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ABSTRACT
A common objective for context-aware computing systems
is to predict how user interfaces impact user performance
regarding their cognitive capabilities. Existing approaches
such as questionnaires or pupil dilation measurements either
only allow for subjective assessments or are susceptible to
environmental influences and user physiology. We address
these challenges by exploiting the fact that cognitive work-
load influences smooth pursuit eye movements. We compared
three trajectories and two speeds under different levels of
cognitive workload within a user study (N=20). We found
higher deviations of gaze points during smooth pursuit eye
movements for specific trajectory types at higher cognitive
workload levels. Using an SVM classifier, we predict cog-
nitive workload through smooth pursuit with an accuracy of
99.5% for distinguishing between low and high workload as
well as an accuracy of 88.1% for estimating workload between
three levels of difficulty. We discuss implications and present
use cases of how cognition-aware systems benefit from infer-
ring cognitive workload in real-time by smooth pursuit eye
movements.
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INTRODUCTION
Eye gaze-based interactive systems hold a lot of promise for
cognition-aware interaction [10]. The human eye is the central
organ of the body when it comes to perception and informa-
tion processing. Complemented by previous research, eye
gaze as an input for interactive systems has been extensively
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3174010

Figure 1. Smooth pursuit recordings under different levels of cognitive
workload for three trajectories. The blue line shows the displayed tra-
jectory, while the orange line visualizes the gaze path. (A), (B), and (C)
show the gaze path during low cognitive workload phases, while (D), (E),
and (F) shows the gaze path during perception of high workload.

explored [16]. Recently, smooth pursuit eye movements have
been utilized as an alternative eye movement input modality
to interactive systems [22, 61]. This interaction technique
overcomes the need for precise calibration and training of the
user before interaction and can be deployed without any user
effort. Previous research has used this technique to enable
calibration-free interaction with distant displays [42, 62], and
mobile devices [17, 35]. Smooth pursuit eye movements can-
not be faked by the users since they require locking onto a
moving target [59]. This robustness against false positives is
another benefit of using smooth pursuit eye movement as an
interaction technique.

Research has shown that the behavior of the eye is strongly
affected by psychological [47, 48] and psychophysiological
states of the human body [52, 66]. One such state is cogni-
tive workload, which has a remarkable impact on eye move-
ments [5, 26, 54]. Figure 1 shows how cognitive workload
affects smooth pursuit eye movements. Driving in a stressful
context or performing multitasking during cognitively demand-
ing tasks under time pressure are just two examples.

Quantitative measures of cognitive workload include ques-
tionnaires, such as the NASA-TLX [19, 20] or the Driver
Activity Load Index (DALI) [41], which are often used in HCI
to evaluate interfaces. Yet these questionnaires are prone to
the interpretation of the questions by the user and only allow
for an assessment at the end of the task, hence providing rather
coarse-grained insights.
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At the same time, physiological data can be used to assess
cognitive workload [14]. In particular, previous work showed
that under controlled conditions, pupil dilation provides an
estimate of cognitive load [43, 45]. However, pupil dilation
is highly sensitive to light conditions, which change in out-
door environments, and hence cannot easily be applied in
many ubiquitous computing settings. Other touchless meth-
ods which infer cognitive workload via physiological sensing
involve heart rate [31] or facial skin temperature measures [1,
53]. However, these modalities depend on several other factors,
such as constant temperatures or highly controlled environ-
ments.

In this work, we propose an approach that exploits smooth
pursuit eye movements to assess cognitive workload. Since
the term cognitive workload is used in various fields and its
definition varies widely, we investigate the correlation be-
tween smooth pursuit eye movements and working memory.
Working memory describes the cognitive processing system
that stores information temporarily and affects higher-order
cognitive functions such as understanding and information
processing [4]. Smooth pursuit describes eye movements
which occur as the eyes closely follow a moving object. These
movements are evaluated in a number of studies used for user
interface element selection [17, 59] or intuitive eye tracker
calibration [29, 61]. By conducting a user study, we found
that smooth pursuit can be used for contactless assessment of
cognitive workload with an accuracy of up to 99.5%. Thereby,
the need of body-worn sensors is obviated.

CONTRIBUTION STATEMENT
The contribution of this paper is threefold: (1) We report on a
user study that investigates the impact of cognitive workload
on smooth pursuit eye movements. Based on the insights from
the user study, (2) we build a classifier to approximate the level
of cognitive workload using gaze differences during smooth
pursuit eye movements. (3) Finally, we discuss how these
findings can be used during the evaluations that require the
assessment of cognitive workload as well as for the design of
cognition-aware interactive systems.

RELATED WORK
In this section, we present related work concerning existing re-
search on using smooth pursuit eye movements for interaction
and the influence of cognitive workload on eye movements.

Interacting with Smooth Pursuit
Using eye gaze as an input for ubiquitous interactive systems
has been extensively explored. Duchowski [15, 16] performed
a literature survey about current eye tracking applications and
technologies. Focusing on usability, related research shows
how eye tracking technologies evolved until they became us-
able in human-computer interaction research [24, 46]. Re-
cent research has addressed the use of eye gaze for selection
tasks [40, 50], which can be used by physiologically impaired
individuals to perform input on computers [22]. Text input
via eye input has been researched using dwell time [6, 37],
off-screen targets [23], or eye movements along the y-axis on
a display [57]. The usage of such methods was also evaluated

in real-world scenarios [13, 65]. Furthermore, eye movements
and eye gestures can be used to interact with devices.

Recently, smooth pursuit eye movement [22, 61] has been
used as an alternative gaze-based input modality to interac-
tive systems. This interaction technique overcomes the need
for precise calibration and training of the user before inter-
action and further supports ubiquitous interaction. Several
researchers have investigated how smooth pursuits can be used
in an intuitive way. People cannot pretend to perform smooth
pursuit movements since they require locking onto a mov-
ing target [59]. This reduces the likeliness of detecting false
positives during an interaction.

Another approach to leverage smooth pursuit as an input
modality has been researched by Esteves et al. [17]. They
used a mobile eye tracker to enable hands-free interaction
with a smartwatch by showing moving dots on the smartwatch
display. Results show robustness against false positives regard-
ing input, no need for calibrating an eye tracker, and efficient
hands-free interaction. Using smooth pursuit to interact with
physical real-world devices also showed promising results.
Velloso et al. [59] developed and evaluated an object-driven
system, which can be operated by only performing smooth
pursuit. As soon as a user approaches an object such as a fan
or windmill, it begins to present moving targets which trigger
actions as soon as selected by smooth pursuit.

Researchers have also used smooth pursuit to calibrate eye
trackers. Pfeuffer et al. [44] investigated this approach by
using animations on a display to implicitly calibrate an eye
tracker. Their results state that a 5-point calibration achieved a
higher detection rate and required less calibration time. They
concluded that smooth pursuits calibration provides better
usability and flexibility for eye tracker calibration on small
displays.

Vidal et al. [61] proposed different applications for smooth
pursuit eye interaction, such as selection tasks or password
authentication. The implemented applications showed a fast se-
lection and completion time for different tasks. Since smooth
pursuit can be performed with almost every kind of animated
trajectory, more recently Khamis et al. [29] investigated which
trajectories are most suitable for smooth pursuit interaction
and calibration when showing text-based content on a display.
While showing a question in the top left corner of a screen,
they also showed several answers to the question on the same
screen displayed in different trajectories. Schenk et al. [49]
used smooth pursuit as an element selection mechanism in
desktop settings to avoid the Midas touch problem [25]. Simi-
larly, Lohr and Komogortsev [36] compared smooth pursuit-
based input against dwell-based input approaches. Significant
faster selection of elements was achieved when using smooth
pursuit at the cost of likely unwanted selections.

Impact of Cognitive Workload on Eye-based Properties
Previous research has shown that the behavior of the eye is
strongly affected by the psychological [47, 48] and psycho-
physiological [52, 66] state of the human body. One such
state is cognitive workload, which has a shown impact on eye
movements [5, 54].



Researchers found a relation between pupillary responses and
cognitive demand [2, 21]. During a task comprising different
task complexities, the pupil diameter of participants was mea-
sured as an indicator for cognitive workload. Results show
increasing pupil dilation with increasing task difficulty. Pfleg-
ing et al. [45] created a model to estimate cognitive workload
under different lighting conditions based on pupil dilation.
The feasibility of measuring pupil dilation using a remote eye
tracker has been investigated by Klingner et al. [30]. Their
findings show a lower accuracy compared to mobile eye track-
ers due to noise and head movements. Kruger et al. [32]
investigated eye behavior when perceiving a stimulus with and
without subtitles using electroencephalography and pupillary
measurements. In an experiment with two groups, lower cog-
nitive workload was measured within the group perceiving
subtitles than in the group lacking subtitles.

Liang and Lee [34] compared the efficiency of different ma-
chine learning algorithms to estimate distractions during driv-
ing tasks based on saccadic eye movements. Higher frequen-
cies of saccadic eye movements have been used as an assess-
ment for cognitive workload. Best results were achieved using
a support vector machine (SVM) for machine learning. How-
ever, their findings address saccadic eye movements only and
do not examine the effects of smooth pursuit eye movements
under cognitive workload.

Benedetto et al. [7] investigated the correlation between blink
duration and visual and cognitive workload of a driver oper-
ating a car in a simulated environment. Participants had to
perform a Lane Change Test [38] while doing an in-vehicle
information system task [60] at the same time. Their find-
ings show a lower blink duration compared to their baseline
task than in the cognitively demanding task. Ahlstrom and
Friedman-Berg [3] also found a significant correlation between
shorter blink durations and cognitive workload.

Stuyven et al. [54] investigated the impact of cognitive work-
load on saccadic eye movements. Their findings show in-
creased occurrence of saccadic eye movements when inducing
cognitive workload. Tsai et al. [55] investigated how eyes
behave under cognitive workload while performing a paced
auditory serial addition task [18], however, their work did not
investigate the impact on smooth pursuit eye movements. Re-
cently, Zagermann et al. [64] developed a model and showed
concepts to derive cognitive workload from eye behavior, such
as saccades, fixations, pupil dilation, and eye blinks. Cognitive
workload influences microsaccadic eye movements [51]. They
found that microsaccades occur more frequently with higher
perceived workload during a non-visual task.

The voluntary involvement of smooth pursuit eye movements
has been researched by Barnes [5]. He showed that cognitive
processes in smooth pursuit eye movements are even involved
without voluntary participation. Important factors for follow-
ing moving stimuli were attention and awareness, which trig-
ger the process of smooth pursuit on a neuro-scientific level.
Therefore, smooth pursuit eye movements are voluntary up to
a certain degree. In contrast, Collewijn and Tamminga [11]
investigated contexts in which smooth pursuit movements are
voluntary. They used different targets and backgrounds to in-

Figure 2. Three different trajectories chosen for evaluation: (A) Rectan-
gular trajectory, (B) Circular trajectory, (C) Sinusoidal trajectory. The
size of the moving object in the experiment was 10 pixels.

vestigate smooth pursuit performances of humans. Contreras
et al. [12] researched eye-target synchronization performance
of people with traumatic brain injury. People suffering from
traumatic brain injuries show a worse performance when per-
forming smooth pursuit in terms of deviation points apart from
a shown moving object on a display.

Summary
Previous work has investigated how smooth pursuit can be
leveraged for calibration and interaction. However, to our
knowledge, no prior work has proposed to use work to propose
using smooth pursuit eye movements as a measurement to
derive cognitive workload. This opens new opportunities for
researchers and practitioners alike. In particular, using smooth
pursuits as a real-time measurement for cognitive workload
is valuable in the context of evaluating interactive systems as
well as for developing cognitively adaptive systems.

STUDY
To understand the impact of cognitive workload on smooth
pursuit eye movements, we designed a lab user study where
we induced cognitive workload while participants performed
smooth pursuit eye movements.

Independent Variables
In our experiment on investigating the impact of cognitive
workload on eye movements, we explore the influence of three
independent variables when interacting with smooth pursuit
systems: (1) trajectory type [29], (2) speed of the stimulus [28],
and (3) task difficulty. In the following, we describe these three
independent variables in detail.

Trajectories
Since smooth pursuit eye movements can be triggered by
showing a stimulus moving along a particular trajectory, we
implemented a rectangular, a circular, and a sine wave anima-
tion to produce this effect. We have chosen these trajectories
based on previous research [28, 29, 61]. Furthermore, the
chosen trajectories may have a physiological effect paired
with the current task difficulty, since the human eye has six
muscles responsible for horizontal and vertical movements as
well as eye rotations [33]. Rectangular trajectories demand
muscles on the left and right side of the eye for horizontal
movements, while vertical movements demand the upper and
lower eye muscles. Circular and sinusoidal eye movements
demand four muscles around the eye. Rectangular trajectories
require horizontal or vertical movements only, while circular
and sinusoidal include diagonal movements as well. In the
context of leveraging smooth pursuit as interaction modality,



Figure 3. Study procedure. First, consent approval and demographic data were collected. Afterwards, a baseline task was conducted followed by a set
of six trials, where each trial differs in trajectory speed and task complexity. This procedure is repeated for every remaining trajectory type.

the presented trajectories are used to distinguish between dif-
ferent user inputs. The chosen trajectories are depicted in
Figure 2.

Speed of Stimulus
We compare two different speeds at which stimuli are moving
based on previous research [28]: 450 px

s (slow1) and 650 px
s

(fast2). Displaying slower or faster animations while experi-
encing cognitive workload can lead to different performances
since eye muscles have to deal with different strains per speed
and trajectory [33]. Furthermore, trajectory speeds can be
used to differentiate user input, since eye movements adapt to
different speeds.

Task Difficulty
To induce cognitive workload, we use an auditory delayed digit
recall N-back task from Mehler et al. [39] with an English-
spoken number set. The N-back task is commonly used task to
artificially elicit working memory resources [4], a component
of cognitive workload which strains temporal memory capaci-
ties and affects secondary task performances negatively [8, 9,
58].

Throughout the study, we use the N-back task to manipulate
cognitive workload by demanding working memory with dif-
ferent difficulty levels [27]. For each trial, participants hear
randomized numbers consisting of ten digits between 0 and 9.
Hereby, N corresponds to the N-last digit. After hearing the
number, participants have to say out loud the digit they heard
N digits ago. In our experiment, we use a 1-back, 2-back, and
3-back tasks to induce cognitive workload. By increasing N,
more digits have to be remembered, hence increasing task diffi-
culty. To collect baseline measures, participants were asked to
follow a trajectory without performing an N-back task. Table
1 shows an example of the N-back task.

Apparatus
The study was conducted in a quiet lab with no windows,
where lighting conditions were fixed. The setting was spatially
divided into an experimenter area and a participant area. A
separator divided both areas. While the experimenter con-
trolled the experiment using a laptop, the participant saw an
animated trajectory on a 22 inch screen with a resolution of

1This corresponds to 17.14◦ per second at a viewing distance of
approximately 50 centimeters
2This corresponds to 24.76◦ per second at a viewing distance of
approximately 50 centimeters

Heard number 5 8 3 4 3 9 1
Number to say (1-back task) 5 8 3 4 3 9
Number to say (2-back task) 5 8 3 4 3
Number to say (3-back task) 5 8 3 4

Table 1. Example of the auditory delayed digit recall N-back task. Par-
ticipants have to remember the N-th number back of a spoken number
sequence and say the number out loud.

1680× 1050 pixels and a refresh rate of 60 Hertz. Eye gaze
data was collected using a RED250 from SensoMotoric Instru-
ments with a sample rate of 250 Hertz. No filter was applied to
the captured gaze data, thus raw gaze data was recorded only.
We used a Holosonic Audio Spotlight 24i directed speaker to
provide the auditory delayed digit recall N-back task.

Method and Measures
We used a repeated measures design with three independent
variables as described in the previous section; namely tra-
jectory (rectangular, circular, sine wave), speed (slow, fast),
and cognitive workload (no task, 1-back task, 2-back task,
3-back task). Each experiment consisted of three sessions,
where animated trajectories were changed for each session.
The animated trajectory consisted of a white dot with a diam-
eter of 10 pixels. The background was set to gray (RGB:
[128,128,128]) to avoid eye exhaustion caused by screen
brightness.

Before starting a new session, the eye tracker was calibrated
to retrieve gaze points for later analysis of gaze deviations
between baseline and smooth pursuit eye movements. Each
session began with a 30 second baseline trial, where the ani-
mated trajectory used for the session was shown to participants
without inducing cognitive workload. This allowed us to esti-
mate eye movement differences from the displayed trajectory
when no cognitive workload was present. We chose a slow
speed (450 px

s ) to make participants familiar with the displayed
trajectory.

Cognitive workload was induced by providing a task difficulty
using the auditory N-back task described in the prior section
while showing the animated trajectory with a certain speed.
Task difficulty and speed were counterbalanced during a ses-
sion according to the Latin square, while each session showed
the same trajectory. The order of sessions was counterbal-
anced participant-wise according to the Latin square. This
resulted in seven trials per session, including the baseline task.



Paired Wilcoxon Signed-Rank Test Significance

Circle Baseline Circle 1-back fast p = 0.002
Circle Baseline Circle 2-back fast p = 0.002
Circle Baseline Circle 3-back fast p = 0.003
Circle Baseline Circle 2-back slow p = 0.004
Circle Baseline Circle 3-back slow p = 0.005
Sine Baseline Sine 1-back fast p < 0.001
Sine Baseline Sine 2-back fast p < 0.001
Sine Baseline Sine 3-back fast p < 0.001
Sine Baseline Sine 1-back slow p = 0.003
Sine Baseline Sine 2-back slow p = 0.002
Sine Baseline Sine 3-back slow p = 0.002

Table 2. Summary of significant results. Comparisons between other
conditions did not result in significant differences.

Running all three sessions, the experiment comprised 21 trials
per participant. Overall, the duration of each trial was 25 to
30 seconds, dependent on the length of the spoken number for
tasks including task difficulty. After completing a trial, par-
ticipants were asked to fill out a NASA-TLX questionnaire to
assess subjectively perceived cognitive workload. Participants
took a 30 second long break afterwards. Figure 3 shows an
illustration of the study procedure.

Participants
We recruited 20 participants (9 female, 11 male), aged be-
tween 22 and 34 years (M = 27.5, SD = 3.13). Before the
experiment, each participant signed a consent form and pro-
vided their demographic data. All participants were computer
science students or researchers. All participants had normal
or corrected-to-normal vision. Participants were recruited
through university mailing lists. They received sweets and five
Euro as compensation. The duration of the study was approxi-
mately 30 minutes. We explained the purpose of the study and
tasks to the participants and informed them they could exit
the study at any point. Participants signed informed-consent
forms and were seated in a comfortable chair, approximately
50 centimeters in front of the display before the experimental
setup. Due to technical issues, two participants were excluded
from the analysis, as their gaze data was not recorded properly.

RESULTS
We analyze our data to compare the impact of trajectory type,
speed, and task difficulty on smooth pursuit eye movements.
We report on quantitative results by comparing measured eye
gaze data with the showed trajectory. This is complemented
by a subjective analysis through NASA-TLX questionnaires.

Smooth Pursuit Differences and Cognitive Workload
To evaluate the effect of different task difficulties on smooth
pursuit performances, we based our analysis on pixel differ-
ences between coordinates of the displayed trajectory and
measured eye gaze position at the screen. More formally, we
calculated the difference between two coordinates p and q
using the Euclidean distance with the formula

D =

√
(pt,x−qt,x)

2 +(pt,y−qt,y)
2 (1)

where p and q depict a two-dimensional vector comprising
the baseline coordinates and measured gaze coordinates from
participants. We introduce the variable t describing the tem-
poral dependency between eye gaze and displayed stimulus
as the used 250 Hz eye tracker might introduce a temporal
offset of four milliseconds, which is below the perceptual
threshold for interaction. Differences were normalized with
respect to the maximum gaze deviation from the shown trajec-
tory. To enable a descriptive analysis, normalized coordinates
were averaged for all participants and conditions. Lowest
mean eye gaze deviations (Mpd) were measured for all slow
trajectories, where no cognitive workload was induced (Rect-
angle: Mpd = 9.14,SD= 6.75, Circle: Mpd = 9.51,SD= 8.03,
Sine: Mpd = 4.37,SD = 1.60). Fast rectangular trajectories
using a 3-back task (Mpd = 13.25,SD = 11.06), fast circu-
lar trajectories using a 2-back task (Mpd = 14.54,SD = 7.14)
and fast sinusoidal trajectories using a 3-back task (Mpd =
9.85,SD = 3.53) led to highest mean eye gaze deviations.

Applying a Shapiro-Wilk test on the mean data set showed
a non-normal distribution for all conditions (all p < 0.05).
A Friedman test showed no significant differences between
various levels of cognitive workload and gaze deviations of
smooth pursuit eye movements for slow rectangles (χ2(3) =
3.000, p = 0.392). However, a Friedman test found signif-
icant differences within various levels of cognitive work-
load for fast rectangles (χ2(3) = 11.867, p = 0.008), slow
circles (χ2(3) = 18.867, p < 0.001), fast circles (χ2(3) =
29.400, p < 0.001), slow sine waves (χ2(3) = 14.667, p =
0.002) and fast sine waves (χ2(3) = 30.667, p < 0.001). We
conducted a Wilcoxon signed-rank post hoc test to find signif-
icant differences between pairs of task difficulties including
baseline trials and normalized gaze deviations after applying
a Bonferroni correction (significance level set to p < 0.0083).
A summary of significant results can be depicted from Table 2.
Further, the Cohen’s d effect size values of the significant sta-
tistical comparisons ranged between d = 0.66 and d = 0.88.

To visualize averaged relative differences when performing
smooth pursuit eye movements, all averaged relative eye move-
ment differences per participant and per condition were plotted.
This resulted in one data point per participant and per trial, or
21 data points per participant. The averaged plot is depicted in
Figure 4, where the y-axis depicts the gaze deviations from the
shown trajectory in percent. The bottom x-axis is annotated
with task difficulties and the top x-axis describes trajectory
velocities. The trajectory type is color coded.

Gaze deviations obtained from baseline trials do not scatter
in contrast to gaze deviations measured from trials with task
difficulty for circular and sinusoidal trajectories. Furthermore,
gaze deviations increase between slow and fast trajectories
when raising the task difficulty. However, results show im-
portant constraints when assessing cognitive workload from
smooth pursuit eye movements. Rectangular trajectories show
less eye gaze deviations when increasing task difficulty com-
pared to baseline trials. Thus, evaluating the presence of cog-
nitive workload using rectangular smooth pursuit eye move-
ments is less accurate compared to circular and sinusoidal tra-
jectories. Depending on the setting of a smooth pursuit driven



Figure 4. Scatter plot of the mean gaze deviation per participant and
condition. Each dot represents the mean gaze deviations between the
recorded and showed trajectory of a participant. The baseline measure-
ments show a constant behavior and do not scatter apart from the dis-
played trajectory. Compared to the baseline tasks, circular and sinu-
soidal trajectories scatter along the y-axis with increasing task difficulty.

user interface, rectangular trajectories should be favored when
accurate input is required even when the user is impacted by
cognitive workload. Circular and sinusoidal trajectories show
higher gaze deviations under cognitive workload. Circular and
sinusoidal trajectories show clear differences between trials
with and without cognitive workload. Such trajectories may
be used to determine the existence of cognitive workload.

Subjective Analysis of Cognitive Workload
The lowest NASA-TLX scores per trajectory were subjectively
perceived by participants when showing fast rectangles during
a 1-back task (M = 6.27, SD = 4.03), slow circles during a
1-back task (M = 7.13, SD = 3.87), and slow sine waves dur-
ing a 1-back task (M = 5.78, SD = 3.41). Per trajectory, the
highest NASA-TLX scores were measured when displaying
fast rectangles during a 3-back task (M = 12.29, SD = 3.97),
fast circles during a 3-back task (M = 13.28, SD = 3.68), and
fast sine waves during a 3-back task (M = 12.63, SD = 3.42).
A repeated measures ANOVA showed statistically significant
differences between different levels of cognitive workload and
NASA-TLX score (F(2,321) = 68.503, p < 0.001). However,
no statistically significant differences were found for different
speeds (F(1,322) = 2.035, p = 0.211) and displayed trajec-
tories (F(2,321) = 21.461, p = 0.722) compared to NASA-
TLX scores. Figure 5 illustrates the averaged values from the
obtained NASA-TLX scores.

The quantitative analysis shows significant outcomes regarding
gaze deviations with different stimuli speeds and N-back com-
plexities. To address the impact of different variables on the
individual’s subjective perception, we conducted a statistical
analysis to investigate single NASA-TLX items in correla-
tion to the stimulus speed and N-back difficulty. We compare
the single NASA-TLX items grouped by the two different
speeds. Our results show a significant difference for the physi-
cal demand (p= 0.006,Mslow = 5.11,M f ast = 5.69), temporal

Figure 5. Mean NASA-TLX score for different trajectories, task difficul-
ties, and speeds. The error bars depict the standard error. Increasing
task difficulties led to higher NASA-TLX scores.

demand (p = 0.003,Mslow = 7.29,M f ast = 8.27), and effort
(p = 0.001,Mslow = 9.53,M f ast = 10.29) scales. However,
no significant difference was found in the mental load scale
(p > 0.05).

To show that different N-back difficulties were responsible
for higher perceived cognitive workload, we conducted a
Wilcoxon signed-rank test to compare the mental NASA-
TLX items between the different task complexities. We
found significant differences between all three N-back diffi-
culties (all p < 0.001) for the mental demand scales (MN=1 =
5.84,MN=2 = 10.56,MN=3 = 13.84). Further, we investigate
whether the relationship between NASA-TLX scores and gaze
deviations was linear using a Pearson correlation. No corre-
lation was found (0.11 < r < 0.15, ∀N ∈ {1,2,3}). Thus, it
appears that the relationship between the variables is more
complex i.e. non-linear. This shows the need to understand
how smooth pursuit affects subjectively perceived workload.

PREDICTING COGNITIVE WORKLOAD
Results from the study showed significantly increased eye
movements during cognitive workload for circular and sinu-
soidal trajectories. The perception of cognitive workload by
the individual is supported by subjective ratings of participants
using NASA-TLX questionnaires. We train a classifier which
predicts cognitive workload from smooth pursuit eye move-
ments. We investigate the performance of person-dependent
and person-independent classification for the different experi-
mental conditions.

Attributes, Instances, and Classes
Data preprocessing was necessary before training a predictive
model. We removed the first two seconds per trial to avoid dis-
tortions in the signal caused by participants initially searching
for the stimulus. We used the collected gaze data and normal-
ized it with respect to the coordinates of the shown trajectory.
We then calculate the Euclidean distance (see Equation 1) be-
tween each coordinate of the normalized displayed trajectory
and the normalized gaze points recorded from participants.



Binary Pers.-Indep. Multilabel Pers.-Indep. Multilabel Pers.-Dep.
Stimulus Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy F1

Rectangle Slow 75.0% 37.5% 50.0% 42.9% 40.3% 26.9% 40.0% 30.5% 48.6% 52.4%
Rectangle Fast 76.4% 40.1% 52.8% 46.0% 54.2% 44.0% 54.1% 47.2% 69.4% 74.2%
Circle Slow 95.8% 89.6% 91.7% 90.5% 40.3% 26.9% 40.2% 30.9% 69.5% 60.0%
Circle Fast 97.2% 93.0% 94.4% 93.7% 55.6% 45.8% 55.6% 48.5% 85.0% 74.4%
Sine Slow 80.1% 55.6% 64.8% 59.8% 43.1% 30.6% 43.0% 34.5% 79.3% 76.3%
Sine Fast 99.5% 98.9% 99.2% 99.0% 59.7% 51.9% 59.7% 54.4% 88.1% 84.5%

Table 3. Accuracy, precision, recall, and F1 scores of the binary and multi-label person-independent (pers.-indep.) as well as person-dependent (pers.-
dep.) classifications. Fast circular and sinusoidal trajectories yield higher classification performances than slower linear trajectories.

These gaze deviations are defined as the only attribute for the
instances we used for classifier training and evaluation later.
We smoothed the data using an averaging running window
(length 250 samples) and a hop size of one sample.

The instances used for classifier training and evaluation con-
sisting of a one-dimensional vector, where the normalized gaze
deviations represent the only attribute. We define two sets of
classes with different class labels. The first class has two
labels consisting of low workload, referring to trials where
no N-back task was used, or high workload, thus referring
to trials including any N-back task. We investigate binary
classification performances using this class. In contrast, the
second class contains the four labels 0-back, 1-back, 2-back,
and 3-back, each referring to the measurements of trials using
the corresponding N-back task. Overall, we constructed 378
instances, each containing 6000 gaze values, which were used
for training and evaluation.

Classifier Performance
An SVM with a linear kernel was used to investigate the pre-
diction performance [34, 56, 63]. The previously described
instances were used for training and assigned to their appro-
priate class label. Within our classifier learning process, we
aimed to evaluate the classification efficiency for binary clas-
sification, such as detecting low cognitive workload and high
cognitive workload. Furthermore, we investigated the classi-
fier performance for determining different levels of cognitive
workload with respect to the N-back task difficulty. We used
scikit-learn3 to train different prediction models.

Person-Independent Binary Classification
We performed a person-independent leave-one-person-out
classification using two labels; one assigned to low cogni-
tive workload referring to baseline trials and one assigned
to high cognitive workload referring to trials comprising a
1-back, 2-back, or 3-back task. A leave-one-person-out classi-
fication uses all except one participant for training, while the
final participant is used for validating the trained model. The
leave-one-person-out classification was carried out for each
trajectory and speed separately, where the instances contain
the normalized gaze deviations from the shown trajectory per
participant and difficulty. The leave-one-person-out classifi-
cation procedure was repeated for every participant4 and the
3www.scikit-learn.org - last access 2018-01-08
4Overall 18 runs to use every participant for validation

results were averaged. Table 3 shows the accuracies, preci-
sions, recalls, and F1 scores of the binary classification per
trajectory and speed. The classification results favor fast tra-
jectories in combination with changing directions, such as
circular or sinusoidal stimuli.

Person-Independent Multilabel Classification
To investigate the performance of classifying different lev-
els of cognitive workload, the same leave-one-out validation
procedure was conducted for four labels, with each label as-
signed to instances with their respective task difficulty. Again,
the validation was conducted for every participant after using
the other participants for training. The results are shown in
Table 3.

The overall classification efficiency is lower compared to the
binary classification accuracy. Different reasons can be re-
sponsible for this. First, we are aware that multiple labels may
lead to a lower efficiency when the difference between values
within the N-back conditions are low. Second, we combine
multiple participants who may differ in their smooth pursuit be-
havior individually. The generalized data could, therefore, be
biased by individual gaze behavior, which leads to a distorted
result. Therefore, we investigate person-dependent training
for cognitive workload classification purposes.

Person-Dependent Multilabel Classification
We analyzed instances within each person to investigate if
higher accuracies could be achieved due to person-dependent
properties. Instead of a leave-one-person-out classification,
we conducted a leave-one-repetition-out classification for
each participant, speed, and trajectory. However, the num-
ber of folds had to be set differently, since the animations
iterated a different number of times depending on the trajec-
tory and speed5. Therefore, we adjusted the number of folds
of the leave-one-repetition-out classification per trajectory and
speed.

The number of folds was set to k = 2 for slow rectangles,
k = 3 for fast rectangles, k = 5 for slow circles, k = 7 for
fast circles, k = 2 for slow sine waves, k = 3 for fast sine
waves. The data per trajectory and speed and per participant
was randomly partitioned into k folds, where k−1 folds were
used for training while the last fold was used for evaluation.
This procedure was conducted k times per participant and
trajectory with the different N-back difficulties assigned to the
5Each trajectory started and ended at the same position

www.scikit-learn.org


training set. The results were first averaged per participant
and then over all participants. Table 3 shows the results of the
cross-validation. Person-dependent classification of multiple
cognitive workload levels shows a higher accuracy for fast
smooth pursuit movements. Especially fast circular and fast
sinusoidal trajectories show better performances compared to
rectangular trajectories.

DISCUSSION
Results from our study show how cognitive workload leads to
increased gaze differences of smooth pursuit eye movements
during the presence of cognitive workload. We found that
faster circular and sinusoidal trajectories led to higher gaze
deviations, while rectangular trajectories did not show this
effect. We believe, that circular and sinusoidal trajectories
required more effort from users since they had to focus more
on their task completion due to constantly changing direc-
tions. This may be a reason for improved classification results
for this kind of trajectories. In contrast, rectangular trajecto-
ries can be deployed within smooth pursuit-based interfaces
whenever reliable input, independent from the perceived cog-
nitive workload, is required. Depending on the use case, a
cognition-aware system designer can decide if reliable input
through rectangular trajectories or mental workload estimation
by circular and sinusoidal trajectories is desired.

The speed of the trajectories had a quantitative measurable
effect on the overall smooth pursuit performances. How-
ever, as the statistical investigations of single NASA-TLX
scales showed, mental demand was not affected compared
to physical and temporal demand as well as effort by differ-
ent speeds. Faster speeds cause therefore a different type of
physical workload than cognitive workload which significantly
impacts smooth pursuit eye movements. Different trajectory
speeds are thus not necessarily responsible for inducing cogni-
tive workload. By comparing different N-back difficulties with
regard to the NASA-TLX scales, we found a significant differ-
ence between all difficulties. This supports, that subjectively
perceived cognitive workload was altered by different N-back
complexities and that both variables manipulate measurable
smooth pursuit performances.

The classification results yield higher accuracies for distin-
guishing between low and high workload levels than for de-
tailed levels of cognitive workload. Furthermore, binary classi-
fication can be achieved without the need for person-dependent
calibration, while separating different levels of cognitive work-
load requires a person-dependent calibration regarding cogni-
tive workload.

In a real deployment scenario, binary classification can be used
to provide additional help for users when high cognitive work-
load is classified. This refers to very simple scenarios, where
only the estimation of low and high workload is desired. Such
places could be public places when, for example, interacting
with public displays. In contrast to short interactions in the
public, a classifier can be trained for multilevel classifications
in private spaces where long-term interaction is conceivable.

Calibrating a classification model with multiple workload lev-
els in the public can result in a cumbersome procedure due

to external factors impacting the individual cognitive capac-
ities, such as distracting pedestrians walking by. Our results
indicate binary workload classification in the public using a
pre-trained classification model, while a classification model
with multiple workload levels can be used in private spaces
where calibration can be done without any disruptions.

To employ sensing of cognitive workload, smooth pursuit must
be elicited. In contrast to smooth pursuit-based user interfaces,
other environments require explicit or implicit integration of
moving elements. For example, as short waiting times occur
as a result of a database query or as a new task is loaded
during a user study, feedback on the system status could be
presented in a way that fosters smooth pursuit movements. For
example, this can be elicited by an animated progress bar. In
this way, traditional methods such as the NASA-TLX or DALI
questionnaires can be complemented.

Finally, a suitable workload level must be found. Looking
back at the classification results of the multi-label model, we
achieved reasonable accuracies for person-dependent classifi-
cation. A cognition-aware system must be able to find the right
difficulty for each user, as permanent support by a system may
lead to boredom or no support leads to frustration for the user.
Keeping the task difficulty at its highest or lowest level might
not be favored. However, for deploying binary classification in
public use cases minor support might be helpful compared to
private settings, where user expectations on cognition-aware
computing systems are higher.

Limitations
Our study is prone to certain limitations. We collected gaze
data under controlled lab conditions and hence, do not know
how our results generalize to other situations, where partici-
pants may be distracted for example, by the presence of other
people. Still, despite the controlled conditions, participants’
gaze behavior may have been influenced by physiological well-
being, such as lack of sleep. Our calculation of gaze difference
is based on 30 seconds of recording. However, there may be
situations in which assessing workload with finer granularity
is desirable. Additionally, blink frequency and blink duration
were not evaluated during the course of our studies. Another
limiting factor was the study execution in a calm lab. Nat-
ural distractions in real-world environments could alter our
results. Furthermore, we have not investigated the effect of
different eye tracking frame rates in our study. Consequently,
before assessing cognitive workload through smooth pursuit,
eye trackers must be tested for their suitability.

USE CASES FOR COGNITION-AWARE SYSTEMS
In the following, we present a number of different use cases to
be supported within smooth pursuit scenarios.

Support in Safety-Critical Environments
Smooth pursuit can be utilized to assess cognitive workload
during a monitoring task, such as air traffic controller sur-
veying airplane flight processes, to support or warn opera-
tors for cognitive exhaustion. Alternatively, workload can be
dispatched to a colleague who does not have to cope with
high workload during work. Since objects of interest can



Figure 6. User working in an air control tower. Moving dots represent-
ing airplanes on the screen can cause smooth pursuit eye movements.
(A) The system detects high cognitive workload from the user and dis-
patches some observation tasks to a colleague. (B) Alleviated cognitive
workload measured after user interface adaption.

be visualized using a small moving circle, smooth pursuit
eye movements can be triggered this way. As a result, acci-
dents, which occur due to mental overload, distractions, or
fatigue, can be avoided. For example, the user interface can be
adapted by simplifying displayed content or dispatching a part
of the observation task to another colleague. This use case is
transferable to other applications, where moving objects occur
naturally and require permanent attention of the user. Figure 6
shows an example of how smooth pursuit can be used in such
situations.

Adaptation of Pursuit-based Interactive Systems
Prior research has introduced many applications that use
smooth pursuit primarily for interaction. As we illustrated
in our related work section, smooth pursuit interfaces have
been used for smartwatch interaction [17] and interaction with
smartphones [35]. Using mobile devices enables ubiquitous
sensing of cognitive workload in outdoor settings, bypassing
the disadvantages of using pupillary measures being prone
to lighting conditions. Interacting with large distant displays
[61], where touch and gesture interaction have emerged as
state of the art to communicate input [42, 62] can use smooth
pursuit to implicitly measure mental states.

Our approach enables implicit contactless assessment of cog-
nitive workload while interacting with these devices. Pursuit-
based interactive systems benefit from our classifier to dynam-
ically predict the current cognitive workload level of the user
during interaction and adapt to it accordingly. If high task load
is identified during an interaction, the user interface or task
objective can be modified by an easier one. Figure 7 shows

Figure 7. User playing a quiz game on a public display. (A) The system
infers that the question is inducing high cognitive workload. The system
is, therefore, observing if this behavior persists. (B) The system provides
a hint to avoid frustration.

how the existence of cognitive workload can be estimated to
adapt a public display app.

CONCLUSION AND FUTURE WORK
This work investigated the influence of cognitive workload
on smooth pursuit eye movements using three different tra-
jectories with two different velocities. Using an auditory de-
layed digit recall N-back task to induce cognitive workload,
a higher deviation of gaze points from shown trajectories is
measured compared to measurements when not inducing cog-
nitive workload. Based on our results, we create a person-
independent classifier for estimating binary workload and a
person-dependent classifier for distinguishing different lev-
els of cognitive workload. While binary cognitive workload
classification can be elicited in the public using smooth pur-
suit interfaces, private spaces benefit from person-dependent
classifier calibration to determine different levels of cognitive
workload.

Having such a measurement modality without the need of
body-worn devices goes a step towards real-time mental state
estimation in ubiquitous computing environments. User in-
terfaces can then provide intervention mechanisms to relax
or help users based on their current context. Our classifier
depends on eye gaze only and fits into a number of application
scenarios. It can be deployed in real-world scenarios to esti-
mate the presence of cognitive workload in real-time. Thereby,
the assessment can be done contactless without the need for
additional bodyworn sensors.

In future work, we plan to focus on specific use cases which
leverage smooth pursuit as interaction modality to provide an
assessment of cognitive workload in real-time. This input will
be used to adapt user interfaces of applications accordingly.
This includes implementations on public and head-mounted
displays using smooth pursuit as input. Furthermore, we want
to evaluate the efficiency of assessing cognitive workload un-
consciously in user interfaces which naturally display moving
elements. This comprises monitoring tasks, which can be
found in air traffic and train control system. Consequently,
such systems can be benchmarked and optimized regarding
their usage complexity. To complement this, further research
aiming to correlate objective and subjective workload mea-
sures, such as eye movement deviations and NASA-TLX ques-
tionnaires, will be conducted. Finally, we will investigate



how multiple displayed moving stimuli will affect the classi-
fication performance and subjective perception of cognitive
workload. To encourage research in this area, we published
the data set for further analysis by the research community on
our institute’s homepage6.
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