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While advances inmobile text entry enable smartphone users to type almost as fast as on hardware keyboards,

text-heavy activities are still not widely adopted. One reason is the lack of shortcut mechanisms. In this

article, we determine shortcuts for text-heavy activities, elicit shortcut gestures, implement them for a fully

touch-sensitive smartphone, and conduct an evaluation with potential users. We found that experts perform

around 800 keyboard shortcuts per day, which are not available on smartphones. Interviews revealed the

lack of shortcuts as a major limitation that prevents mobile text editing. Therefore, we elicited gestures for

the 22 most important shortcuts for smartphones that are touch-sensitive on the whole device surface. We

implemented the gestures for a fully touch-sensitive smartphone using deep learning and evaluated them in

realistic scenarios to gather feedback. We show that the developed prototype is perceived as intuitive and

faster than recent commercial approaches.
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1 INTRODUCTION

Smartphones have replaced desktop computers for a wide range of everyday tasks. Mobile word
processor [61], spreadsheets [59], and presentation programs [60] were installed over 1.5 billion
times and became viable alternatives to their desktop counterparts. Recent advances in the field of
mobile text entry [8, 74, 96] achieved improvements in typing speed which are almost comparable
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to those of hardware keyboards. Today, smartphones are used for a wide range of text-heavy
activities [88] including e-mail writing, instant messaging, note taking, and even text editing in
the cloud with over 500 million installations of GoogleDocs on Android devices [24]. While the
mobility enables users to perform these tasks in a wide range of situations (e.g., while on the
move), smartphones are compact devices which provide limited input and output capabilities
compared to desktop computers. Hardware keyboards andmice provide over 100 different keys for
text entry and shortcuts to frequently used functions. In contrast, touch input is limited to the two-
dimensional (2D) coordinates provided by the screen to support the same tasks. The limited input
capabilities of touchscreen-based devices pose severe usability challenges for mobile text editing.
We need to improve their input capabilities to make text-heavy activities usable on mobile devices.
The fat-finger problem [7, 87] is a well-known challenge and makes precise caret placement and

text selection frustrating. Further, the lack of shortcuts (e.g., hotkeys such as Ctrl+C) is a funda-
mental challenge for mobile interaction which even contradicts one of Shneiderman’s golden rules
for interface design, which asks to enable frequent users to use shortcuts [83]. Mobile operating
systems often use dwell times (e.g., a long-press) and context menus to provide these shortcuts.
However, these approaches are inconvenient and often slower than the keyboard counterparts.
Previous work [22] and commercial products used on-screen gestures as shortcuts to frequently
used functions. While this is a first step towards solving text editing challenges, touchscreens rely
on direct manipulation where content and user interface (UI) elements can easily be selected and
manipulated by touching them. Therefore, on-screen gestures can easily lead to overloading the
UI with functions and thus unintended activations, interfere with other gesture-based UI function-
alities (e.g., gesture keyboards), and still require a considerable effort to perform.
Previous work on fully touch sensitive smartphones (FTSP) showed that the back side, as well as

the sides of a mobile device, can be used to perform input. Indeed, Le et al. [47] showed that over
70 % of the back side can be reached comfortably by all fingers, while further related work [48,
63] presented high-fidelity prototypes of FTSP. These devices enable the user to perform gestures
with different fingers on the rear while the position of the fingers can be used as action modifiers.
These types of phones would enable users to perform text editing shortcuts on the back and the
sides nearly simultaneously to text-related activities on the touchscreen. In contrast to on-screen
gestures, input on the back and the sides does not interrupt the input that a thumb or an index fin-
ger performs on the front touchscreen. This approach of providing shortcuts is similar to hotkeys
on hardware keyboards and could soon be readily implemented on commodity devices, such as
foldable smartphones.1

An important basis to design shortcuts for improving text editing on FTSPs is to understand
which shortcuts are frequently needed and how they could be provided on FTSPs. In this article, we
present the results of four user studies focusing on designing and evaluating text editing shortcuts.

2 STUDY OVERVIEW

Stationary computers with hardware keyboard and mouse are currently the primary device
for text editing and thus suitable to study the used shortcuts. Thus, Study I analyses shortcuts
performed by 15 expert users over 5 workdays in an in-the-wild study. Subsequent interviews
revealed that major challenges for text-heavy activities on smartphones are limited input precision
(e.g., placing the caret) and the lack of shortcuts. Despite these challenges, users still find text
editing on smartphones essential. As these limitations can be resolved by offering more shortcuts
(e.g., for navigating the caret), we conducted Study II to elicit gestures that provide shortcuts to
the identified functions that are frequently used. We followed the formal methods proposed by

1https://www.techradar.com/news/samsung-galaxy-x-foldable-phone.
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Wobbrock et al. [104] and focus on FTSPs to avoid conflicts with interacting with screen content
and existing UI components such as gesture keyboards. To evaluate the elicited gesture set and
its usability in realistic text-editing scenarios, we conducted two further studies to implement
and evaluate a system that enables the use of the designed shortcuts. Thus, in Study III, we
collected a ground truth dataset of participants performing the gestures on a FTSPs. The collected
dataset is used to develop a deep learning model that infers shortcuts from capacitive images,
two-dimensional matrices showing the raw measurements of a capacitive touchscreen. Study IV
finally determines the accuracy of the trained model and evaluates the gesture set with realistic
text editing scenarios to gather qualitative feedback on the gestures and their usability.

3 RELATEDWORK

The goal of this work is to elicit, implement, and evaluate a set of gestures on a FTSP to support
users with text-heavy activities. Thus, in the following, we review previous work on text editing
using touchscreens, touch gestures, and input controls beyond the touchscreen.

3.1 Hotkeys for Graphical User Interfaces

Shortcuts are an essential part of graphical user interfaces (GUIs). The need for shortcuts has
repeatedly been highlighted by previous work [25, 113]. Keyboard shortcuts or hotkeys are the
de facto standard for current GUIs and clearly can provide performance advantages compared to
menus and toolbars [25, 35, 43, 70]. While hotkeys are widely available for GUIs, adopting them
is a major challenge for users. Lane et al. [43] showed that even expert users do not necessarily
transition from the use of menus and toolbars to hotkeys. As identified by Scarr et al. [81], there is a
dip in performance when transitioning frommenus and toolbars to hotkeys. Accordingly, previous
work on hotkeys focused on two aspects. To enable novice users to transition from the use ofmenus
and toolbars, approaches have been developed which help novice users in the transition to expert
users [25, 53]. Previous work also developed new approaches that enhance hotkeys typically to
make them more accessible [79, 80, 113] or to enlarge the input space [15, 114]. While previous
work showed that not even all expert users necessarily use hotkeys frequently [43], usage patterns
of such users can still reveal those hotkeys that users consider important enough to make the
transition to using them. At the same time, the challenge of adopting hotkeys for GUIs highlights
the importance of considering shortcuts that are easy to guess from the very start.

3.2 Text Editing on Touchscreen Devices

Previous work presented a number of approaches to improve the input performance on mo-
bile touchscreen devices. This includes simple key changes [8] to minimize the re-learning ef-
fort, optimized keyboard layouts [71, 75], reducing a systematic input bias [29, 30, 99], inserting
frequent word chunks using surrounding menus [14, 34, 55], gesture keyboards [40, 111], and
auto-corrections [96]. Novice typists can already reach a mean entry rate of 41 words per minute
(WPM) [74, 96], which slowly becomes comparable with the mean entry rate of around 60 WPM
on hardware keyboards [20, 39]. However, text editing on mobile touchscreen devices brings two
main challenges. Precise caret positioning is difficult due to the fat-finger problem [7]. Further,
the lack of shortcuts makes it difficult to perform a large number of text manipulation operations
without going through long menus. In the following, we describe approaches from previous work
to address these challenges.

3.2.1 Caret Placement and Text Selection. The fat-finger problem makes caret placement an
inconvenient task. Previous work presented solutions that can be grouped into the following four

ACM Transactions on Computer-Human Interaction, Vol. 27, No. 5, Article 33. Publication date: August 2020.



33:4 H. V. Le et al.

categories: (1) making the occluded area visible; (2) using a cursor; (3) performing input in (and
thus occluding) unimportant areas; and (4) using shortcut commands.
Shift [97] is a technique to display the content occluded by the finger in a call-out above the

finger. Taptap [76] shows an enlarged version of the occluded area to enable a precise selection.
Apple iOS combines both techniques and shows the occluded display content using a magnifying
lens to place the caret. Cursor-based approaches provide an offset cursor similar to an extendible
thumb to avoid occlusion through fingers [37, 76, 82]. To avoid occlusion through touching less
important areas, Suzuki et al. [89] proposed to move the text block instead of the cursor which
stays in a fixed location. Similarly, previous work used Back-of-Device (BoD) interaction to select
an object from the back to avoid occlusion [7, 100]. Shortcut commands are predominantly used by
commercial keyboards (e.g., Swype [69], SwiftKey [91] and TouchPal [13]) which provide dedicated
arrow keys. Closer to our work, Fuccella et al. [22] followed a similar approach and used gestures
to navigate the caret. However, gestures can conflict with interacting with screen content and
existing UI components such as gesture keyboards. There is no previous work that used BoD
interaction to perform gestures for providing shortcuts to functions such as caret movement or
clipboard management.

3.2.2 Shortcuts and Clipboard Management. Traditional hardware keyboards consist of 101–
104 keys. Besides alphanumeric and punctuation keys, around a third of the keys do not generate
any visible character themselves on the screen. Among others, these include navigation keys (e.g.,
arrow keys, Home, or Page Down), function keys (F1–F12), and modifier keys (e.g., Shift, Ctrl,
and Alt). Modifier keys are the basis for shortcuts (e.g., Ctrl+C to copy) which are inevitable in
leveraging expert performance [25]. This conforms with Nielsen’s usability heuristics of providing
the user with shortcuts [67]. Previous work has shown that shortcuts are faster than navigating
through menus for the same function [58, 70].

Most touchscreen keyboards do not provide modifier keys so that well-known shortcuts from
hardware keyboards are not available on mobile devices. Kristensson and Zhai [41] proposed com-
mand stroke gestures which are gesture traces from a modifier key (e.g., Ctrl) to the modified key
(e.g., C for copy). The Swype keyboard implemented the command stroke concept to provide clip-
board access through gestures. While this is a viable solution, it further consumes the device’s lim-
ited screen space. Fuccella et al. [22] approached this challenge using gestures that are drawn on
top of the on-screen keyboard to access the clipboard or move the caret using directional swipes.
However, this concept conflicts with gesture keyboards while the command stroke concept re-
quires users to learn the abstract gestures (e.g., ShapeWriter shortcuts on which command strokes
are based) before gaining any profit in execution time [52, 110].

3.3 Touch Gestures on Mobile Devices

Previous work presented a broad range of use cases in which gestures are superior to traditional
user interface components such as buttons. Li et al. [52] used letter-shaped gestures to perform
search operations anywhere within an application. Poppinga et al. [72] investigated how people
use letter-shaped gestures to launch applications. Commercial devices already offer a number of
pre-defined simple gestures, including directional swipes, flinging, or simple shapes to launch
applications. While these gestures are well-known and quick, their expressiveness is limited
which can lead to association errors as shown by Nacenta et al. [66]. Therefore, approaches, such
as OctoPocus [6] and ShadowGuides [21], to help users remembering touch gestures have been
developed. In contrast to designer-defined gestures, user-defined gestures can also offer a better
recall performance [66, 102]. Furthermore, they are also easier to perform and more appropriate
than designer-defined gestures [65]. Thus, Wobbrock et al. [104] presented a methodology for
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deriving user-defined gestures from users in elicitation studies. In these studies, users are shown
the effect of gestures (referents) and are asked to come up with corresponding gestures that would
cause the effect. Vatavu et al. [94, 95] presented formal measures including statistical tests to
quantify guessability and agreement among the proposed gestures. This approach was applied in
a wide range of use cases, including user-defined BoD gestures [86], mobile motion gestures [77],
gestures for touch surfaces [104], and thus will be used in this work.

3.4 Input Controls Beyond the Touchscreen

Additional input controls can be used as shortcuts. Recent smartphones incorporate additional
buttons and squeeze sensors to launch pre-defined functions (e.g., Bixby button and Edge Sense).
Previous research investigated a wide range of use cases for input on the back and the side of
mobile devices. Researchers attached pressure-sensitive sensors on the edges of a smartphone to
enable interaction through pressure. For example, Wilson et al. [101] used pressure sensors to
select menu items while Holman et al. [31] used the same sensors for scrolling. Previous work also
used capacitive sensors on the edge to position UI components accordingly to the hand grip [12],
rotate the screen [11], or to launch applications [10, 36]. Touch input on the back of the device
enables a wide range of use cases, such as preventing shoulder surfing while authenticating [16],
improving reachability by moving the front screen content [44], 3D object manipulation [4, 85], or
performing user-defined gesture input [86], and zooming gestures in single-handed grips [62]. To
understand interaction beyond the touchscreen, researchers investigated finger placement [51],
movements [47, 50, 56], and on-device gestures [107] to propose guidelines for BoD interaction.

3.5 Summary

Previous work presented techniques that make text entry on smartphones almost as fast as on
hardware keyboards [74, 96]. However, text-heavy activities are not widely adopted yet due to
multiple challenges. Using direct touch to place the caret is inconvenient due to the fat-finger
problem. When using hardware keyboards and GUIs, shortcuts in the form of hotkeys can clearly
provide performance advantages compared to menus and toolbars [25, 35, 43, 70]. Such short-
cuts are, however, widely unavailable on mobile touchscreen-based devices. Consequently, fre-
quently used functions such as clipboard management and selecting a whole line are not accessi-
ble via shortcuts so that expert performances cannot be leveraged. Menus and toolbars are slower
than shortcuts [25, 35, 43, 70]. They clutter the interface and require screen space which is es-
pecially scarce on mobile devices. Consequently, previous work proposed on-screen gestures as
shortcuts. Touchscreens, however, rely on direct manipulation where content and UI elements can
easily be selected and manipulated by touching them. On-screen gestures can also interfere with
other gesture-based UI functionalities such as gesture keyboards. Thus, they are in conflict with
touchscreen-based UIs.
In summary, the lack of useable shortcuts is a fundamental limitation of current mobile devices.

As recent smartphones incorporate a wide range of input controls beyond the touchscreen, we fo-
cus on FTSPs and propose on-device gestures as shortcuts to frequently used functions. This avoids
conflicts with the interaction with on-screen content and UI controls. It also avoids conflicts with
existing gesture-based functionalities and extends the gesture input space through different ges-
ture types (e.g., hand grip, pressure, and rear/side gestures). In four studies, we focus on eliciting,
designing, and evaluating gestures for the use as shortcuts for text-heavy activities on FTSPs.

4 STUDY I: SHORTCUTS ON HARDWARE KEYBOARDS

While previous work already recorded the shortcuts used by expert users of word processors
[1, 43], neither the specific keys and actions that are used in daily live nor how often specific
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shortcuts are used have been reported. Furthermore, modern GUIs for word processing and
programming changed substantially over the last decades. In addition, our work focuses on
supporting not only word processing users but also programmers. Therefore, we conducted an
in-the-wild study to analyze shortcuts performed on hardware keyboards by expert users. We
investigate single and combination of keys which activate functions, and are not available on
recent smartphone keyboards, e.g., standard on-screen keyboards for Android and iOS.

4.1 Apparatus

We used a low-level system-wide hook for keyboards to record shortcuts performed on hardware
keyboard. Based on the Java System Hook library2, we developed an application that runs in the
background to log shortcuts into a text file. Shortcuts include all keys and key combinations that do
not generate a new visible character on the screen, amongst others key combination that involves
the modifier keys (Ctrl, Win, Alt as well as Shift for non-alphanumeric and non-punctuation
keys), cursor keys, command keys (e.g., Del and Insert) and function keys (i.e., F1–F12, which
are commonly unavailable on mobile on-screen keyboards). For each shortcut, we logged the fore-
ground application’s file name (e.g., winword.exe) and the timestamp. Our application automati-
cally starts when the system boots. All participants were running our application on their work
computer that runs Microsoft Windows.

4.2 Procedure and Participants

We first briefed participants on the collected data and their right to delete lines out of the log
before the end of the study. After obtaining the participants’ informed consent, we set up the
application on their main work computer. Our application logged keyboard shortcuts over five
full work days while weekend days and the starting day were excluded. After five work days, we
invited the participants back to our lab to collect a copy of their logs and to conduct interviews.
Specifically, we asked them about their experienceswith text-heavy activities (i.e., word processing
and programming) on hardware and touchscreen keyboards, as well as perceived advantages and
disadvantages of both input modalities. In the form of a semi-structured interview, participants
provided the comments orally and summarized them in written form afterward. This took around
20 minutes per participant.
We recruited 15 participants (8 male and 7 female) between the ages of 20 and 34 years (M =

25.5, SD = 4.2). Seven participants were research associates while eight participants were com-
puter science students at a technical university located in central Europe. All participants were
reportedly using their computer actively during the study. All participants stated that they write
or edit text multiple times per day on hardware keyboards for tasks such as taking notes, writing
reports and papers, and programming. Moreover, 12 participants stated that they write and edit
text multiple times per day on smartphones to communicate with friends and family while two
participants performed these tasks at least once per day.

4.3 Log Analysis: Shortcuts on Hardware Keyboards

We filtered all repetitions of the same shortcut within 1, 000ms to avoid counting consecutively
performed shortcuts multiple times (e.g., pressing Alt+Tab multiple times to select the desired
window). Moreover, we removed all shortcut keys that were used only by a single participant
to avoid user-specific shortcuts. After filtering, the dataset consisted of 67,943 shortcuts with 96
unique ones. On average, participants performed 787.5 (SD = 900.9) shortcuts per day of which 28.1
(SD = 13.4) were unique. During the 5work days, participants performed shortcutswithin 8.8 hours

2Java (low-level) System Hook library: http://github.com/kristian/system-hook/.
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Fig. 1. Average number of shortcuts performed over the day per participant.

(SD = 3.2) per day on average. Two researchers independently classified all logged applications into
categories and discussed them afterward. Based on the discussion, we analyzed shortcuts within
the following three categories: word processingwhich includes all applications focusing on editing
and formatting text; programming which focus on coding tasks; and system-wide which includes
all logged applications (e.g., system applications, browsers, and media player). Figure 1 visualizes
the average use of shortcuts over a working day.
When categorizing the performed shortcuts by the number of keys, 43.0%were single-key short-

cuts, 52.2% were double-key shortcuts, and 4.1% were triple-key shortcuts. Table 1 shows all short-
cuts that were performed at least 1% in total averaged over all participants. To retrieve these results,
we first calculated the percentage for each shortcut per participant and then averaged them over
all participants. Overall, the arrow keys were the most used among all shortcut and application
categories followed by clipboard management shortcuts (e.g., Ctrl+V) and the window switch-
ing shortcut (Alt+TAB). Shortcuts for caret movement and text selection were more frequently
used in word processing applications than in programming environments and system-wide. In
contrast, the Left and Right keys, as well as shortcuts for undo (Ctrl+Z), pasting (Ctrl+C), and
saving (Ctrl+S) were performed more often in programming environments than system-wide on
average. In general, 19 of the 24 most frequently used shortcuts benefit text-heavy activities (e.g.,
navigation, selecting, and clipboard). Three are widely available in text editors (undo, save, and
search) while two are system-wide shortcuts (switching windows and open file manager).

4.4 Interviews: Hardware and Touchscreen Keyboards

One of the authors transcribed participants’ answers from the interviews. Two researchers ex-
tracted arguments from the answers by splitting participants’ phrases and printing them on paper
cards. The two researchers then clustered the comments using affinity diagramming [28]. We fo-
cused on word processing and programming as two text-heavy activities and identified two
main clusters which address the input and the output aspect. For each cluster, we found advan-
tages and disadvantages for touchscreen and hardware keyboards. For the word processing task,
participants made 46 comments addressing input and 2 about output challenges. Similarly, par-
ticipants made 77 comments about input and 12 about output challenges for the programming
task.

Word Processing. Two participants mentioned that the display size is one major concern that
affects the output. Specifically, “the display is too small” (P7) and thus “lacks display size to fix

ACM Transactions on Computer-Human Interaction, Vol. 27, No. 5, Article 33. Publication date: August 2020.
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Table 1. This Table Shows the Percentage of Occurrence of All Shortcuts That Represent
at Least 1% in the Logs, Averaged Over All Participants for System-wide, Word Processing

and Programming Applications

Shortcut Function All Word P. Progr.

Single-Key Shortcuts
DOWN Move cursor down. 10.00 7.47 8.41
RIGHT Move cursor right 8.79 10.20 12.09
LEFT Move cursor left. 7.80 11.45 9.73
UP Move cursor up. 6.56 5.79 5.55
DELETE Delete character ahead. 2.60 4.29 2.44
END Move cursor to end of line. 2.08 3.95 2.24
HOME Move cursor to start of line. 1.17 1.17 1.07

Double-Key Shortcuts
Ctrl+V Paste from clipboard. 9.18 9.90 11.20
Alt+TAB Switch windows. 7.84 4.84 9.63
Ctrl+C Copy to clipboard. 7.64 5.31 6.21
Ctrl+S Save document. 4.82 9.29 13.48
Ctrl+A Select all. 1.68 0.41 0.76
Win+E Launch file manager. 1.61 1.37 0.19
Ctrl+X Cut to clipboard. 1.61 1.66 1.78
Ctrl+F Open Search. 1.05 0.98 0.55
Ctrl+T New Tab. 1.02 0.09 0.03
Ctrl+Z Undo last action. 0.87 0.86 1.53
Shift+HOME Select until start of line. 0.85 0.70 1.85
Shift+RIGHT Select character ahead. 0.72 1.09 0.70
Shift+LEFT Select previous character. 0.63 1.47 0.89
Ctrl+LEFT Move cursor to prev. word. 0.41 1.31 0.21
Ctrl+RIGHT Move cursor to next word. 0.33 1.27 0.11

Triple-Key Shortcuts
Ctrl+Shift+LEFT Select last word. 0.49 1.27 0.86
Ctrl+Shift+RIGHT Select word ahead. 0.41 1.11 0.36

spelling mistakes while writing messages” (P9). Regarding input, participants commented on the
lack of haptics (25 comments) and shortcuts (21 comments). The lack of haptic feedback on touch-
screen keyboards caused participants to be reportedly less accurate and thus slower (“the large
keys [on hardware keyboards] allow me to type faster” – P3; “[hardware keyboards] provide haptic
feedback so that I do not have to look at the keyboard while typing” – P7). Specifically, the lack
of haptic feedback makes it difficult to perform precise operations such as placing the caret in a
text (e.g., “It is difficult to put the cursor to the desired text position.” – P6; “Choosing the position is

inaccurate.” – P4).
The latter challenge can be solved with shortcuts (e.g., Home, End, and arrow keys) to counteract

the lack of precision. This conforms with statements from P2 who found that “hardware keyboards
offer many more options to change the caret positions” and P12 who found that “hardware keyboards
are more precise since it is easy to switch between words and select whole lines.” Moreover, “[hardware
keyboards] offer a lot of functions like select all, copy, paste, etc” (P3). This makes text-heavy activities
on hardware keyboards more convenient and faster (“knowing the shortcuts makes [text editing]
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very fast” – P4) than on recent mobile devices (“replacing existing text with copied text in Android at
the right position is not really doable” – P2). Shortcuts would circumvent the fat-finger problem to
avoid imprecise selection, and save time since a long-press to access the clipboard can be replaced.
The statements indicate that hardware keyboards are superior due to higher precision and by

providing more shortcuts. However, participants also stated that text-heavy activities on mobile
devices are essential. Smartphones are mobile, which enables users to do a wide range of tasks
while on the move. P13 stated that she “[is] often doing things on the go and [does] not always have

access to [her] laptop” while P11 sees a clear advantagewhen “[having] to send an email outside of the

office, or to edit a document urgently over Dropbox or Google.” Additionally, touchscreen keyboards
comprise useful features that are not available on their physical counterpart. This includes auto
correction (“with auto correct, I do not always need to write the word completely” – P4) and one-
handed interaction which can be useful during secondary tasks (“I find on-screen keyboards easier

than a normal keyboard on a computer because I can type with just one finger on my phone” – P8).

Programming. For programming tasks, we found 12 comments that address the output. Com-
pared to word processing, a “large screen is required to analyze code in a comfortable way” (P10)
since “code is often hundreds of lines long and can be barely interpreted, even on a normal-sized laptop

screen. Viewing a large amount of text on a small screen would be annoying” (P13). For challenges
regarding input, we found 77 comments that we clustered into three categories: typing speed,
special characters, and shortcuts.
Conforming with comments for word processing, the typing speed on touchscreen keyboards

is affected by the small display size (e.g., “I cannot type as efficiently on an on-screen keyboard as

on a hardware keyboard because I usually type with my two index fingers/thumbs instead of all ten

fingers” – P13). Moreover, special characters can only be accessed through switching layers or long-
presses on most touchscreen keyboards due to the lack of modifier keys. This makes programming
on touchscreens inconvenient since special characters are often required (“I often need some specific

characters which are only available by long-press” – P7).
Participants predominantly mentioned the lack of shortcuts that make programming on hard-

ware keyboards easier and faster (“The use of shortcuts when using a hardware keyboard make

coding tasks much easier and faster” – P3). Specifically, shortcuts enable to navigate faster through
structured code (“functions to switch between methods (e.g., F3 in Eclipse)” – P2) and text (“Nav-
igating text, which is often required when programming, is really hard on mobile devices.” – P7).
Moreover, programming environments enable users to create own shortcuts (e.g., for formatting
and renaming) that make programming faster in general (“You can use a lot of shortcuts and also

create your own ones, what results in faster performance.” – P10). Thus, the majority (10 participants)
reportedly look up shortcuts on the internet (e.g., “Looking up through search engines.” – P13) while
three participants reportedly look for shortcuts in menus. Despite the hardware keyboard’s supe-
riority, participants still find programming tasks essential in some situations (e.g., “for emergency

bug fixes” – P1).

4.5 Discussion

We conducted an in-the-wild study with 15 expert users to analyze the usage of shortcuts
on hardware keyboards. We further interviewed them afterward about their experiences in
text-heavy activities on touchscreen and hardware keyboards. We found that the participants
performed around 800 shortcuts on average per day and identified 24 unique shortcuts that
they frequently used. Of these, 22 benefit text-heavy applications and enable one to select text,
place the caret, access the clipboard, and activate helper functions (e.g., save and search). The
majority of shortcuts are double-key shortcuts which are also available in the application menu.
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The frequent usage of shortcuts indicates that users prefer them over buttons and menus in the
user interface. This is further supported by participants who voluntarily look up shortcuts on the
internet or try them out based on the menu description.
Interviews revealed that touchscreen keyboards are inferior to hardware keyboards due to the

lack of precision (e.g., caret placement), shortcuts, and special characters for programming. De-
spite the disadvantages, participants highlighted that text-heavy activities are still essential on
smartphones. Smartphones enable users to perform tasks in mobile situations (e.g., writing emails
or doing emergency bug fixes while out of office). This conforms with the prominence of mobile
alternatives of established computer programs (e.g., Word and Excel). Major challenges of touch-
screen keyboards can be addressed by providing shortcuts to support mobile text editing. While
the precision of caret placement can be increased with shortcuts known from hardware keyboards,
shortcuts are necessary to provide a faster access to functions and special characters. Despite the
necessity, recent touchscreen operating systems and keyboards do not provide shortcuts that en-
able a quick access to these functions. Instead, direct touch makes precise caret placement and text
selection difficult while long presses for accessing the clipboard slows down the usage.
Solutions based on on-screen gestures are not applicable for a larger number of shortcuts due

to interference with the interaction with screen content, existing UI components such as ges-
ture keyboards as well as ambiguity errors in recognition. Instead, we propose to extend the
gesture input space to the whole device surface on FTSPs. This extends the gesture input space
which avoids interference and enables different gesture types (e.g., based on hand grip, pressure,
and side-dependent gestures) that can be used similar to modifier keys on hardware keyboards.
Since user-defined gestures are easier to perform and more appropriate than designer-defined ges-
tures [65], we conducted a gesture elicitation study to derive a gesture set for improving text-heavy
activities.

5 STUDY II: GESTURE ELICITATION

We conducted a study to elicit on-device gestures to provide frequently used shortcuts on FTSPs.
Arguing for a user-centered perspective when designing gestures, Nielsen et al. proposed what
has later become known as guessability studies or gesture elicitation [68]. A formal process for
gesture elicitation studies has later been introduced by Wobbrock et al. [104].
Previous work argued that legacy bias (i.e., gesture proposals that are often biased by partic-

ipants’ experience with prior interfaces and technologies) is a major limitation of guessability
studies [64, 78]. Ruiz and Vogel further argued that performance bias caused by artificial study
settings that do not encourage consideration of long-term aspects leads to gestures sets that cause
fatigue [78]. A range of variations [17], improvements [64, 78, 93], and alternatives [72, 106] have
been showcased. Nonetheless, Vogiatzidakis and Koutsabasis, however, recently demonstrated that
elicitation studies are the de-facto standard for designing gestures [98].
Gestures produced using elicitation studies are not only preferred by users [65] but are also

easier to remember [66]. Therefore, we followed the formal method for gesture elicitation studies
introduced byWobbrock et al. [104] and used the AGreement Analysis Toolkit (AGATe) [94, 95] to
analyze the collected gestures. This method uses a within-subjects design to ask participants for
gesture proposals in a randomized order.

5.1 Referents

We derived 22 distinct referents as shown in Table 3 based on the frequently used shortcuts of the
previous study. We considered all shortcuts, except application or system specific shortcuts that
are not necessarily required onmobile devices. This includes the shortcut for application switching
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Fig. 2. Setup for the elicitation study. We used the tablet for camera preview and the laptop to control the
referents on the smartphone.

(Alt+TAB) for which mobile platforms already provide their own methods, and the save shortcut
(Ctrl+S) for saving a document which a number of text editors already do automatically. The
referents shown in Table 1 show the basic actions that are either related to caret placement, text
selection, clipboard management, or document switching.

5.2 Apparatus and Procedure

To avoid distracting participants with an unfamiliar prototype or recognizer in the gesture elici-
tation process, we followed the concept of amagic brick [77] capable of detecting any gesture that
was performed. Participants tested and demonstrated their proposed gestures on an off-the-shelf
LG Nexus 5. Further, we used a custom Android application to show the referents using screen-
shots of the state before and after the actionwas performed. Displayed screenshots were controlled
by an application on the experimenter’s computer while input on the smartphone was disabled to
avoid any reactions of the UI. All proposed gestures were recorded with a GoPro Hero 3 (audio
and video) as shown in Figure 2.
After obtaining informed consent, we briefed participants on the procedure and collected de-

mographic data including their experiences in using mobile devices for text editing. We instructed
participants to think-aloud and explain the thought process as well as the proposed gesture. We
briefed participants that gestures could be performed on the whole device surface with one or two
hands. The order of the referents was randomized. In total, the study took around 45 minutes.

5.3 Participants

We recruited 18 participants (13 male and 5 female) between the ages of 20 and 34 (M = 23.9, SD =
3.5) who were staff or students at a technical university located in central Europe. None of the
participants had participated in the previous study. All participants were right-handed with an
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Table 2. Taxonomy of Gestures for Text Editing Shortcuts on a Full-touch Smartphone Based on
Over 400 Elicited Gestures

Dimension Category Description

Nature

physical Gesture acts physically on the object.

symbolic Gesture visually depicts a symbol.
metaphorical Gesture indicates a metaphor.
abstract Gesture-referent mapping is arbitrary.

Flow
discrete Response occurs after the user acts.

continuous Response occurs while the user acts.

Complexity
simple Gesture is atomic.
compound Gesture consists of atomic gestures.

Binding

object-centric Location relative to object features.

caret-centric Location relative to caret features.
mixed dep. Any combination of above bindings.
independent Independent to any features.

Spatial
one-sided Gesture performed on a single side.

multi-sided Gesture performed on multiple sides.

average hand size of 19.1 cm (SD = 1.2 cm) and used their smartphones multiple times per day. We
reimbursed them with 5 EUR.

5.4 Results

Three researchers transcribed each proposed gesture, grouped them in case they were identical,
and assigned them to the taxonomy shown in Table 2. Moreover, we transcribed the think-aloud
protocols to analyze the thought process behind the proposed gestures. In total, participants per-
formed 414 gestures from which we identified 138 unique gestures.

Taxonomy. We classified the transcribed gestures along the dimensions shown in Table 2. We
adapted the taxonomy by Wobbrock et al. [104] originally proposed for touch surfaces and added
the dimensions complexity and spatial while changing the binding dimension to match on-device
gestures. This resulted in five dimensions: nature, temporal, complexity, binding, and spatial.

Nature describes the meaning of the gesture. Physical gestures directly manipulate objects
(e.g., dragging the caret) while symbolic gestures depict an object (e.g., drawing scissors for cut).
Metaphorical gestures manipulate imaginary objects (e.g., tracing a finger in a circle to simulate a
scroll ring). We categorized gestures as abstract if the meaning was arbitrary (e.g., tapping three
times to delete a selected word). Flow describes the visibility of a response; discrete if response is
visible after a gesture was performed and continuous when response is shown while performing
the gesture (e.g., scrolling on the right edge). The Complexity describes the composition of a ges-
ture; compound if it comprises of atomic gestures and atomic if not. Binding describes the relation
to the referent. An object-centric gesture refers to an object (e.g., a selected word) and caret-centric
gestures refer to objects relative to the caret (e.g., delete previous word). Independent gestures do
not refer to any object. Spatiality describes whether gestures are performed on a single side or on
multiple sides simultaneously or in succession.

Categorization of Gestures. Figure 3 shows the taxonometric breakdown of the proposed
gestures. Nearly half of the total gestures are physical gestures (44.9%). A large portion of the
gestures are discrete (88.3%) and compound gestures (70.0%), whereas the majority refer to the
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Fig. 3. Distribution of gestures in taxonomy categories as shown in Table 2.

caret’s position (cursor-centric). Proposed gestures were performed on one side of the device
(one-sided with 57.9%) and on multiple sides (41.7%).

Agreement Analysis. We used AGATe by Vatavu and Wobbrock [94, 95] to calculate the agree-
ment and coagreement rates. The agreement rate AR describes the participants’ consensus on
the proposed gestures while the coagreement rate CR represents the agreement shared between
two referents r1 and r2. The scores range between 0 and 1, whereas 1 represents the highest
agreement. The overall agreement rate for the elicited gesture set is AR = 0.236. We report
the AR and CR for each referent in Table 3. We found a significant effect of referent type on
agreement rate (Vrd (22,N=414) = 314.798, p < 0.001). Agreement rates for caret positioning referents
are higher than the average with an AR of 0.359. We found a significant effect in this category
(Vrd (7,N=144) = 63.794, p < 0.001). The agreement of text selection referents is AR = 0.214 on av-
erage with a significant effect within the category (Vrd (8,N=162) = 33.122, p < 0.001). In contrast,
the clipboard management category yielded a lower AR of 0.076 on average, while we found no
significant agreement for all referents in this category (Vrd (2,N=54) = 2.074, p = 1.000). The group
for moving the cursor yields the highest coagreement score with CR = 0.183.

Mental Model Observations. All participants aimed to propose gestures that were consistent with
each other. Consistency as an explanation was given for 12.6% of the proposed gestures whereas
each participant mentioned it 5.1 times on average. We observed that participants tried to recall
which gesture they had proposed for a similar referent and even asked which gesture they had
used before. This was especially the case for gestures in the caret positioning and text selection

category. Six participants (P2, P3, P6, P9, P12, and P14) tried to propose gestures that could be
easily performed, especially when holding the device one-handed (“[..] easy to do because index

finger is already there” – P2). Further, participants also explained that gestures were proposed to
avoid unintended activations (e.g., “more complex than just swiping so it doesn’t happen accidentally”
- P1).
While the concept of on-device gestures was new to our participants, they (P1–P3, P6, P7, P10,

P14, and P17) proposed gestures based on their previous technical experiences. For example, hold-
ing different positions on the rear was compared with modifier keys from keyboards (“Pinkie and
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Table 3. Overview of Referents

Category Referent AR MAR CR
Move Up .523
Move Down .431 .418 .183
Move Left .359

Caret Move Right .359
Positioning Move to previous word .183 .245 .111

Move to next word .307
Move to start of line .294 .285 .098
Move to end of line .275
Select Up .242
Select Down .235 .275 .098
Select Left .379

Text Select Right .242
Selection Select left word .235 .268 .137

Select right word .301
Select to start of line .196 .219 .065
Select to end of line .242
Select All .137 -

Clipboard

management

Copy .059
Cut .072 .076 .000
Paste .098

Navigation
Switch to next document .098 .098 .098
Switch to previous document .098

AR represent the agreement score of each gesture while MAR represents the average agreement score for the re-

spective group. CR represents the coagreement score.

Ring, are like Ctrl and shift” – P7, “[..] holding like Ctrl button” – P17). Further, we observed that
participants changed the gesture they had in mind if they could not perform it with a sufficiently
stable grip.

5.5 Gesture Set for Shortcuts in Text-Heavy Activities

The gesture set shown in Figure 4 consists of gestures with the highest agreement rate for each
referent. Table 4 presents the relation of our final gesture set to the taxonomy discussed in Table 2.
Moving the caret can be done with the index finger on the back to avoid occlusion issues (see
Figure 4(a)). Participants envisioned the caret to move relative to the finger and suggested a move-
ment threshold to avoid unintended movements during grip changes. Inspired by hardware key-
boards, text selection can be done analogously to caret movement using the thumb as a modifier
(c.f. Ctrl and arrow keys, see Figure 4(b) and 4(i)–4(l)). Moving the caret word-wise can be done
by swiping the form of an arc to the respective direction (see Figure 4(g) and 4(h)). Participants ex-
plained this as a metaphorical leap over the previous/next word. Placing the caret at the start/end
of the current line can be done with a double tap on the left/right side (see Figure 4(i) and 4(j)).
Selecting thewhole text can be donewith four taps on the front, while selected text can be copied

by drawing the letter C on the back of the device (see Figure 4(n)). This refers to the shortcut on
hardware keyboards (Ctrl+C). Participants cut text into the clipboard by swiping down two fingers
on the rear (see Figure 4(o)) symbolizing a scissor, and pasting text using a double tap followed
by a swipe down on the rear (see Figure 4(p)). To switch between tabs, participants proposed
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Fig. 4. The gesture set to provide shortcuts for word processing and programming activities. Shortcuts are
performed on a smartphone that is capable of sensing touch input on the whole device surface. Gestures for
moving and selecting the caret are summarized into one figure for all directions.
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Table 4. Taxonomical Description of the Gesture Set Derived from the Results of the
Gesture Elicitation Study

Referent Nature Flow Complexity Binding Location Spatial

Move Up

Physical Discrete Simple Caret-centric Relative One-Sided
Move Down

Move Left

Move Right

Move to previous word
Symbolic Discrete Compound Caret-centric Relative One-Sided

Move to next word

Move to start of line
Metaphorical Discrete Compound Caret-centric Relative One-Sided

Move to end of line

Select Up

Physical Discrete Compound Caret-centric Relative Multi-Sided
Select Down

Select Left

Select Right

Select left word
Symbolic Discrete Compound Caret-centric Relative Multi-Sided

Select right word

Select to start of line
Metaphorical Discrete Compound Caret-centric Absolute Multi-Sided

Select to end of line

Select All Abstract Discrete Compound Independent Absolute One-Sided

Copy

Symbolic Discrete Compound Mixed dep. Absolute Multi-SidedCut

Paste

Switch to next doc.
Symbolic Discrete Simple

Object-

centric
Absolute One-Sided

Switch to previous doc.

swiping left and right on the bottom edge which can be done with the little finger when used
one-handed, and the thumb when used two-handed. Similar to the caret placement, the tab should
not be switched before the swipe is performed for a minimum distance to avoid unintentional
switches.

5.6 Discussion

We conducted a study to derive a gesture set that brings frequently used shortcuts from hardware
keyboards to FTSPs. Figure 4 shows the gesture set that we discuss in the following. The gesture
set achieves an overall agreement rate of 0.236 which is in line with gesture sets elicited in other
domains [5, 92]. The agreement scores for caret positioning and text selection are higher than the av-
erage which could be due to the simplicity of the action that can be projected to a physical gesture
(e.g., dragging the caret). In contrast, clipboard management, and tab navigation have lower agree-
ment scores. This could be due to the abstractness of referents such as copying and cutting text
that have no physical relations. Mobile operating systems often provide these functions through
abstract buttons or pop-ups. Therefore, participants expressed these functions through symbolic
gestures representing hardware keyboard shortcuts (e.g., Ctrl+C), or real-world objects such as
scissors to cut, and convenient combinations of abstract taps and swipes. Thus, the results might
be affected by legacy bias [64, 78]. While legacy bias prevents radically new gesture designs, it
helps shorten the time and effort necessary to learn new ways of interaction [38]. Consequently,
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there might still be room to further improve the gestures but the gesture set should be easy to
learn and remember.
While participants assumed that the device is capable of detecting any performed gesture [77],

recognizing the gesture set on a FTSP would comprise unintended activations, e.g., through grip
changes. Participants considered this challenge and proposed compound gestures (e.g., tap then
swipe) to counteract unintended activations. Moreover, the majority of the gestures are discrete
so that the effect of activation is only shown after the gesture is fully performed. Thus, a series
of distinct movements is required which makes unintended activations less likely. For continuous
gestures (e.g., moving the caret), participants proposed to usemovement thresholds to discriminate
unintendedmovements (e.g., grip change) from intendedmovements. For example, the index finger
on the back needs to move a minimum distance before the caret moves. Moreover, unintended
activations could be further decreased by only accepting gestures when the expected number of
fingers is moved (e.g., only the index finger is moving to position the caret).

6 STUDY III: IMPLEMENTING THE GESTURE SET ON A FULL-TOUCH SMARTPHONE

We implemented the elicited gesture set on a FTSP which we reproduced based on previous work
by Le et al. [46, 48]. The prototype provides the raw capacitive measurements of the hand touching
the device on all sides. This data enables us to recognize gestures performed on the device surface.
While previous work used simple heuristics and gesture recognizers (e.g., “$1” [105]) to recognize
2D gestures performed on a flat touch surface, these approaches are not applicable to our use case.
In particular, the raw capacitive measurements are low-resolution imprints of touches of all fingers
instead of preprocessed 2D points as provided by touch controllers for common mobile operating
systems. Therefore, we apply a deep learning-based approach to develop a model to recognize
the gestures elicited in the previous study and shown in Figure 4. First, we invited a set of new
participants which we instructed to perform our gesture set on the FTSP prototype. Second, we
use the collected dataset consisting of capacitive images of touches to train a Long Short-Term
Memory (LSTM) model which recognizes the gestures. In the following, we describe the study,
model training and validation, as well as our mobile implementation.

6.1 Apparatus

We reproduced the FTSP prototype by Le et al. [48] which is shown in Figure 5. The prototype
consists of a handheld device that senses capacitive touch input on its whole device surface (i.e.,
front, back, and the edges) with a resolution of 28 × 32px . The handheld device has a virtually
identical size to a LG Nexus 5 to avoid influencing the usual grip of our participants. Capacitive
measurements are provided to the application layer every 50ms . For more technical details, we
refer to the detailed description by Le et al. [48].

We developed a custom application which collects the capacitive images in the background
while the participants followed the study instructions. During the study, participants were seated
on a chair without armrests in front of a screen that shows the instructions. The instructions show
gestures that participants are supposed to perform. Moreover, participants rated the gestures using
a mouse after performing them on the FTSP.

6.2 Participants

We recruited 28 participants (21 male and 7 female) between the ages of 20 and 29 (M = 23.7, SD =
3.4) which did not participate in the previous studies. Two participants were left-handed, and
26 were right-handed. The average hand size was measured from the wrist crease to the middle
fingertip and ranged from 16.0 cm to 25.0 cm (M = 19.3 cm, SD = 1.6 cm). With this, our set of
participants include samples of the 5th and 95th percentile of the anthropometric data reported
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Fig. 5. This figure shows the apparatus of the study. A participant holds our smartphone prototype to edit
a text based on instructions shown on the screen in front of the participant.

in previous work [73]. Thus, the sample can be considered as representative. Participants were
reimbursed with 10 EUR for their participation.

6.3 Procedure and Study Design

After obtaining informed consent, we asked participants to fill out a demographics questionnaire
and measured their hand size. We then briefed them about the smartphone prototype and the
purpose of the study. The study consists of six phases in which each of the gesture has to be
performed by the participant. Using a custom application, the experimenter started and stopped
the recording while instructing participants when to perform the gesture.
In the first phase, the experimenter instructed participants to perform the gesture as shown on

the display in front of them. In case it was unclear, the experimenter further demonstrated the ges-
ture on another smartphone. Before starting the recording of the respective gesture, participants
were asked to perform the gesture on trial to ensure that everything was understood. In the second
phase, participants were explained the function of each gesture before they were recorded. The
display in front of them shows the function name while the smartphone exemplarily shows the
before and after states of a text editor. Moreover, the experimenter explained each gesture orally
and provided examples in case participants did not fully understood the function. After everything
was understood, participants were asked to perform the gesture as if they are currently performing
text editing tasks.
In the remaining four phases, we instructed participants to perform the gesture as shown on the

display while the smartphone showed exemplary before and after states. These phases are used for
collecting more data from the participants. In total, participants performed each gesture 6 times,
which results in 28 × 6 = 168 samples per gesture per participant.
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6.4 Modeling

We describe our preprocessing and training steps to train a user-independent model to recognize
shortcut gestures.

Dataset & Pre-Processing. We collected 477,605 capacitive images in total throughout the study.
Our preprocessing steps includes synchronizing the capacitive images from all sides, cleaning the
dataset, and preparing the samples for a LSTM model. We performed the following steps:

(1) Matching capacitive images from all sides: Based on the timestamps of the capacitive im-
ages, we merged the capacitive images of all sides into a combined one with a size of
32 × 28px . To reduce the processor workload of a mobile deployment (i.e., the average
number of capacitive images within one gesture), we merged the front image with the
back image and the closest side sensor image. We used the closest side sensor image
(timestamp-wise) since the side sensors have a higher sampling rate.

(2) Dataset Cleaning: For each gesture, we removed all frames with nomovements (i.e., frames
in which the participant only held the device to wait for the next task). This was done by
determining blobs in the capacitive image and an element-wise equal operation3 within
a tolerance of 4.1mm (equals to the size of a pixel in the capacitive image). We further
removed all gestures from our dataset which did not include any movements to prevent
errors.

(3) Summarizing Gestures: Since the input on the front touchscreen is limited to either a thumb
placement as modifier (i.e., switching from moving cursor gestures to selecting gestures)
or the 4x tap gesture for the select all action, we omitted the front data and summarized
the gestures accordingly based on their back and side data. In particular, we summarized
gestures (a–e) with (f–j) into the five respective classes and differentiate between selection
andmovement during run time based on the touchAPI fromAndroid (i.e., whether a touch
is registered on the front or not). Moreover, we removed the gestures b, c, g, and h since
a simple double tap on the sides can be easily recognized manually. We ended up with
12 classes with the resulting capacitive images being 17 × 28px .

(4) Preparing samples for LSTM training: Since LSTM models require a fixed input size (i.e.,
equal number of timesteps per gesture), we padded and trimmed gestures respectively to
a sample size of 20 based on the average length of a gesture in our dataset (M = 16.04,
SD = 5.7).

In total, after preprocessing our dataset consists of 114,720 capacitive images.

Gesture Production Time. To ensure that gestures can be performed fast and effective, we first
calculate the production times based on the preprocessed data.Wemeasured the time from starting
to produce a gesture to finishing it. The average time to produce a gesture was 1.28 sec (SD =
0.73). The slowest gesture was the “Select previous word” gesture with 2.02 sec (SD = 0.9). On the
other hand, the fastest gesture was the “Move left” gesture with 0.74 sec (SD = 0.57). For a full
overview see Figure 6. Overall the production time of the back of device gestures are in line with
production times reported by previous work [108]. Wolf et al. [108] asked participants to perform
different touch gestures on a tablet five times in a row. They found durations between 0.2 and 1.1
seconds.While not directly comparable, gesture production times are similar to results reported for
hotkeys on desktop computers and potentially shorter compared to the use of menus and toolbars.
Lane et al. [43] asked participants to activate four shortcuts using hotkeys, icons or a menu. After

3We used numpy’s allclose operation: abs(a-b) <= (atol + rtol * abs(b)).
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Fig. 6. Gesture production time in seconds for each of the different shortcut gestures. The error bars repre-
sent the standard deviation.

training, hotkeys required 1.4 s, icons 2.2 s and the menu 3.1 s to activate a function [43]. It is
important to stress, however, that production time we measured and the time measured by Lane
et al. [43] are not directly comparable.

Model Architecture & Training. To train the model, we used a participant-wise split of 80 %:20 %
for training and testing, i.e., we trained themodel on data from 22 participants and tested themodel
on the remaining 6 participants. We did not use a validation set as we determine the validation
accuracy in the next study described in Section 7.
We implemented a convolutional neural network (CNN)-LSTM [18, 19] using Keras 2.1.3 based

on the TensorFlow backend. While we experimented with convolutional LSTMs [109, 112] (a fully
connected LSTM with convolutional input and recurrent transformations) in Keras4 and stateful
LSTMs with continuous capacitive image input, we found that a CNN-LSTM leads to the highest
classification accuracy. We performed a grid search as proposed by Hsu et al. [32] to determine the
most suitable network architecture and hyperparameters. If we do not report a hyperparameter
in the following, we applied the standard value (e.g., optimizer settings) as reported in Keras’
documentation.
The architecture of our final CNN-LSTM is shown in Figure 7. We adapted the convolu-

tion layers which worked best for previous work that used capacitive images [48] and used a
TimeDistributed5 layer to attach it to the LSTM part; a grid search focusing on the number of
filters and kernel size in the convolution layer did not reveal any improvements in accuracy. After
a further grid search on the LSTM part, we found that 100 LSTM units and a dropout factor of 0.7
achieved the highest accuracy. With this model, we further experimented with different number
of timesteps (i.e., capacitive images) per gesture by increasing/decreasing them in steps of 5. We
found that a window size of 20 (four more than the average) yielded the highest performance.
Similar to Le et al. [48], we trained the CNN-LSTM with an RMSprop optimizer [90] but with

a batch size of 16. Further, we determined 0.001 to be the most suitable initial learning rate after
testing in steps of negative powers of 10. We experimented with batch normalization [33] and L2
Regularization, but did not find any improvements in the overall performance.

4Convolutional LSTMs are provided as ConvLSTM2D in Keras: https://keras.io/layers/recurrent/#ConvLSTM2D.
5TimeDistributed layer in Keras: https://keras.io/layers/wrappers/#TimeDistributed.
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Fig. 7. An illustration of the architecture of our CNN-LSTM model which we used to classify gestures on
the FTSP. The first four layers are convolution layers wrapped in a TimeDistributed layer whose output is
then fed into two subsequent LSTM layers with 100 units each. The output are 12 values representing the
probabilities for each gesture class.

Model Accuracy. Based on the test set, our model identifies the 12 gesture classes with an accu-
racy of 80.92 %, precision of 79.32 %, and recall of 78.28 %. Figure 8 shows the confusion matrix.

6.5 Mobile Implementation

We used TensorFlow Mobile6 for Android on the FTSP’s processing unit responsible for the front
display to run the CNN that estimates the fingertip positions. Capacitive images from the back
side and the edges are sent to the front device that merges the data into an input matrix. The input
consists of a 17 × 28 8-bit image representing the back and edges. A model inference for one capac-
itive image takes 163.7ms on average (SD = 34.4ms ,min = 101ms ,max = 252ms) over 1,000 runs
on our prototype. While we exported the model without any modifications, the inference time can
be reduced significantly with optimization techniques such as quantization [27] and pruning [3]
for a small loss in accuracy, or using recent processors which are optimized for neural networks7

(e.g., Snapdragon 845).

7 STUDY IV: EVALUATION OF SHORTCUT GESTURES

We conducted a final study in which we (i) determine the accuracy of the trained model with a
new set of participants which were not involved in the model development process, (ii) collect
qualitative feedback about our gesture set in a Wizard-of-Oz setting which excludes the effect of
potential recognition errors, and (iii) collect qualitative feedback about the perceived usability of
our prototype including the gesture recognizer, FTSP, and the text-editing functions.

6TensorFlow Mobile website: www.tensorflow.org/mobile/.
7www.qualcomm.com/snapdragon/artificial-intelligence.
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Fig. 8. Confusion matrix of the CNN-LSTM for identifying 12 gesture classes with an accuracy of 80.92 %.
The values shown in the figure represent the accuracy in percent (%). The x-axis represents the predicted
class while the y-axis represents the actual class.

7.1 Study Procedure and Design

We designed three tasks to evaluate the three aspects described above. Prior to the study, we
obtained informed consent, measured the participants’ hand sizes, and handed them an instruction
sheet which explains all parts of the study. Participants could refer to the instruction sheet at any
time during the study.

Part 1: Accuracy Validation and Introduction of Gestures. This part is similar to the data collection
study as described in Section 6. The focus is on obtaining a validation set with new participants
while introducing and explaining the shortcuts for the next parts of the study. The experimenter
explained each gesture to the participant using an image of the gesture displayed on the screen in
front of the participant (see Figure 5), and by demonstrating it on another smartphone. Moreover,
the experimenter explains the function of the gesture which is supported by an exemplary before
and after state image shown on the FTSP.

Part 2: Wizard-of-Oz Evaluation of the Gesture Set. Based on a Wizard-of-Oz implementation
of our gesture recognizer, we instructed participants to perform a set of pre-defined text-editing
tasks in our application. This part uses a Wizard-of-Oz implementation to avoid influencing par-
ticipants with potentially wrong recognitions of our model. Using a 2 × 3 within-subjects design,
we compare accessing functions for caret movement, text selection, and clipboard management of
Android’s recent methods (standard) with our gesture set (gesture). As different font sizes affect
the input precision, we used three font sizes from previous work by Fuccella et al. [22] to compare
the two inputmethods: 1.75mm, 3.25mm, and 4.75mm. The conditions were counterbalancedwith
a Latin square and used six different texts to avoid learning effects.
Participants performed a set of text-editing operations which were pre-ordered and described

on the screen in front of the participant. Due to the fixed order, a trained experimenter could
carefully observe the performed input of the participant to trigger the respective action using a
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Wizard-of-Oz controller on another smartphone. With the standard method, the cursor can be
moved by touching at the desired location. Text selection works similar with a long-press prior to
the selection which also displays the clipboard functions in a top menu (i.e., ActionBar).
After each condition, we collected qualitative feedback in the form of a System Usability

Scale [9], and the seven-point Likert scale questions adapted from previous work [45]. At the end
of this part, we further conducted a semi-structured interview in which we focused on comparing
the conditions.

Part 3: Gesture Set Evaluation based on the Model. This part focuses on collecting qualitative
feedback on the perceived usability of our gesture classifier for a new text with a font size of
3.25mm. Similar to the previous step, participants were given a set of text editing operations which
they performed with our gesture set. After the task, we conducted a semi-structured interview in
which we focus on the perceived usability and usefulness of our gesture set for text editing tasks.

7.2 Apparatus

We developed a custom text-editor application which provides the required functions for caret
movement, selection, and clipboard management. For the use case evaluations, we included seven
simple texts (six for the second part; one for the third part) from an English learning website8

which are editable with an on-screen keyboard, as well as shortcut gestures or Android’s standard
text-editing methods. The shortcuts can be activated either with a remote Android application on
another smartphone (Wizard-of-Oz controller for Part 2), or by performing the shortcut gestures
on the FTSP (Part 3). The Android application deployed on the back unit performs the gesture
classification based on its own and the capacitive images from the sides and sends the classification
result to the text editor application on the front unit.
Since gestures which require a thumb placement on the front touchscreen would interfere with

the long-press mechanism of most Android keyboards (e.g., punctuation marks on the built-in
keyboard or GBoard), we developed a custom keyboard which detects long-presses and uses them
to differentiate between caret movement gestures (no thumb) and selection gestures (thumb on
the front) instead of inserting punctuation marks. The keyboard further changes its background
color to indicate the selection mode.

7.3 Participants

We recruited 12 participants (6 female and 6 male) between the ages of 17 and 25 (M = 21.1, SD =
2.7). These participants neither participate in Study II nor in Study III. All participants were right-
handed (one was ambidextrous) and reportedly use mobile touch-based devices multiple times per
day. Participants were reimbursed with a credit point for their lecture.

7.4 Results

We present the results of each part of the user study. The validation accuracy as well as the ratings
on easiness and suitability are result of the first part. Subjective ratings and the feedback gathered
in the semi-structured interview are collected after the second part. The implementation which
we evaluated in the third part was evaluated with semi-structured interviews and a questionnaire
focusing on whether the participants would prefer our implementation or the recent text editing
features integrated into Android. In total, the results describe the usefulness and usability of the
gesture set, its use cases, and our prototypical implementation.

8https://www.newsinlevels.com/.
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Fig. 9. Confusion matrix describing the validation accuracy of the CNN-LSTM presented in Section 6.4.
The values represent the accuracy in percent (%). The x-axis represents the predicted class while the y-axis
represents the actual class.

Validation Accuracy. Based on the capacitive images of gestures performed by the new set of
participants, our model achieved a mean accuracy of 79.19 % (SD = 8.21 %,min = 63.64 %,max =
89.66 %). The mean precision is 80.88 % (SD = 8.27 %,min = 62.22 %,max = 95.0 %) while the recall
is 77.67 % (SD = 7.05 %,min = 62.5 %,max = 88.89 %). The confusion matrix for this validation is
presented in Figure 9.

Easiness and suitability of each gesture. Adapting the approach from previous work byWobbrock
et al. [104], we asked participants to rate the ease (i.e., the gesture is easy to perform) and goodness
(i.e., the gesture is a good match for its intended purpose) of each gesture and its assigned function
on a seven-point Likert scale. The results are shown in Figure 10. The average rating for ease is
5.84 (SD = .91,min = 3.31,max = 7.0), while the average goodness is 6.06 (SD = .57,min = 4.77,
max = 6.85).

Subjective Ratings. For each of the four gesture categories (i.e., placing, selecting, clipboard
access, and tab switching), we collected subjective ratings in the form of seven-point Likert scale
questions and semi-structured interviews. These are used to compare text editing using our
gesture set with text-editing operations as implemented in recent Android systems. Figure 11
shows the results. For each gesture category, we conducted two-way analysis of variances
(ANOVAs) on the five ratings on which we applied the Aligned Rank Transform procedure using
the ARTool [103] to align and rank the data.
For the caret placing gestures, we found significant main effects for size and method for the

properties easiness, speed, comfort, and effort (p < 0.01) while we found a significant two-way
interaction effect between size × method for the properties easiness and effort (p < 0.05). For the
text selecting gestures, we found significant main effects for size for the easiness property (p = 0.01),
for method for all properties (p < 0.01), and a significant two-way interaction effect between size
× method for the properties easiness and comfort (p < 0.05). For the clipboard access gestures, we
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Fig. 10. Participants’ ratings on a seven-point Likert scale for the (a) easiness and (b) goodness of each
gesture.

found significant main effects for method for the properties easiness and suitability (p < 0.05).
For the tab switching gestures, we found significant main effects for method for all properties
(p < 0.001). The tests did not reveal any other significant effects besides the ones described above.
Table 5 provides an overview of all F and p-values of the two-way ANOVA tests while Figure 11
shows the rating means and standard deviations.

Semi-Structured Interviews. We interviewed the participants after they performed the text-
editing tasks with our gesture set and Android’s standard text-editing mechanisms. Two
researchers employed a simplified version of qualitative coding with affinity diagramming [28]
to analyze the results. This includes transcribing the interviews, extracting the arguments from
the participants’ answers, printing them on paper cards, and finally clustering the answers. In the
following, we first present general impressions of text editing with gestures (including advantages,
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Fig. 11. Subjective ratings after editing a text with standard touch input and our BoD gestures.
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Table 5. Results of the Two-way ANOVAs for Each Gesture Class and Property

Variable Easiness Speed Comfort Suitability Effort

F p F p F p F p F p

size 13.6 <.001 7.0 .002 6.6 .003 2.0 .147 5.6 .006
method 62.9 <.001 3.4 <.001 32.4 <.001 1.4 .248 33.0 <.001

s×m 13.2 <.001 2.0 .1517 2.3 .138 .7 .522 3.8 .027
size 4.9 .01 1.3 .28 2.2 .127 .9 .40 1.4 .246

method 18.0 <.001 9.0 .004 4.7 .035 8.9 .004 14.5 <.001
s×m 6.5 <.001 1.6 .214 3.8 .027 1.2 .322 2.8 .07
size .3 .757 .1 .939 .2 .785 .1 .938 .1 .937

method 14.2 <.001 2.1 .155 2.7 .105 4.6 .035 3.0 .087
s×m 1.1 .331 .7 .506 .2 .813 1.2 .318 .3 .764
size 1.1 .327 .9 .413 1.1 .333 .4 .655 .4 .656

method 189.9 <.001 167.2 <.001 189.2 <.001 111.1 <.001 174.0 <.001
s×m 1.8 .186 .3 .711 .8 .472 .1 .883 1.6 .217

The row blocks refer to the gesture classes, from top to bottom: caret placement, text selection, clipboard manage-

ment, and tab switching. s × m refer to the two-way interaction effect between size × method.

disadvantages, and neutral comments) and then present the feedback for each gesture group
separately.

General Impressions. When asked about the first impression of our text-editing gestures, par-
ticipants made 34 positive, 15 neutral, and 7 negative comments. All participants mentioned at
least one positive aspect for text editing with our gestures. In particular, participants preferred our
gestures over Android’s standard text-editing mechanisms due to the following reasons. First, par-
ticipants preferred the gestures to improve the usability and input pace with fingers on the back
whichwere previously unused (“I really like the idea, since we havemany unused fingers on the back”
– P13; “Some gestures improve the speed of use, especially if the user gets used to it” – P11). Further,
participants recognized that BoD gestures improve the input precision. Among others, P8 found
that “[BoD gestures] makes placing the cursor much easier” and “more precise” (P2) which “is much

better especially for people with fat fingers” (P12). While participants mentioned that the usability
of Android’s standard text-editing mechanisms highly depends on the text size (“the smaller the

text is, the more you had to fiddle around” – P12; “if the text is very large, the normal version worked

fine” – P5), the usability of the our gesture set is independent from sizes of text, fingers, and hands
(“For me, the gestures were better for all text sizes” – P4, “an advantage is that, independent from the

size of the hand and fingers, you can work with it relatively well” – P10).
Participants also made comments which are positive but includes minor concerns. In particular,

participants “found some of the gestures difficult [to perform]” (P3), however “normal touch is still

[perceived as] worse” (P3). Since some gestures were perceived as difficult (e.g., “I found the gesture
for tab switching intuitive, but it was difficult to perform” – P9), participants envisioned that they
“would use a mixture of both methods for text editing” (P5, P8, P12). Regarding the FTSP prototype,
participants also found that “the glass [of the back touchscreen] induces friction” (P7) which makes
performing gestures uncomfortable. This could be readily improved in a market-ready version.
Negative comments focus on the extended input space and indicate two challenges which con-

cerned the participants. First, they assumed that devices could become more expensive and fragile
due to the additional touch sensors (“the device could become much more complex with more sensors

which could break” – P13). Second, regarding the ergonomics, participants assumed that disadvan-
tages include that more fingers need to be moved (“[the user] needs all five fingers” – P1; “I need
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to move my fingers a lot” – P6) and grip stability challenges for users which already have trouble
holding a device in a single-handed grip (“with small hands, some gestures are difficult to enter while

holding the device” – P10).

Impressions on Cursor Placing Gestures. When asked about impressions on the cursor placing
gestures, we received 10 positive, 1 neutral and 1 negative comment. All except P7 and P11 provided
positive comments which describe the placing gestures as “intuitive” (P9), “(very) helpful” (P5 and
P8), and well working (P1, P2, P3, P4, P6, P9, P10, and P12). P12 explained that “the gestures on
the back are much better, because [she] often moves the cursor beyond the target with normal touch

because of [her] fat finger].” In contrast to placing the cursor with direct touch (which is affected
by the fat-finger problem), P5 and P9 found that “[the gestures] work independent from the text size”
due to the indirect placement.
Participants further discussed the perceived effect of text size and explained that the standard

text editing mechanisms are only usable for large font sizes while gestures are usable for all sizes
(“I found the standard method indeed not that bad when the text was large. However, for the smaller

font, it became obvious that the gesture method is by far the more comfortable and faster method

because placing the cursor with the finger [on the front display] is grisly.” - P1). P7 confirms this and
envisioned that “[he] would sometimes combine it with the standard methods” - P7). One participant
“[..] did not think that [he] is much better with the gestures than with the normal methods” (P11).

Impressions on Text Selection Gestures. Ten participants were positive towards the text selection
gestures while two provided negative feedback. The majority of the participants found the text
selection gestures “intuitive” (P12), “helpful” (P5, P8), “very good” (P6) and “quick” (P1, P2, P11). In
general, participants “found it great that a whole word can be selected with a quick gesture” (P11).
Two participants (P3, P13) found the text selection gestures difficult to perform since holding with
the thumb while performing input on the rear is uncommon for them.

Impression on the Clipboard Gestures. Eight participants provided positive, two neutral, and two
negative comments on the clipboard gestures. In general, participants found the clipboard gesture
“very good” (P6), “easy” (P10), “optimal” (P4), and “really fast compared to the normal touch ver-
sion” (P1, P4, P12). P5 found the gesture fun to perform, “especially since the cutting gesture feels

like a claw.” While P2 and P3 were neutral towards the clipboard gestures, P2 felt that “it was not
very different to normal touch” and P3 felt that “[she] does not need the cut feature that often.” In
terms of negative feedback, P11 found that “it is sometimes difficult to move two fingers on the back”
while P7 “finds buttons a little bit easier since [he] can just tap them instead of drawing a gesture.”

Impression on the Tab Switching Gestures. Two participants were positive towards the tab switch-
ing gestures while ten provided negative comments. While P5 and P2 found tab switching “intu-
itive” and “fine,” other participants reportedly commented that “they would rather switch tabs with
the [standard method]” (P3, P4, P8, P5, P7, P12) especially since “the gestures were difficult to per-

form” (P4, P9). P4 and P5 thus suggested to place the tab switching gestures on the “side close to
the volume buttons” (P4) and “the top side” (P5).

Feedback on the Implementation. We asked participants about their impressions after using our
implementation of the text-editing gestures. Four participants commended the implementation
since they did not encounter any unexpected results which affected their perceived usability (e.g.,
“the recognition rate was fine! ” – P3; “I completed all tasks and it worked fine” – P4). The eight
remaining participants also completed their tasks successfully, but some gestures did not work
well for them. For example, P7 found that “placing the cursor and other [operation such as text

selection and clipboard] worked fine, but gestures on the bottom side [for tab switching] did not work

well for me.” This conforms with comments by P1, P2, P3, P5, and P12. P10 further mentioned
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a situation in which the cursor unexpectedly moved to the beginning of the line (“most gestures

worked quite well, but I unintentionally jumped to the beginning of the sentence once because I moved

my hand”).

7.5 Discussion

We conducted an evaluation in which we focused on three aspects: (i) validating the model accu-
racy with a new set of participants which were not involved in the data collection; (ii) collecting
feedback on the gesture set, including ease and goodness as proposed by Wobbrock et al. [104] as
well as qualitative feedback based on an evaluation within a realistic scenario; and (iii) collecting
qualitative feedback on the usability of a prototype of the implemented gestures.

Model Validation. The model validation resulted in an accuracy which is close to the test ac-
curacy in the development phase (79.19 % validation vs. 80.92 % test for 12 classes). Thus, we can
assume that our model did not overfit to the participants of the data collection study. In general,
these results indicate that BoD gestures on FTSPs are feasible with a usable accuracy. While our
prototype provided capacitive images with a resolution of 4.1mm × 4.1mm per pixel which is com-
mon for mutual capacitive touchscreens, we expect the accuracy to further improve with a higher
resolution based on sensing techniques such as frustrated total internal reflection [26] and infrared
sensing integrated into the LCD layer similar to the SUR40 by Samsung.

Feedback on the Gesture Set. The rated goodness and ease of all gestures (except the tab switch-
ing gestures) are in the positive range and in line with previous work [5, 92, 104]. This indicates
that participants found the gestures easy to perform on our smartphone prototype and that they
match their intended purpose.
We further evaluated the gesture set in realistic text-editing scenarios and compared it with

Android’s standard text-editing mechanisms. Participants rated the perceived easiness, speed,
comfort, suitability, and effort after each condition. We adapted these properties from studies
presented in previous work [45]. The results revealed that the caret placing, text selection, and
clipboard access gestures are generally rated higher than their standard text-editing counterparts.
This conforms with the results from the interviews in which the majority of the participants
preferred the gestures. Participants further mentioned in the interviews that the usability of the
standard text-editing mechanisms decreases with smaller font sizes while the gestures’ usability
stay consistent for all font sizes. This is also visible in the ratings Figure 11. The tab switching
gestures were generally rated as worse than simply touching a tab to switch. In summary, these
results show that on-device gestures to activate text-editing operations is feasible with a usable
accuracy while perceived as more usable than the standard text editing operations implemented
in recent touch-based operating systems.

Feedback on the Prototype Implementation. We asked participants for feedback on our prototyp-
ical implementation of the gesture set after they used them in another text-editing scenario. All
participants successfully completed the text-editing task using our implementation. While four
participants did not activate any function unintentionally, the remaining eight participants en-
countered unexpected cursor movements due to recognition errors. The interviews and obser-
vations of the experimenter revealed that recognition errors are a result of hand grip changes,
performing a gesture in a way which does not conform with the data collection study (e.g., dif-
ferent types of executions for the tab switching gestures due to ergonomic constraints), and the
similarity of a number of gestures (e.g., swiping down vs. double-tap and then swiping down) due
to the low frame rate of the touch sensor. In summary, the feedback showed that our prototype
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already enables the use of on-device gestures as shortcuts to text editing operations with a usable
accuracy and noticeable improvements over the standard text editing mechanisms.

8 GENERAL DISCUSSION

We presented four studies which focused on bringing shortcuts frequently used on hardware key-
boards to FTSP. In the first study, we analyzed shortcuts frequently used on hardware keyboards
and interviewed the participants about their opinion on text editing on different devices. Based on
the most frequently used shortcuts, we then conducted an elicitation study to derive a user-defined
gesture set to provide these shortcuts on FTSPs. In the third and fourth study, we implemented
the user-defined gesture set on a fully functional FTSP to evaluate it and gather feedback from po-
tential users. Thereby, we first collected a ground truth dataset of gestures performed on the FTSP
and then trained a gesture recognizer. We used our model within representative text-editing tasks
to gather qualitative feedback on the gestures, their usability in realistic text-editing scenarios, as
well as the recognition accuracy to assess the feasibility of such gestures.

8.1 Use of Shortcuts on Hardware Keyboards and Mobile Devices

The first study explores a set of frequently used gestures on hardware keyboards with a focus on
text editing and programming in an in-the-wild setting. Post-study interviews further revealed
challenges and common expectations related to the lack of shortcuts on mobile devices. As take-
aways, we found that users generally perceive recent methods of providing shortcuts on mobile
devices (e.g., long-presses) as inconvenient and laborious. Performing a long-press takes time and
interrupts the input flow while nested menus require multiple inputs. Moreover, our results indi-
cate that users perceive placing the caret as challenging especially due to the fat-finger problem.
We further identified that users value single-handed interactions especially in mobile scenarios
(e.g., while on the go). With around 800 shortcuts performed on hardware keyboards per day, our
participants commonly agree that shortcuts onmobile devices are an essential feature which needs
to be refined in order to be effective. With improved shortcut mechanisms, our participants en-
vision that mobile devices could become a viable alternative to desktop computers especially for
complex tasks in mobile scenarios.

8.2 Gesture Set for Providing Shortcuts on Mobile Devices

The second study resulted in a user-defined gesture set that provides shortcuts to frequently used
functions for text editing. An analysis of the gesture characteristics, their taxonomy, as well as
the mental model of our participants revealed a wide range of further takeaways that can inform
the design of general gestures for FTSPs. Among others, participants proposed gestures based on
their previous technical experiences to consider the consistency of gestures between different ap-
plications and devices [17] and their memorability [54]. In addition to the consistency between
devices, our participants also considered the consistency within the gesture set itself such as by
introducing the concept of modifiers (e.g., holding the front screen with the thumb similar to a
modifier key). Due to the full-surface touch capability of FTSPs, we further observed that partic-
ipants preferred compound gestures to avoid unintentional gesture triggers for functions which
are difficult to recover.

8.3 Gesture Set Implementation and Evaluation

In the third study, we collected a ground truth dataset for implementing the user-defined gesture
set on FTSPs. Due to the low-resolution of the finger imprints, additional unintended finger move-
ments (e.g., to secure a firm grip [50]), and multiple touches (instead of single 2D coordinates as
it is the case with gestures on common touchscreens), it is not feasible to use simple heuristics or
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algorithms such as $1 [105]. Thus, we used a CNN-LSTM to train a gesture recognizer that enables
the use of the gestures with an accuracy of 80 %.
The fourth study evaluated the gesture set and our implementation with potential users. Our

participants acknowledged the usefulness of our implementation despite a prototypical accuracy of
80 %. The evaluation based on realistic text-editing scenarios further revealed a number of findings
that could be leveraged in future systems to improve text editing. Our BoD gestures were effective
regardless of the font size which helps users to keep an overview while editing long texts. As a
side effect, we also found that the gestures affect how the phone is held which designers need to
keep in mind for developing gestural input on FTSPs.
In summary, we contributed to an understanding of shortcut usage on hardware keyboards, a

gesture set to apply these gestures to FTSPs, an implementation thereof, as well as an evaluation
which shows that providing frequently used shortcuts improves the usability of mobile text edit-
ing. With the recent trend of foldable smartphones and input controls beyond the touchscreen,
providing these types of shortcuts could improve a wide range of mobile applications on future
smartphones.

9 CONCLUSION

Smartphones have the potential to replace desktop computers for a wide range of tasks. The main
tasks performed on computing devices include reading, writing, as well as editing text. While
advances in the field of mobile text entry have enabled input speeds that are comparable to hard-
ware keyboards, the lack of shortcuts for common text-editing operations poses a major challenge
which affects the usability. The general contribution of this article is an implemented and evalu-
ated gesture set to provide shortcuts to frequently used functions for text editing. This improves
the usability of text editing.
In a series of studies, we first gained an overview of shortcuts which were used most frequently

by expert users on desktop computers. We studied shortcuts on desktop computers as they are
the primary device for text editing. In a second step, we then elicited a user-defined gesture set to
provide themost frequently used shortcuts on FTSP.With the recent trend of foldable smartphones
and a wide range of previous work on full-touch devices, we envision that future commodity
smartphones will offer these touch sensing capabilities. We evaluated the user-defined gesture set
by implementing them on an actual FTSPmainly based on deep learning. Evenwith a rather limited
prototype, we found that our gesture set can already be recognized with a usable accuracy of 80 %.
Moreover, we found that potential users perceived the use of our gestures as easier, faster, and
even more comfortable than the recent methods to access text-editing operations such as cursor
placement, text selection, and clipboard management on mobile devices. In summary, results of
our evaluation showed that using gestures on FTSPs for text-editing shortcuts is feasible while
being perceived as intuitive and faster by users.
There are multiple directions to further increase the recognition accuracy. We used an CNN

for feature extraction, an LSTM for processing a time series of feature, and trained both together
end-to-end. Future work could decouple the LSTM and the CNN. The feature extraction could be
replaced by other deep learning models (e.g., [42, 57, 84]). It could also be replaced by classical
implementations, as used by current commercial devices to determine fingers’ position on multi-
touch touchscreens, potentially combined with algorithms for finger identification [23, 49]. Being
able to reliably identify the position of each finger would enable to replace the LSTM by powerful
classical gesture recognizers, such as the $N family [2] to improve the recognition accuracy.
While this work is a first milestone towards providing shortcuts for mobile text editing on

FTSPs, future work could investigate whether mobile text editing requires further or other types
of frequently used actions compared to hardware keyboards. This helps to refine our gesture set

ACM Transactions on Computer-Human Interaction, Vol. 27, No. 5, Article 33. Publication date: August 2020.



33:32 H. V. Le et al.

especially with a focus on the attributes of mobile devices such as a rather small display and the
fat-finger problem. Moreover, we envision our gesture set to be used and refined for a wide range
of applications beyond text editing. Similar to established shortcuts on hardware keyboards which
are standardized across different applications (e.g., switching tabs, select all, or copy), future work
could apply our user-defined gesture set to other application domains such as web browsing and
content management. Furthermore, we evaluated our gesture set on a FTSP prototype within a
lab setting. With mass-market smartphones that offer full-touch sensing capabilities (e.g., foldable
smartphones) soon being available, future work could evaluate our gesture set in a long-term study
in which users use our gestures in a wide range of situations such as while walking or commuting.
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