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ABSTRACT
Touchscreens enable intuitive mobile interaction. However,

touch input is limited to 2D touch locations which makes it

challenging to provide shortcuts and secondary actions simi-

lar to hardware keyboards and mice. Previous work presen-

ted a wide range of approaches to provide secondary actions

by identifying which finger touched the display. While these

approaches are based on external sensors which are incon-

venient, we use capacitive images from mobile touchscreens

to investigate the feasibility of finger identification. We col-

lected a dataset of low-resolution fingerprints and trained

convolutional neural networks that classify touches from

eight combinations of fingers. We focused on combinations

that involve the thumb and index finger as these are mainly

used for interaction. As a result, we achieved an accuracy

of over 92 % for a position-invariant differentiation between

left and right thumbs. We evaluated the model and two use

cases that users find useful and intuitive. We publicly share

our data set (CapFingerId) comprising 455,709 capacitive ima-

ges of touches from each finger on a representative mutual

capacitive touchscreen and our models to enable future work

using and improving them.
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(a) Using two thumbs for interaction (b) Raw Data

Figure 1: Identifying left and right thumbs on a commodity
smartphone using the raw capacitive data of touches.
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1 INTRODUCTION
Nearly all mobile devices incorporate a touchscreen as the

main interface for interaction. Its combination of input and

output in a single surface enables intuitive and dynamic user

interfaces which can be operated with direct touch. Although

the concept of direct touch feels natural to the user, the touch

input vocabulary is limited compared to traditional input

devices such as hardware keyboard and mouse. Capacitive

touchscreens translate the raw data of fingers touching the

display into 2D coordinates whereas the remaining raw data

is omitted. With 2D coordinates alone, touch input lacks furt-

her dimensions which are fundamental to access secondary

actions and shortcuts to frequently used functions. To extend

the input vocabulary, a wide range of previous work in HCI

focused on identifying individual fingers and other parts of

the hand for touch interaction.

https://doi.org/10.1145/3301275.3302295
https://doi.org/10.1145/3301275.3302295
https://doi.org/10.1145/3301275.3302295
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By differentiating between inputs of different fingers on

the display, functions and action modifiers can be assigned to

individual fingers. Performing the same input, but with diffe-

rent fingers, do now activate different functions similar to the

use of multiple buttons on a computer mouse and modifier

keys on keyboards. Previous work presented a wide range of

promising use cases which ranges from improving text entry

on small touch displays [25], through providing finger-aware

shortcuts on touch keyboards [67], to enhancing multitas-

king on smartphones [24]. Accordingly, a wide range of har-

dware prototypes were presented which identify individual

fingers based on sensors attached to the user [5, 24, 25, 47, 48]

and device [54, 62, 64, 67]. While these approaches are accu-

rate, they require additional sensors which reduces mobility

and convenience. There is no standalone solution yet that

identifies fingers on commodity smartphones.

One solution to avoid additional sensors for finger identi-

fication is to use the contact geometry of touches. Previous

research focused predominantly on tabletops that provide

high-resolution images of touches [2, 17, 18] to identify fin-

gers based on multi-touch hand models. By modifying the

firmware of smartphones, researchers used the raw data of

commodity touchscreens (referred to as capacitive images) to
infer further input dimensions. Capacitive images represent

low-resolution fingerprints and can be used to estimate the

finger orientation [50, 65], recognize body parts [32], palm

touches [37, 42], and hand poses [53]. Gil et al. [19] used
capacitive images of a smartwatch prototype to differentiate

between touches of thumb, index, and middle finger. Howe-

ver, they used exaggerated poses on smartwatches so that

each finger touched with a distinct angle. Expecting these

poses does not only impact the usability but they are also not

common and ergonomic for smartphone use (e.g., touching
with half the middle finger).

Previous work showed that capacitive images provided

by mobile devices do not contain sufficient signal to identify

each finger during regular interaction [19]. However, being

able to differentiate between the primary input fingers (e.g.,
right thumb) and others is already a useful addition to the in-

put vocabulary. For example, a second finger could perform

shortcuts, secondary actions, and even improve multitas-

king [24] or text entry [25]. Previous work required wearable

sensors [24, 25, 48], sequential data such as gestures [45], pre-

defined targets [6], or temporal features [66] to differentiate

between a set of fingers (e.g., left/right thumb). In contrast,

we use capacitive images to identify fingers within single

frames independent from context, position, and additional

sensors. We collected a data set comprising of capacitive

images for each finger and empirically studied finger combi-

nations which can be differentiated with a usable accuracy.

While a feature engineering approach with basic machine

learning achieved inferior results, we present a user and

position-independent deep learning model to differentiate

between left and right thumbs with over 92 % accuracy. We

evaluated it with novel use cases that users find intuitive and

useful. Moreover, we publicly release our data set (CapFinge-
rId) and models to enable future work to use and improve

finger identification on commodity smartphones. Our con-

tribution is threefold which includes (1) finger identification

models, (2) data set, and (3) thumb-aware touch use cases.

2 RELATEDWORK
Previous work presented a wide range of approaches to iden-

tify individual fingers independent from context and position

of touches. They can be grouped into three categories: (1)

attaching sensors to the user, (2) using cameras, and (3) in-

terpreting the shape geometry of touches.

User-Worn Sensors
Finger identification approaches that attach sensors to the

user generally yield the highest accuracies. Gupta et al. [24,
25] mounted infrared (IR) sensors on the index and middle

finger to identify touches by these two fingers with an accu-

racy of 99.5 % upon individual calibration. Similarly, Masson

et al. [48] achieved a recognition accuracy of 99.7 % on tou-

chpads using vibration sensors attached to the user’s fingers.

Further approaches include using electromyography [5], glo-

ves [47], and RFID tags [60] that are attached to the user

to identify finger touches based on sensor measurements.

Despite high accuracies, these approaches are not suitable

for use outside of lab settings. Besides additional sensors

attached to the user’s fingers, they also require attached

computing units which interpret the signal (e.g., Arduino).

External Cameras
Another wide range of approaches focused on using came-

ras to identify touches from different fingers. Researchers

predominantly used a combination of RGB cameras and com-

puter vision [62, 67] to identify fingers for their prototypes;

for example, Zheng et al. [67] used the built-in webcam of

laptops to identify fingers and hands on the keyboard. Using

depth cameras such as the Microsoft Kinect provides ad-

ditional depth information for finger identification. Depth

cameras were used by Murugappan [54] and Wilson [64]

to implement touch sensors. The Leap Motion is a sensor

device that uses proprietary algorithms to provide a hand

model with an average accuracy of 0.7mm [63]. Colley and

Häkkilä [12] used a LeapMotion next to a smartphone to

evaluate finger-aware interaction. While these approaches

do not require users to wear additional sensors, they raise

further challenges; amongst others, they reduce mobility and

convenience as external cameras need to be attached to the

device or mounted next to the touchscreen.
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Imprint of Touch Inputs on Tabletops
One approach to avoid external sensors is to use the shape

geometries of touches to differentiate between fingers and ot-

her parts of the hand. Tabletops are predominantly based on

infrared cameras below the touch surface [8, 49] or frustrated
total internal reflection [26]. These technologies provide ima-

ges which represent imprints of touches performed on the in-

teractive surface. Previous work in the tabletop domain used

these images to explore novel touch-based interaction which

goes beyond individual 2D touch locations [2, 8, 17, 18, 49].

For instance, Xiang et al. [8] used the touch images provi-

ded by the Microsoft PixelSense (960 × 540px) to infer the

posture of the hand while Ewerling et al. [17] used images

of an IR camera (640 × 480px) to differentiate between dif-

ferent hands and locations of individual fingers. However,

these approaches cannot be used for finger identification on

commodity mobile devices due to their immobile size.

Capacitive Touch Sensing
Mutual capacitive touchscreens are the predominant touch

sensing technology for mobile devices. They comprise of spa-

tially separated electrodes in two layers which are arranged

as rows and columns [3]. To sense touches, the controller

measures the change of coupling capacitance between two

orthogonal electrodes, i.e. intersections of row and column

pairs [13]. These measurements result in a low-resolution

finger imprint which previous work also referred to as a

capacitive image [23, 32, 37, 50]. Capacitive touchscreens of
commodity smartphones comprise around 400 to 600 electro-

des (e.g., 15 × 27 electrodes with each being 4.1 × 4.1mm on

an LG Nexus 5). Although more electrodes enable a more de-

tailed capacitive image, they also decrease the signal-to-noise
ratio [9] while increasing the complexity of the manufactu-

ring process. With electrode sizes of approximately 5×5mm,

fingers and even stylus tips can already be precisely determi-

ned so that a higher sensing resolution becomes redundant

regarding the translation of touches into 2D locations
1
. Fi-

gure 1 shows examples of touch input imprints.

Despite the low resolution, previous work presented a

wide range of applications for the capacitive images [23, 32,

33, 37, 50, 61]. Not only do capacitive images provide promi-

sing means for biometric authentication [23, 32], but also

enable to extend the touch input vocabulary by inferring ad-

ditional features of the touching object. Using convolutional

neural networks (CNNs), previous work showed that parts

of the hand [32, 37] and the orientation of a finger [50, 65]

can be estimated based on the touch imprint. Beyond the

touchscreen, Le et al. [38, 39, 41] also used capacitive images
of a fully touch sensitive smartphone to detect grips and

1
http://www.electronicproducts.com/Analog_Mixed_Signal_ICs/

Communications_Interface/Touchscreens_large_and_small.aspx

Figure 2: The study apparatus showing a participant solving
a scrolling task with the index finger.

estimate the 3D location of the holding fingers. Further use

cases include grip adaptive interfaces [10, 11], touch pre-

diction [51], and swipe error detection [52]. Closest to our

work, Gil et al. [19] used capacitive images from a self-built

smartwatch to differentiate between the thumb, index and

middle finger. However, when not done in exaggerated poses

(which is suitable for smartwatches but less for smartphone

input), the classification accuracy is lower than 70 % which

is not reliable enough for interaction.

Summary
Previous work showed that a reliable identification of each

finger on commodity smartphones is not feasible due to

the low resolution of capacitive images. As the majority of

fingers are placed on the back when holding the device in

common grips, we can assume that they are not used for

input. Thus, reliably differentiating between combinations

of input fingers (predominantly left/right thumbs and index

fingers [15, 16, 40, 43, 55]) already extends the input voca-

bulary with useful features such as shortcuts and secondary

actions. While finger identification is not a new challenge,

there is no data set available which includes capacitive ima-

ges of touches by each finger on a capacitive touchscreen.

Such a data set is required to explore combinations of fingers

which can be reliably differentiated. Due to steady advan-

ces in machine learning research, publicly releasing such a

data set allows researchers and practitioners to improve the

accuracy of finger identification and find new differentiable

finger combinations in the future. Successful examples of

steady accuracy improvements based on public data sets are

the MNIST database
2
and ImageNet (ILSVRC).

2
http://yann.lecun.com/exdb/mnist/

http://www.electronicproducts.com/Analog_Mixed_Signal_ICs/Communications_Interface/Touchscreens_large_and_small.aspx
http://www.electronicproducts.com/Analog_Mixed_Signal_ICs/Communications_Interface/Touchscreens_large_and_small.aspx
http://yann.lecun.com/exdb/mnist/
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3 RESEARCH APPROACH
We follow a data-driven approach similar to previouswork [19,

37, 41] to explore the differentiation of finger pairs which can

be used to enhance touch input. In particular, our research

approach includes the following steps:

(1) Gathering the Data Set: We conduct a user study in

which participants are instructed to use specific fin-

gers to perform common touch input gestures. Since

the input of participants are controlled with given

instructions, all captured capacitive images are auto-
matically labeled with the finger which performed the

input and with the task during which input was per-

formed.

(2) Exploration and Model Development: We explore the

data set to provide an overview of the capacitive ima-

ges for each finger and to find distinctive features

which could be used for basic machine learning al-

gorithms (e.g., SVM, kNN, or random forests). We then

train CNNs, a deep learningmodel specialized on image

data, to investigate the feasibility of identifying fingers

in different combinations. We use the data generated

by 80% of the participants to train the models and

20% of the data to test the model. While training the

models, we optimize the model parameters to achieve

the highest accuracy on the test set.

(3) Evaluation during Realistic Use: As optimizing purely

for the test set would introduce overfitting, we evaluate

the generalization of our best model with a validation

set (i.e., how well they perform on unseen data). We

conducted a second study in which we retrieve the

validation set with similar tasks to determine the va-

lidation accuracy. Moreover, we evaluate the model

accuracy with realistic use cases to validate beyond

the data collection tasks, and to collect qualitative feed-

back on the perceived usability of the model.

We focus on finger identification purely based on capa-
citive images and state-of-the-art deep learning techniques

to show the feasibility of differentiating pairs of fingers. To

enable future work to improve our results based on steady ad-

vances in machine learning research and specialized models,

we publicly released our data set (see end of this paper).

4 DATA COLLECTION STUDY
We conducted a user study to collect labeled touch data

while participants performed representative touch actions.

This data enables us to train and evaluate models based

on supervised learning for distinguishing between different

fingers. We adopted the study design from previous work

by Le et al. [37] who used tasks that cover typical touch

gestures such as tapping, scrolling, and dragging to include

representative actions.

(a) Tapping task (b) Dragging task (c) Scrolling task

Figure 3: Tasks adapted from previous work [37] to cover
representative inputs on mobile touchscreens.

Study Design & Tasks
To record representative touch input, we instructed partici-

pants to perform three different tasks with each of the ten

fingers to generate data. The tasks are shown in Figure 3

and include a tapping task in which participants tapped and

held the target for 1.5 seconds; a scrolling task in which a red

line needs to match a blue line (horizontal and vertical); and

a dragging task in which participants dragged a tile into a

target. Targets and shapes appeared at randomized positions.

We used a 10 × 3 within-subjects design with the inde-

pendent variables being the fingers and the tasks. With each

finger, participants performed 30 repetitions of all three tasks

resulting in 10×30×3 = 900 tasks per participant. We further

divided the 30 repetitions of the scrolling task into 15 vertical

and 15 horizontal tasks to cover all scrolling directions. The

order of fingers was balanced using a Latin square while the

tasks appeared in a shuffled order.

Participants & Study Procedure
We recruited 20 participants (15 male and 5 female) with an

average age of 22.4 (SD = 2.8). All except two were right-

handed. The average hand size measured from the wrist

crease to the middle fingertip ranged from 16.3 cm to 20.8 cm
(M = 18.9 cm, SD = 1.3 cm). Our data includes samples from

the 5th and 95th percentile of the anthropometric data [56].

Thus, the participants can be considered as representative.

After obtaining informed consent, we measured the par-

ticipants’ hand size and handed them an instruction sheet

which explained all three tasks. Participants were seated on

a chair without armrests and instructed to hold the device

one-handed when touching with the thumb, and two-handed

for all other fingers. We instructed participants to hold the
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device in the same angle for all fingers (i.e. the angle they
used first) to avoid the models potentially overfitting to the

angle between device and fingers (e.g., participants shifting
their grip or changing their body posture after a condition).

On average, participants finished all tasks within 45 minutes

including optional breaks. We reimbursed participants with

5 EUR for their participation.

Apparatus
We used an LG Nexus 5 with a modified kernel as described

in previous work [37, 39] to access the 15×27 8-bit capacitive

image of the Synaptics ClearPad 3350 touch sensor. Exem-

plary images of the raw capacitive data are shown in Figure 1,

where each image pixel corresponds to a 4.1mm × 4.1mm
square on the 4.95′′ touchscreen. The pixel values represent
the differences in electrical capacitance (in pF ) between the

baseline measurement and the current measurement. We de-

veloped an application for the tasks described above which

logs a capacitive image every 50ms (20 fps). Images were log-

ged with the respective task name and finger to label each

touch automatically. Figure 2 shows the study apparatus.

5 MODELS FOR FINGER IDENTIFICATION
We present our data set and describe three steps towards

developing finger identification models: (1) cleaning the data

set, (2) exploring the data set to understand distinctive featu-

res between touches of individual fingers, and (3) using deep

learning to train models for finger identification.

Data Set & Preprocessing
We collected 921,538 capacitive images in the data collection

study. We filtered empty images in which no touches were

performed, as well as erroneous images in which more than

one finger was touching the screen to avoid wrong labels.

To train a position-invariant model and enable classification

of multiple blobs within one capacitive image, we performed

Table 1: Parameters of all fitted ellipses. Parameters a
and b represent the length of minor and major semi-
axes (in mm). θ represents the ellipse rotation in a
counter-clockwise orientation in degrees.

a b θ

Hand Finger Count M SD M SD M SD

Thumb 50,897 7.32 1.27 7.48 1.47 43.05 49.77

Index 41,379 6.51 0.74 6.28 0.82 46.62 52.72

Left Middle 39,079 6.64 0.84 6.38 0.91 46.09 52.03

Ring 44,718 6.55 0.86 6.32 0.93 43.31 53.03

Little 45,794 6.21 1.00 6.39 1.24 33.57 53.06

Thumb 44,674 7.07 1.28 7.15 1.27 43.37 52.72

Index 46,507 6.60 0.91 6.45 1.06 46.04 52.76

Right Middle 47,082 6.73 0.95 6.55 1.10 51.86 49.33

Ring 47,229 6.71 0.88 6.47 0.96 47.55 49.07

Little 48,350 6.33 1.04 6.31 1.19 38.80 50.02

Thumb Index Middle Ring Little Thumb Index Middle Ring Little
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Figure 4: Average capacitances and blob sizes for each finger.

a blob detection, cropped the results and pasted each blob

into an empty 15× 27 matrix (referred to as blob image). The
blob detection omitted all blobs that were not larger than

one pixel of the image (4.1mm × 4.1mm) as these can be

considered as noise of the capacitive touchscreen. In total,

our data set consists of 455, 709 blob images (194, 571 while
tapping; 111, 758 while dragging; 149, 380 while scrolling).

Data Set Exploration
We visually inspected the generated touch blobs of each

finger during all tasks to find distinctive features. Figure 5

shows average touch blobs for each finger including the blob

size and distribution of the measured capacitance. We ge-

nerated these images by upscaling the capacitive images by

a factor of 5 using the Lanczos4 algorithm [59] to increase

clarity of the capacitance distribution. We then cropped the

blobs and overlayed them for each finger. To describe the

blobs, we fitted an ellipse around them using a 2D least squa-

res estimator for ellipses
3
. The resulting ellipse parameters

(minor-axis a, major-axis b, and orientation θ ) in mm are

averaged and shown in Table 1. We further explored the

ellipse areas (A = π ∗ a ∗ b) and the average measured capa-

citance of a blob. We determined the average capacitance by

averaging all electrode measurements of a blob larger than 0.

Figure 4 shows the average capacitance (8-bit) and average

blob size (inmm).

Similar to previous work [19, 37, 65], we used all five fe-

atures (i.e., mean capacitance, the ellipse area, a, b, and θ )
to explore whether basic machine learning models based on

feature engineering are sufficient for finger identification.

For the sake of clarity, we focused on random forests over

which we performed a grid search to find the best hyperpara-

meters for each combination of fingers. Results are reported

in Table 2 (Baseline (RF)) and are inferior to deep learning

algorithms.

3
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.

measure.EllipseModel

http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.EllipseModel
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.EllipseModel
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Figure 5: Average capacitive image for touches of each finger upscaled by a factor of 5 (for clarity purposes). Fitted ellipses
represent the average area of touches inmm and the orientation θ thereof in degrees. The bars represent the standard deviation
of the minor-axis a and major-axis b.

Convolutional Neural Networks
Deep learning algorithms such as CNNs learn features in

part with the labeled input data and have been shown to be

more successful than manual feature engineering [4]. Thus,

we implemented CNNs using Keras (based on the TensorFlow
backend) and performed a grid search as proposed by Hsu

et al. [34] to determine the model parameters that achieve

the highest test accuracy for all models as shown in Table 2.

If we do not report a hyperparameter in the following, we

applied the standard value (e.g., optimizer settings) as re-

ported in Keras’ documentation. We started our grid search

based on a CNN architecture which previous work found to

perform the best on capacitive images [37, 41]. We perfor-

med our grid search as follows: We experimented with the

number of convolution and dense layers in steps of 1. For

the convolution part of the CNN, we varied the kernel size

in steps of 1 × 1 and number of filters in steps of 16. For the

dense layers, we experimented with the number of neurons

in steps of 32. Moreover, we adapted the dropout factor in

steps of 0.1. Figure 6 shows the final network architecture

which achieved the highest test accuracy.

We trained the CNNs using an RMSprop optimizer [58]

(similar to AdaGrad [14] but with a less radical approach to

decrease the learning rate) with a batch size of 100. Further,

we used the Xavier initialization scheme [20] to initialize the

network weights. We used L2 regularization with a factor

of 0.05, a 0.5 dropout after each pooling layer and the dense

layer, and Batch Normalization to prevent overfitting during

training. Our model expects a 15×27 blob image as input and
returns the probability of each class (i.e. finger) as output.

Models and Accuracies
Table 2 shows the models that we trained and their accura-

cies on a test set. We trained and tested all models with a

participant-wise split of 80% to 20% (16:4) to avoid samples

of the same participant being in both training and test set.

The thumb l/r and index l/r models differentiate be-

tween touches of the respective finger from the left hand

and the right hand. While the index l/r model achieved an

3
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(2x2)
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Figure 6: General architecture used after performing an ini-
tial grid search for all finger combinations listed in Table 2.
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Table 2: Accuracies for differentiating between finger combinations. The first two columns show the accuracy on
the test set based on a participant-wise 80%:20% (16:4) split. The third to sixth columns show user-based accuracies
averaged over participants with a 80%:20% split (sorted by timestamp). ZeroR represents the baseline accuracy
(using most frequent label) and Basic/RF represents the accuracy of random forests and feature engineering.

Full Data Tap Data Muser SDuser Minuser Maxuser Classes Baseline (ZeroR) Baseline (RF)

thumb l/r 90.12 % 93.14 % 88.61 % 7.18 % 72.17 % 97.30 % 2 52.97 % 66.20 %

index l/r 65.23 % 64.31 % 88.63 % 7.39 % 67.37 % 99.87 % 2 51.21 % 54.34 %

thumb/index 84.01 % 81.81 % 89.11 % 5.77 % 74.95 % 98.04 % 2 54.04 % 73.59 %

thumb/others 86.44 % 88.89 % 84.52 % 12.62 % 48.37 % 95.55 % 2 78.92 % 79.91 %

hand l/r 59.27 % 62.18 % 63.34 % 15.99 % 37.83 % 89.70 % 2 50.90 % 50.54 %

TriTap 67.17 % 70.92 % 82.12 % 6.63 % 68.67 % 95.44 % 3 31.73 % 56.54 %

5 fingers 46.13 % 47.15 % 64.35 % 7.86 % 48.87 % 79.07 % 5 21.08 % 32.14 %

10 fingers 35.55 % 37.86 % 67.95 % 7.44 % 58.67 % 83.91 % 10 11.60 % 17.93 %

accuracy of 65.23 %, the thumb l/r model discriminates left

and right thumbs with an accuracy of 90.12%. Differentia-
ting between thumb and index finger independent from the

hand (thumb/index) is feasible with an accuracy of 84.01 %.
Similarly, identifying whether a touch was performed by

the thumb or any other finger (thumb/others) yields an

accuracy of 86.44 %.
Identifying touches from the left or the right hand (hand

l/r) is feasible with an accuracy of 59.23%. We further ex-

plored the differentiation between three fingers (i.e. thumb,

index, and middle finger) similar to previous work by Gil et
al. [19]. With our TriTap model, we improved their accu-

racy by 2.92 % which results in 70.92 %. Increasing the num-

ber of fingers to identify decreases the accuracy. A hand-

independent finger identification (5 fingers) leads to an

accuracy of 46.13% while additionally differentiating bet-

ween hands (10 fingers) yields an accuracy of 35.55 %.
In addition, we trainedmodels using a subset of the data set

consisting of touches of the tapping task (Tap Data). Similar

to Gil et al. [19], we achieved improvements in accuracy

of up to 3.75% compared to the full data set. Moreover, we

trained models for each participant (user-based models) using
their full datasets with a 80%:20% split sorted by timestamps.

This increased the average accuracy by up to 32.4% while

reaching maximum accuracies of 80 % to 99 % per user. The

improvements are substantial for 10 fingers, 5 fingers,

TriTap and index l/r but not for models such as thumb l/r

with an already high accuracy. Out of all models, the thumb

l/r and thumb/others achieved the highest accuracy.

Discussion
We started the model development by exploring the data

set and training random forests based on features derived

from the capacitive images. The results did not reveal any

distinctive features which basic machine learning algorithms

could use for finger identification. Thus, we applied CNNs

to develop models to differentiate between combinations of

fingers. The achieved accuracies are shown in Table 2.

As expected, the model for identifying 10 fingers leads to

an accuracy of 35.55 %, which is not practical for interaction.

Confirming previous work by Gil et al. [19], this indicates
that the information provided by the low-resolution capa-

citive images does not reveal enough differences between

the fingers. To improve upon this, we then combined the

same fingers of both hands into one class (5 fingers mo-

del) to achieve a higher accuracy (46.13 %). However, when
considering the improvement factor over the baseline as sug-

gested by Kostakos and Musolesi [35], we found that this

factor decreases when combining fingers of both hands (2.1
for 10 fingers, 1.2 for 5 fingers). Similarly, combining all

fingers of a hand into one class (hand l/r) leads to an accu-

racy of 59.27 % but with an even lower improvement factor

of 0.2. Moreover, discriminating thumbs from other fingers

(thumb/others) resulted in an improvement factor of 0.1.
This further suggests that combining touches from multiple

fingers into one class leads to more overlaps between classes

and a decrease of accuracy improvements over the baseline.

These results suggest that involving multiple fingers and

classes in the classification leads to accuracies that are not

sufficient for interaction.

To improve the accuracy, we explored models to differen-

tiate between the two fingers mainly used for input: thumb

l/r, index l/r, and thumb/index. While index l/r and

thumb/index achieved accuracies of 65.23% and 84.01%
respectively, thumb l/r achieved the highest accuracy of

all models (90.12%). The high accuracy of the thumb l/r

model could be due to different reasons. We observed that

the thumb does not touch the display in a nearly perpendicu-

lar angle as other fingers do. This results in a larger contact

surface which provides more information for classification.

Amongst others, this includes the thumb’s yaw angle (angle

between thumb and vertical axis of the touchscreen) which
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is different for touches of the left and the right thumb (see

Figure 1 and yellow hotspots in Figure 5). While this works

for the CNN, the pure orientation of the blob is not sufficient

for basic ML algorithms due to the high standard deviation.

In an interaction scenario, fingers should be identified

directly after touching the display. Since the first touch is

always a tap, we trained models using only the tap data. We

achieved accuracy improvements of up to 3 % (e.g., 93.14 % for

thumb l/r) as moving fingers add additional noise, especially

at a lower frame rate. We further explored user-based models

as collecting touches for on-device training works similar to

the setup of fingerprint scanners. While thumb l/r did not

improve, the 10 fingers model improved by over 32 %. The

accuracy increase for user-based models could be explained

by individual postures (e.g. orientation) of each finger which

resulted in differentiable touch shapes. Our models can be

applied to other devices by retraining or scaling the raw data.

In summary, we found that reducing the number of fingers

to identify increases the overall accuracy. While identifying

all 10 fingers is not sufficiently accurate on capacitive tou-

chscreens of commodity smartphones, differentiating bet-

ween the left and right thumb is feasible with an accuracy of

over 92 %. This extends the touch input vocabulary as the se-

cond thumb can be used for secondary actions, similar to the

right mouse button. Moreover, previous work showed that

using both thumbs is already a common posture for most

users [15, 16, 43, 55]. In addition to an offline validation, we

demonstrate the usefulness of our thumb l/rmodel, suitable

use cases, and the model’s accuracy during real use cases on

a commodity smartphone in the following.

6 MOBILE IMPLEMENTATION & USE CASES
We present our mobile implementation of the thumb l/r

model, and further use cases made possible with the model.

Mobile Implementation
After freezing and exporting the trained model into a pro-

tocol buffer file, we used TensorFlow Mobile for Android to

run the CNN on an LG Nexus 5. A classification including

blob detection and cropping takes 19.2ms on average (min
= 12ms ,max = 25ms , SD = 4.2ms) over 1000 runs. As this is
faster than the 20 fps sampling rate for the capacitive ima-

ges, the inference can be performed on each sample in the

background. Since recent processors (e.g., Snapdragon 845)

are optimized for machine learning, the classification time

can be reduced to a neglectable duration. The model can be

further optimized for mobile devices with techniques such as

quantization [27] and pruning [1] for a small loss of accuracy.

Sample Use Cases
We implemented two use cases for thumb identification

which we evaluated in a study as described below.

Multitasking with Porous User Interfaces. Gupta et al. [24]
presented Porous User Interfaces, which is a concept that

overlays two applications. Thereby, one finger interacts with

the application in the foreground while the other interacts

with the background application. We implemented an ab-

stract scenario based on the tasks used in the data collection

study (see Figure 7b). Users can scroll (horizontal bar) with

the right thumb while they can drag the square with the

left thumb. This use case enables users to interact with two

applications (here: dragging and scrolling) simultaneously

without switching between applications. When touching the

display, the upper left corner displays the recognized fin-

ger and thus which action users are performing. Concretely,

the concept could be applied for purposes such as multitas-

king (e.g., instant messaging in the foreground, calendar in

the background) and exchanging data between applications

(e.g., dragging a file from a file manager application in the

background into a messaging application in the foreground).

Painting Application. We implemented a painting application

in which users can draw using the right thumb and use

the left thumb for secondary tools (e.g., erasing or selecting

colors using a pie menu). In contrast to common painting

applications, the full screen space can be used for painting

instead of sharing the space between painting and menu

area. Similar to the porous interfaces, the upper left corner

displays which thumb was recognized and thus which action

the user is performing (see Figure 7c).

Further Use Cases
We present further use cases for thumb-aware touch. We en-

vision that the functions can be inverted so that left-handed

and right-handed people can use them. In the following, we

refer to the thumb of the dominant hand as the first thumb

while the other thumb is referred to as the second thumb.

UI Components with Multiple Functions. Differentiating bet-
ween two thumbs can be used similarly to two buttons on a

hardware mouse. For example, touching with the first thumb

in a file manager can be used to select and open files while

touching with the second thumb can be used to open a con-

text menu for the selected file. Previous work presented GUI

widgets that could be used with our model [7].

3D Navigation. To navigate in 3D space, two thumbs can be

used to navigate in different dimensions. For example, the

first thumb rotates the view while the second thumb enables

one to move within the 3D space. This is similar to using

arrow keys and a mouse.

Handedness-Aware UI. While most user interfaces are desig-

ned for right-handed users, they offer a setting to flip the

layout. Our model enables an adaptive layout based on the

recognized thumb.
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7 EVALUATION STUDY
We conducted a study to validate the model’s accuracy and

to evaluate our sample applications with users. We focused

on the following two aspects: 1) model validation with new

participants and thus a dataset that was not involved in

training and test, and 2) collecting qualitative feedback on the

sample use cases and the concept of thumb-aware interaction.

Study Procedure and Design
Wedesigned three tasks to evaluate the two aspects described

above. After we obtained informed consent from participants,

we measured their hand sizes and collected demographic

data. We handed them an instruction sheet that explained

all parts of the study so they could refer to the instructions

at any time.

Part 1 (Model Validation). In this part, we collect the valida-

tion set to evaluate the model performance with data from

different participants than the ones used to train and test

the model. We used the same tasks as in the data collection

study (see Figure 3) and instructed participants to perform

dragging, tapping, and scrolling tasks in a randomized or-

der. All tasks were performed with the left and the right

thumb in a counterbalanced order so that we could collect

ground truth labels for the validation of the thumb l/rmodel.

Additionally, participants filled in a raw NASA-TLX ques-

tionnaire [22, 29] to compare the perceived workload with

results from part 2.

Part 2 (Abstract Porous Interface). In addition to the first part,

we evaluate the effective accuracy which includes the mo-

del’s classification accuracy and human errors. The human

error describes the user’s error-proneness to use the correct

fingers to solve the tasks. To do so, we used the porous in-

terface application to instruct participants to solve dragging

and scrolling tasks with different thumbs. To collect ground

truth labels for accuracy evaluation, new targets appear as

soon as the previous target was filled (e.g., in Figure 7b a

new target for dragging appeared after the scrolling target

was filled). Thus, the current task (e.g., dragging in Figure 7b)

can be used as the ground truth label. We asked participants

to fill in a NASA-TLX questionnaire to assess the perceived

workload for using the correct thumb to solve the task.

Part 3 (Painting Application). To evaluate the thumb l/r mo-

del in a concrete scenario, we used the painting application

shown in Figure 7c in which users can draw using the right

thumb and use the left thumb for secondary tools (e.g., era-
sing or selecting colors using a pie menu). Similar to the

previous part, the upper left corner displays which thumb

was recognized and thus which action the user is perfor-

ming. We use this part to collect qualitative feedback from

participants on the concept of thumb-aware interaction on

(a) Dragging (b) Porous UI (c) Painting

Figure 7: Screenshots of (a) a dragging task in part 1; (b) a
combined dragging and scrolling task as an abstract porous
interface in part 2; (c) the drawing application in part 3 with
a pie menu for color selection.

a commodity smartphone. The qualitative feedback inclu-

des a questionnaire for ratings, and an interview focused on

the advantages and disadvantages of the interaction method.

Further, we asked for use cases that participants envisioned

for thumb-aware interaction on smartphones.

Participants
We recruited 10 participants (6 male, 4 females) with an

average age of 24.1 (SD = 3.0) who had not participated

in the previous study. All participants were right-handed.

The average hand size measured from the wrist crease to

the middle fingertip ranged from 17.3 cm to 21.0 cm (M =

18.5 cm, SD = 1.1 cm). We reimbursed participants with 5

EUR for their participation.

8 RESULTS
We present the evaluation results which covers a model

validation, the effective (model and human) accuracy in an

abstract use case, and qualitative feedback on thumb-aware
interaction.

Model Validation
Based on the collected capacitive images of new participants,

the thumb l/r model (trained with full data) achieved a

mean accuracy of 89.78 % (SD = 3.30 %,min = 84.90 %,max =

96.50 %). The mean precision for detecting the left thumbwas

88.72 % (SD = 4.43 %,min = 82.31 %,max = 95.68 %) and the

recall was 89.85 % (SD = 3.90 %,min = 82.12 %,max = 95.87 %).
Pearson’s correlation test did not reveal a significant correla-

tion between the hand size and accuracy (r = −0.03, p = 0.94).
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A validation of the thumb l/r model (trained with tap

data) with the tap data subset resulted in a mean accuracy

of 91.98% (SD = 5.24%,min = 81.98%,max = 99.23%). The
mean precision for detecting the left thumb was 90.80%
(SD = 4.40%,min = 85.29%,max = 98.84%) and the recall

was 91.77% (SD = 7.81%, min = 77.15%, max = 99.48%).
Again, Pearson’s correlation test did not reveal a significant

correlation between hand size and accuracy (r = −0.04, p =

0.92).

Effective Accuracy in Porous Interfaces
Based on the performed task as ground truth (i.e., scroll or
drag), the following results represent the effective accuracy

when considering both model and human errors. Human

errors occured when participants mistake, e.g., the left for
the right thumb for the scroll task. Therefore, these results

describe the accuracy that one can expect when also consi-

dering the error-proneness of users to use the correct thumb

for the tasks.

When classifying touches using the thumb l/r model

(trained with full data), the effective accuracy was 85.16%
(SD = 3.50 %,min = 78.16 %,max = 91.36 %) with a precision

of 86.77% (SD = 3.60%,min = 81.19%,max = 92.34%) and
recall of 84.17 % (SD = 4.74 %,min = 74.03 %,max = 89.96 %)
for detecting the left thumb. Pearson’s correlation test did

not reveal a significant correlation between the participant’s

hand size and classification accuracy (r = −0.46, p = 0.18).

Subjective Feedback
We present the subjective feedback on the use cases. For the

interviews, two researchers employed a simplified version

of qualitative coding with affinity diagramming [28] by co-

ding the answers, printing them on paper cards, and finally

clustering the answers.

Perceived Workload Ratings. We used a raw NASA-TLX que-

stionnaire [22] to assess participants’ perceived workload

after using the abstract porous interface. Moreover, we as-

sessed the perceived workload after part 1 as a comparison.

Mauchly’s Test of Sphericity indicated that the assumption

of sphericity had not been violated, χ 2(2) = .745, p = .689.
A one-way ANOVA with repeated-measures does not re-

veal any statistically significant differences (F2,18 = 2.711,
p = .093) between the perceived cognitive load when using

the left hand (M = 13.3, SD = 9.2), right hand (M = 7.3, SD =

7.3), or both hands for the abstract porous interface task (M
= 11.2, SD = 6.1).

Interview. When asked about the first impression after using

thumb-aware interaction, the majority (8) provided positive

feedback. In particular, participants found it useful in gene-

ral (“very useful” - P7), for painting applications (“it is faster,
especially since one can switch color with the left hand” - P1),

for multitasking purposes (“very useful, especially to use two
apps simultaneously” - P5), and to avoid unintended touches

(“one can not activate something unintentionally” - P4). They
commended the idea (“cool and innovative idea” - P10) espe-
cially for the abstract porous interface task (“the first task
is easier to solve with two thumbs” - P5) and the painting

task (“makes painting easier, even quite good when holding the
device slightly different” - P1). Moreover, they (6) found the

interaction method intuitive (“more intuitive [than without]” -
P7) and easy to learn (“I am already used to using both thumbs.
This makes learning this interaction method easier.” - P6).
Confirming the perceived workload ratings, participants

found that they had no difficulties to coordinate the thumbs

for the two layers of the porous interface (“I had no cogni-
tive difficulties” - P2, “Needed to get used to in the beginning,
but then it became easy” - P4). Only one participant (P3)

mentioned that it might be “confusing to focus on two things
simultaneously”. While two participants were impressed by

the finger identification accuracy (“Recognition was already
very good - there were only two cases in which my finger
was wrongly identified.” - P5), other (6) participants clearly
noticed it when fingers were wrongly identified (“little bit
frustrating since false recognitions leads to [unintended lines]
that needs to be erased” - P7). However, in the porous inter-

face task, such identification errors could be “easily fixed by
touching the display once again” (P5). Further, P5 noted that

he “quickly learned how to [place] the thumbs to control [the
user interface]”.
When asked about use cases which they envision for

thumb-aware interaction, all participants were unanimous

about multitasking and shortcuts as the main use case. More-

over, they suggested using the interaction method for mobile

games and image editing. For example, applications could

offer multiple modes that make use of the porous interface

concept (P9, P10) to avoid manual switches. Further, thumb-
aware interaction could be used to interact with 3D objects

so that each finger manipulated one dimension (P2, P5, P9).

This would also benefit mobile games so that each finger

could be assigned to one joystick or button so that fixed

positions for control elements would not be required (P1,

P4, P6). When asked about which fingers participants would

use if all 10 fingers could be recognized with a sufficient

accuracy, participants were unanimous that the thumb is

the main finger for interacting with smartphones. Further, 4

participants considered the index finger for interaction while

2 would additionally consider the middle finger. To interact

with tablets on a table, all participants would use all fingers

while one participant further suggested using knuckles. In

general, nine participants would use the concept of thumb-

aware interaction on their devices (“definitely, if apps support
it” - P4) while one would not.
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9 DISCUSSION
We conducted a user study to validate the accuracy of the

thumb l/rmodel with participants who had not participated

in the data collection study. Further, we combined the model

validation with an evaluation of two use cases that we imple-

mented using thumb-aware touch interaction. This includes
an abstract scenario of porous interfaces initially proposed

by Gupta et al. [24], and a painting application in which the

right thumb can draw while the left thumb is responsible for

the settings (e.g., color and tool selection).

Model Validation Accuracy andQualitative Feedback
The model validation resulted in accuracies similar to the

results achieved in the offline validation with the test set.

This suggests that the thumb l/r model generalizes well

across different users and does not overfit. We also conside-

red human errors (i.e., mixing up between fingers) together

with the model accuracy which resulted in an effective accu-

racy of 85.16%. The 5% difference in contrast to the model

validation could be due to a number of reasons. Human er-

rors are inevitable especially since users are not yet fully

familiar with this interaction concept. This conforms with

the statements in the interview. Further, there are technical

limitations that affect the accuracy of this live scenario. Due

to the low retrieval rate of the capacitive images (20 fps),
the classification could have happened on images in which

the thumb was still in motion so that it just barely touched

the display. While one solution could be using multiple fra-

mes and taking the most predicted class, this would have

introduced latency.

Despite a decrease of 5 % accuracy in a live scenario, par-

ticipants were positive about the use cases for thumb-aware
interaction and argued that wrong classifications could be

fixed effortlessly by placing the finger on the display again.

One participant even mentioned that he learned how to place

the thumb on the screen to avoid wrong classifications after

the first iterations. The qualitative feedback revealed that

participants were unanimously positive about the interaction

method and that it can be a useful addition to the touch input

vocabulary. Moreover, the ratings showed that interacting

with porous interfaces using thumb-aware interaction does

not increase the perceived workload. This suggests that inte-

racting with two applications simultaneously can be intuitive

for users and further avoids repeatedly switching between

applications or splitting the screen which decreases the inte-

raction space. Shortcuts (e.g., pie menu for color selection)

were perceived as intuitive and can save screen space that is

used for menu bars otherwise. However, wrong identificati-

ons are reportedly more noticeable in this use case.

Improving the Classification Performance
While the thumb models (i.e., thumb l/r, thumb/index, and
thumb/others) achieved accuracies well beyond the 80%

that previous work considered sufficient in general [35], suf-

ficiency also depends on the action’s consequence (e.g., easily
recoverable action vs. permanent action) and how classificati-

ons are translated to actions. While the consequence depends

on the application/developer, we discuss translation approa-

ches and improvements that can further minimize accidental

activations to a neglectable amount in the following.

Instead of translating a single classification result into

an action, previous work showed that taking the majority

class of a set of results noticeably improves the accuracy (i.e.,
majority voting [36]). Since multiple results are considered,

single incorrect results (e.g., due to outliers) can be com-

pensated. This is especially useful for recoverable actions

and scenarios that provide enough time to gather multiple

classifications (e.g., finger identification while performing a

gesture). Further, a threshold for the confidence score [46]

of the most likely class could be used to avoid incorrect

translations due to similarities. In case of a low confidence

score, a touch could be either omitted with a warning to

the user, or a fallback function could be activated that can

easily be recovered. Especially with recoverable functions in

case of a wrong identification, the system can collect touch

data in the background to continuously improve the finger

identification model using on-device learning.

Our approach is solely based on capacitive images to in-

vestigate the feasibility of identifying fingers within a single

frame and independent from context and position. Finger

identification, in general, could be improved with additional

context information from the touchscreen or additional sen-

sors. The touch position provides more information about

the finger’s yaw angle for thumb identification since distant

touches (e.g., close to top edge) lead to larger contact surfaces
due to a stretched thumb. Similarly, touch offsets on smaller

targets (e.g., right thumb tends to hit the right of the target

and vice versa for the left thumb) represent an additional

feature to predict hand postures [6]. Further, gestures (e.g.,
unlock trajectories) could be used to detect the handedness of

users [45] and combined with the majority voting approach

described above. Sequential models (e.g., recurrent neural
networks (RNN) and long short-term memory (LSTM)) can

be trained with sequences of capacitive images (i.e., trajec-
tories of touches) to consider the information that gestures

provide for detecting handedness.

Besides software-based approaches, touchscreens with a

higher sensing resolution could be used. The Samsung SUR40

display offers touch images in a higher resolution based

on IR sensing which contain more signal to improve the

classification accuracy. However, such touchscreens need yet
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to be produced and incorporated into mass-market mobile

devices. Not only are they more complex to manufacture

but would also need more resources to be operated. Further

improvements includes pre-touch sensing [31] to sense the

finger above the display or built-in inertial measurement

units [21, 30, 44, 57].

10 LIMITATIONS
While we showed a usable accuracy for using the thumb

l/r model for interaction, we focused solely on capacitive

images as the source of input. This shows the feasibility of

this approach as a standalone solution without the support of

further information that could be dependent of context and

position. It is left to future work to combine other sources of

input as discussed above (e.g., IMUs, touch trajectories, etc.)

to further increase the classification accuracy.

By classifying only between the main input finger and a

second finger, we increased the accuracy to a practical level

compared to a ten-finger model. Since the model expects

only certain fingers (e.g., thumbs), all touches from other

fingers are also treated as thumbs. One solution for applica-

tion developers would be to introduce a mode exclusively for

thumbs to avoid confusing the user. Another solution would

be to recognize whether the touching finger is a thumb using

a preceding model (e.g., thumb/others or IMUs).

11 CONCLUSION AND FUTUREWORK
In this paper, we investigated finger identification models ba-

sed on deep learning and the capacitive images of commodity

touchscreens. While previous work showed that capacitive

images from mobile devices do not contain sufficient signal

for a reliable identification of each finger, they also showed

that thumbs and index fingers are predominantly used for

input on mobile devices. Thus, we focused on identifying

fingers within different combinations of fingers mainly used

for input. We present an exploration of capacitive images

for each finger which revealed that an identification with

visual features and basic machine learning is inferior to deep

learning algorithms. Based on CNNs, we showed that left

and right thumbs can be differentiated with an accuracy

of over 92%. To demonstrate the usability of this model,

we implemented two use cases and evaluated the concept

of thumb-aware interaction. This includes porous interfaces
and a pie menu for the non-dominant hand which partici-

pants found intuitive and useful. Moreover, we found that

users did not perceive an increase in workload when using

thumb-specific functions. Since our contribution is purely

software-based, it can be readily deployed to every mobile

device with a capacitive touchscreen.

We are publicly releasing our data set of capacitive images

comprising touches of all ten fingers. While we solely used

the capacitive images for finger identification, future work

could improve the accuracy by including further information

(e.g., context, position, and sensors) into the identification

process. Moreover, due to steady advances in the field of deep

learning, our results could be further improved by simply trai-

ning new models with the same data set in the future. Future

work could also use our other models (e.g., thumb/index) or
train user-dependent models with our scripts for prototyping

purposes.

12 DATASET AND MODELS
One outcome of the studies is a labeled dataset (CapFingerId)
that consists of capacitive images representing touches from

all ten fingers. We are publicly releasing the data set together

with Python 3.6 scripts to preprocess the data as well as train

and test the model described in this paper under the MIT li-

cense. We further provide the trained models, the software to

run our models, and implementations of the use cases readily

deployable on Android. These will enable the community to

run our models on their devices. We hope that the provided

models in combination with the dataset can serve as a ba-

seline that enables other researchers to further improve the

accuracy: https://github.com/interactionlab/CapFingerId.
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