
Interaction with Mobile Devices and Services (Vienna,
2017).

28. Mayer, S., Mayer, M., and Henze, N. Feasibility analysis
of detecting the finger orientation with depth camera. In
Proceedings of the 19th International Conference on
Human-Computer Interaction with Mobile Devices and
Services Adjunct, MobileHCI’17, ACM (New York, NY,
USA, 2017), 8.

29. Murray-Smith, R. Stratified, computational interaction
via machine learning. In Eighteenth Yale Workshop on
Adaptive and Learning Systems (New Haven, CT, USA,
June 2017), 95–101.

30. Nair, V., and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning,
ICML’10, Omnipress (2010), 807–814.

31. Oakley, I., Lindahl, C., Le, K., Lee, D., and Islam, M. R.
The flat finger: Exploring area touches on smartwatches.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, ACM (New
York, NY, USA, 2016), 4238–4249.

32. Qian, N. On the momentum term in gradient descent
learning algorithms. Neural Networks 12, 1 (1999), 145
– 151.

33. Ramos, G., Boulos, M., and Balakrishnan, R. Pressure
widgets. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, ACM
(New York, NY, USA, 2004), 487–494.

34. Rogers, S., Williamson, J., Stewart, C., and
Murray-Smith, R. Anglepose: Robust, precise capacitive
touch tracking via 3d orientation estimation. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, ACM (New
York, NY, USA, 2011), 2575–2584.

35. Roudaut, A., Lecolinet, E., and Guiard, Y. Microrolls:
Expanding touch-screen input vocabulary by
distinguishing rolls vs. slides of the thumb. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, ACM (New
York, NY, USA, 2009), 927–936.

36. Simard, P. Y., Steinkraus, D., and Platt, J. C. Best
practices for convolutional neural networks applied to
visual document analysis. In Proceedings of the Seventh
International Conference on Document Analysis and
Recognition, vol. 3 of ICDAR ’03, IEEE Computer
Society (Washington, DC, USA, August 2003),
958–962.

37. Weir, D., Rogers, S., Murray-Smith, R., and Löchtefeld,
M. A user-specific machine learning approach for
improving touch accuracy on mobile devices. In

Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology, UIST ’12,
ACM (New York, NY, USA, 2012), 465–476.

38. Wilkinson, G., Kharrufa, A., Hook, J., Pursglove, B.,
Wood, G., Haeuser, H., Hammerla, N. Y., Hodges, S.,
and Olivier, P. Expressy: Using a wrist-worn inertial
measurement unit to add expressiveness to touch-based
interactions. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, CHI ’16,
ACM (New York, NY, USA, 2016), 2832–2844.

39. Williamson, J. Fingers of a hand oscillate together:
Phase syncronisation of tremor in hover touch sensing.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, ACM (New
York, NY, USA, 2016), 3433–3437.

40. Wong, P. C., Fu, H., and Zhu, K. Back-mirror:
Back-of-device one-handed interaction on smartphones.
In SIGGRAPH ASIA 2016 Mobile Graphics and
Interactive Applications, SA ’16, ACM (New York, NY,
USA, 2016), 10:1–10:5.

41. Xiao, R., Schwarz, J., and Harrison, C. Estimating 3d
finger angle on commodity touchscreens. In Proceedings
of the 2015 International Conference on Interactive
Tabletops & Surfaces, ITS ’15, ACM (New York, NY,
USA, 2015), 47–50.

42. Zaliva, V. 3d finger posture detection and gesture
recognition on touch surfaces. In Control Automation
Robotics & Vision (ICARCV), 2012 12th International
Conference on, IEEE (2012), 359–364.

	Introduction
	Related Work
	Data Collection Study
	Apparatus
	Design & Task
	Participants
	Procedure

	Modeling
	Feature-Based Approach
	Pitch Estimation Using Features
	Yaw Estimation Using Features

	Representation Learning Approaches

	Results
	Feature-Based Approaches
	Reimplementation
	Pseudo implementation

	Representation Learning Approaches

	Discussion
	The Finger Orientation Data Set And Model
	Conclusion
	Acknowledgments
	REFERENCES

