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Figure 1. In our dataset of photos taken from front-facing cameras of smartphones used in the wild, the face is visible in only 29% of the cases. However,
the eyes, and not the whole face, are visible 48% of the time. We derive multiple implications for face and eye detection on mobile devices. For example,
our analysis suggests that gaze estimation on mobile devices should rely less on full-face images but estimate gaze based on the eyes only instead.

ABSTRACT
Commodity mobile devices are now equipped with high-
resolution front-facing cameras, allowing applications in bio-
metrics (e.g., FaceID in the iPhone X), facial expression anal-
ysis, or gaze interaction. However, it is unknown how often
users hold devices in a way that allows capturing their face or
eyes, and how this impacts detection accuracy. We collected
25,726 in-the-wild photos, taken from the front-facing camera
of smartphones as well as associated application usage logs.
We found that the full face is visible about 29% of the time,
and that in most cases the face is only partially visible. Fur-
thermore, we identified an influence of users’ current activity;
for example, when watching videos, the eyes but not the entire
face are visible 75% of the time in our dataset. We found
that a state-of-the-art face detection algorithm performs poorly
against photos taken from front-facing cameras. We discuss
how these findings impact mobile applications that leverage
face and eye detection, and derive practical implications to
address state-of-the art’s limitations.
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INTRODUCTION
The availability of high-resolution front-facing cameras and an
ever-increasing processing power of commodity smartphones
pave the way for a wide range of applications impossible be-
fore. These include, for example, face detection (e.g., when
taking pictures), facial expression analysis (e.g., for emotion
detection), person identification (e.g., FaceID for authentica-
tion on iPhone X), attention analysis (e.g., for usability test-
ing), or gaze estimation (e.g., for eye-based input). However,
state-of-the-art computer vision methods for face detection
and gaze estimation require full-face images [5, 20, 36, 41, 48,
52]. Despite the significant potential of these methods, it cur-
rently remains unclear how often users hold their device in a
way that allows capturing their face or eyes and how different
mobile tasks influence face and eye visibility.

To fill this gap, and thus inform the development of future
mobile apps, we conducted a 2-weeks field study in which we
continuously collected photos from the front-facing camera
of 11 Android users along with usage logs. Our application
collected 30,194 photos. 25,726 photos were approved by
the participants and analyzed to find that users’ entire face is
visible only about 29% of the time, and that in the majority of
cases only part of the face is visible (38.2%). In about 48% of
the photos in our entire dataset, the whole face is not visible,
but both eyes are. We also found that the type of app currently
in use, has an impact on whether or not the face is visible in
the front facing camera’s view. For example, compared to
other apps, the user’s face is visible more often (49%) when
using social networking apps. All of the collected meta data,
usage logs, and 20,656 photos are available1.

1Please contact the first author for a link to the dataset. Some
photos included bystanders, and since we do not have approvals from
them, we had to exclude these photos from the dataset, in addition to
P11’s photos who did not agree to publicly share his photos.
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We evaluated a state-of-the-art face detection algorithm on
our dataset and found that it succeeds in finding a face only
one third of the time. Even in cases where an entire face was
visible in our manual inspection (29% of the dataset), it only
succeeded in detecting the user’s face in 75% of those. We
discuss the implications for mobile applications that rely on
detecting the user’s face in the front-facing camera view, and
how researchers and practitioners can overcome the limitations
of state-of-the-art approaches for face and eye detection.

This work makes the following contributions: (1) we provide
a dataset of 20,656 photos taken from front-facing cameras
on users’ phones during daily use with time-synchronized
smartphone usage logs. (2) We provide an analysis of face
and eye visibility in our dataset; we gather insights about the
impact of running applications and user behavior, as well as
the performance of state-of-the-art face detection algorithms
against our dataset. (3) We derive implications for designing
future mobile applications that require face and eye detection.

RELATED WORK
Our research is related to previous work on (1) how users
hold their phones, and (2) using the front-facing cameras of
smartphones for face detection and gaze estimation.

How Users Hold Their Phones
Prior work suggested the way users hold their phones is influ-
enced by the currently running app [10, 47]. Kim et al. iden-
tified eight holding postures for five mobile apps based on
brainstorming sessions and interviews [32]. Le et al. reported
on a study of smartphone holding postures when writing and
reading text, and watching a video [34]. Knowledge about
holding posture can be leveraged to improve the user expe-
rience, e.g., to switch between portrait and landscape mode.
Taylor and Bove proposed using the holding pattern as an addi-
tional input modality [42] while Wimmer suggested a mobile
phone could switch from camera to typing mode depending
on whether it was held by one or two hands [47]. Finally, Kim
et al. directed users to the intended mobile app by recognizing
their grip based on an array of capacitive touch sensors [32].

Although we do not investigate how users hold their smart-
phones, this body of previous work tells us that the currently
running application, the smartphone holding posture and the
context in which the user is interacting are all interrelated.
This inspired us to examine how these factors influence face
and eye detection on smartphones. Since the holding posture
influences the angle between the camera and the face, we
expect that similar factors that influence the holding posture
also influence whether or not the user’s face is seen from the
front-facing camera’s perspective.

Huang et al. collected a dataset in the lab consisting of 51
subjects, each holding a tablet in four defined body postures:
standing, sitting, slouching, and lying, and 35 on-screen gaze
locations [27]. In contrast, our dataset was collected in a
two-weeks in-the-wild study and participants consequently
behaved naturally. Furthermore, we look into the relationship
between the activity and the visibility of the user’s face, and we
investigate smartphones, which are known to require different
hand postures than those for tablets [10].

Wang et al. used photos from front-facing cameras for face
logging to infer mental health [46]. We build on that work
by collecting 5x more photos, classify them based on face
visibility, and make them publicly available.

Face and Eyes Detection on Commodity Smartphones
An increasing number of applications use the integrated front-
facing camera. For example, Cheng et al. improved changing
the orientation of the screen content substantially by lever-
aging face detection from the front-facing camera [12]. In
a followup work they proposed to rely on the user’s grasp
of the phone instead, citing drawbacks of face detection on
smartphones caused by fingers blocking the front cameras,
and device tilt [13]. Cui et al. proposed tagging videos
with the viewer’s emotions, captured using the front-facing
camera [15], while SeeSaw captured reactions to video mes-
sages [45], and Pulse rated movies and videos by capturing
the user’s reaction through the front facing camera [6]. Mc-
Duff et al. used digital cameras to detect cognitive stress [39]
and photoplethysmographic systolic [38]. Yoo et al. proposed
capturing the user’s facial expressions through the front-facing
camera for lifelogging applications [50]. EyeProtector and
SmartPose leveraged users’ face size in the front-facing cam-
era view to warn users if they were too close to the screen [22,
35]. There is also a large body of work about authentication
via face recognition on mobile devices [40], such as FaceID.

Early works on gaze estimation on mobile devices used an
external camera [16]. More recently, gaze estimation on mo-
bile devices has become feasible using front-facing cameras.
Holland et al. introduced eye tracking for commodity mobile
devices [24, 25]. Wood and Bulling improved over that in
EyeTab where they used a model-based approach for gaze
estimation that did not require calibration [49]. Hohlfeld et
al. then evaluated EyeTab for multiple use cases [23]. Krafka
et al. and Huang et al. introduced gaze estimation datasets for
users of mobile devices in controlled settings [27, 33]. Huang
et al. introduced ScreenGlint, which exploits the reflection of
the screen on the user’s cornea for gaze estimation on mobile
phones [26]. In addition to gaze estimation for monitoring pur-
poses, several works proposed interacting with smartphones
using gaze. For example, previous work investigated eye ges-
ture detection on unmodified tablets [18, 28, 36, 43, 51], and
multiple authentication schemes used gaze gestures detected
from the front-facing camera [29, 30, 31].

In most of these works, the device was not held naturally by
users’ but was fixed by using a stand [18, 23, 24, 26, 28, 33,
43, 49], by using a headset [37], or by having another person
hold it [51]. Even in works where the user was holding the
phone, the authors reported that detection failures were often
due to users not holding the phone in a way that would show
their face and eyes in the camera’s view [27, 29, 30, 31, 36].
However, our work is first to study this problem and identify
how and which user behaviors impact face and eye detection.

APPROACH AND IMPLEMENTATION
To investigate which aspects influence the visibility of the
user’s face and eyes in the front-facing camera’s view, we
implemented an Android application with three main compo-
nents: (1) Photo and Data collection component which also
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Figure 2. We used an Android app to study the aspects that influence the appearance of the user’s face in the front-facing camera view. (A) shows
the start page from which the participant gives our app the permission to launch background services that collect photos and data. (B) shows the
experience sampling survey which asked participants to provide more context for the currently taken photo. (C) shows the photo review view from
which participants selected which photos to share with us.

decided when to collect data, (2) Experience Sampling compo-
nent for gathering additional information from the user, and (3)
Photo Review component that allowed participants to review
and filter out photos they did not wish to share.

Photo and Data Collection Component
This component consists of three background services: (1) A
controller service for deciding when a photo should be taken,
(2) a photo capture service that took photos from the front-
facing camera, and (3) a data collection service that monitored
and logged the sensor data. Once installed, the app asked
for the permissions necessary to collect camera and usage
data, and initialized the services. We allowed participants to
manually stop and start the photo and data collection if desired.
The photos were taken and the data was logged according
to the data collection triggers that we explain below. The
services kept running in the background as long as the phone
screen was on, and were reinitialized on startup whenever
the phone rebooted. Participants were neither interrupted by
the photo and data collection, nor shown the camera feed
while taking the photo. This also means that participants were
not aware when a photo was going to be taken to prevent
bias. In some cases, participants became aware after the photo
was taken due to the experience sampling approach that we
describe in the following section.

Triggers
Our Android service took photos at the following occasions:

• ScreenOn trigger: A photo was taken whenever the screen
was turned on, e.g., right before entering a PIN to unlock
the phone, and again 3 seconds afterwards. Since several
authentication schemes for mobile phones rely on detecting
the face or the eyes [29, 40], this was to study whether the
face and eyes were visible right before users unlocked their
phones. We were also interested to investigate whether face
visibility stayed the same throughout the interaction session.

• Notification trigger: A photo was taken whenever a notifi-
cation was received while the screen is on. Applications can
make use of face or eye analysis when users review a new
notification. For example, similar to how Cui et al. tagged
videos [15], applications could tag the notification’s content
based on users’ emotion inferred from facial expressions.

• Application trigger: A photo was taken whenever an ap-
plication was launched or brought to the foreground (e.g.,
by clicking on a notification). As long as the application
remained in the foreground additional photos were taken
3, 15 and 30 seconds afterwards. This was motivated by
the fact that knowledge about which tasks (e.g., typing)
influence the visibility of the user’s face would present op-
portunities as to which tasks designers can leverage face
and/or eye detection in. Also it would inform designers
of computer vision applications if there is a need to guide
users to holding the phone in an appropriate way before
using their applications.

• Orientation trigger: A photo was taken whenever the
phone orientation changed, and again three seconds later.
Not only could the change of orientation be triggered based
on the user’s face [12], a change of orientation could also
indicate that the user changed the context, task, or both.

• Random trigger: In addition, photos were taken at random
occasions while the phone was active between 10 am and
10 pm, since this is the time period in which phones are used
most frequently [9] and for the longest duration [44]. Up to
six random triggers were activated daily during that period.
The reason behind limiting the period and number of times
the trigger was activated is to (1) avoid overwhelming the
participants with many photos to review every day, and (2)
reduce potential technical implications such as running out
of space, battery consumption, etc.

Our selection of the intervals at which photos are taken is
inspired by previous work by Böhmer et al. about smartphone
apps usage [9]. We treat an application session as a “continu-
ous period of time in which an application is both active and
visible” [11, 19, 44]. This means that if a participant brought
an application to the foreground after exiting it, it is considered
a new session and hence photos are taken as described earlier.

Data Logging
We logged (1) the timestamp, (2) the full file path of the taken
photo, (3) the trigger that caused the capture event, (4) the
application in the foreground, (5) location data (latitude, lon-
gitude, road, PLZ), (6) readings from the ambient light sensor,
and the accelerometer and gyroscope (x,y,z), (7) the phone’s



orientation, (8) the screen’s brightness, (9) battery level and
whether or not the phone is charging; tethered charging of the
phone could influence the user’s posture.

Experience Sampling Component
We followed the experience sampling method [8] to query
participants about some other aspects that we expected to in-
fluence the visibility of their face and eyes. The questionnaire
asks for some additional information about the photo that was
taken immediately before the questionnaire was shown (see
Figure 2B). Participants were allowed to see the said photo,
and were asked (1) if the phone was held or if it was lying on
a surface. In the former case, the participant was asked (2)
whether it was held with the dominant, non-dominant or both
hands. Participants were also asked about (3) their posture, (4)
their location (e.g., transit, work, etc.), and (5) whether they
were exclusively using their smartphone or doing something
else in parallel. In the latter case, participants were asked to de-
scribe the parallel activity. To this end, we showed participants
a questionnaire via push notifications that they were allowed
to dismiss or submit only partially filled [14]. In the former
case, the questionnaire stayed in the notifications bar until
it was filled. We showed a questionnaire after each random
trigger, as explained before.

Photo Review Component
At 10 pm every evening, the app prompted the user to review
the photos taken during that day and pick the ones they ap-
proved (see Figure 2C). This was necessary to ensure that
participants sent us only the photos they were willing to share.
After reviewing the photos, the photos and data logs were
uploaded on a secured university FTP server, to which only
the experimenter had access. The app required uploading the
photos once a day and recommended using a WiFi connection.

FIELD STUDY
Although it was challenging to find participants willing to
share daily photos taken inconspicuously from the front-facing
cameras of their phones, we were able to recruit 11 partici-
pants (5 females). Their ages ranged from 19 to 34 years
(Mean=26.4, StDev=4.2). Participants included a hotel man-
ager, a waiter, a hospital employee, a project manager, a pri-
mary school teacher, three software developers, and three stu-
dents. All participants were right-handed Android users and
were compensated with an online shopping voucher. To avoid
influencing their behavior, we installed the application on their
own personal smartphones. Seven used smartphones with a
front-facing camera in the upper right corner, the others were
in the upper left corner. The exact models and front-facing
camera resolutions of the smartphones are in Table 1.

Limitations
Having participants use their own smartphones was neces-
sary to avoid unnatural behavior. While this means that they
used different phones with different configurations and cam-
era placements. It also means that the collected data is more
ecologically valid, covers a larger diversity of phones, and
represents users’ natural behavior in the wild. Another limita-
tion is that all participants were right-handed. Although this

ID Phone Model Camera Position Resolution
1 Sony Xperia Z3 Compact Right 2.2 MP
2 Sony Xperia Z Left 2.2 MP
3 Sony Xperia Z3 Right 2.2 MP
4 Samsung Galaxy S7 Right 5.0 MP
5 Sony Xperia Z5 Compact Left 5.0 MP
6 Sony Xperia Z2 Right 2.2 MP
7 Sony Xperia Z3 Right 2.2 MP
8 Samsung Galaxy S7 Right 5.0 MP
9 Nexus 5X Left 5.0 MP

10 LG G3 Left 2.1 MP
11 Samsung Galaxy S5 Mini Right 2.1 MP

Table 1. Model and camera specifications of participants’ smartphones.

means we cannot draw generalizable quantitative conclusions
from the data, we are nevertheless able to draw general qual-
itative insights. For example, we cannot claim that the eyes,
but not the entire face, are generally visible 75% of the time
when watching videos because that was the case in our dataset,
however we can claim based on the trends among participants,
there are many cases in which the user’s face is not entirely
visible when watching videos, and that this issue needs to be
addressed if the face detection is required in this context.

Procedure
We invited each participant individually to our lab, where we
first explained the experiment. Participants signed a consent
form, then we installed the application on their phones. While
all participants allowed us to analyze their data, 10 out of 11
allowed us to share the data and photos publicly. We then
explained the application: we showed them the experience
sampling questionnaires and told them to expect them multi-
ple times a day, and we explained how to use the photo review
component. Participants were instructed to answer the ques-
tionnaires as soon as possible and to choose the most suitable
answers or leave them empty if they did not remember. Partic-
ipants were asked to delete photos only if they did not wish
us to see them or have them in a publicly available dataset.
We strictly asked them not to delete any photos that they per-
ceived to be redundant or irrelevant. Participants were asked
to contact us in case of any problems or questions.

The data collection ran for two weeks. Afterwards, we had
another meeting with the participants in which we uninstalled
the application, collected demographic data, and conducted a
semi-structured interview.

Photo Classification
In total, our application took 30,194 photos from the front-
facing camera of the participants. Out of those, participants
shared with us 25,726 photos. This means we analyzed 25,726
photos in addition to the associated logged data. The collected
photos were classified into one of the following categories:

1. Whole Face: the case where the whole face is visible. This
can be further categorized into:

(a) Whole Face (all landmarks): the user’s eyes and mouth
are “detectable”, i.e., they are not hidden (Figure 3A)

(b) Whole Face (some landmarks): although the face is vis-
ible, not all eyes and mouth are visible e.g., obscured
by hand or hair (Figure 3B and 3C)
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Figure 3. We collected photos where the whole face is visible (A), the whole face is in the view but some landmarks are obscured (B and C), both eyes
and mouth are visible yet the entire face (e.g., the chin) is not visible (D), eyes are visible but mouth is not (E), one eye and the mouth are visible (F), only
one eye is visible (G), only the mouth is visible (H), part of the face is visible but eyes and mouth invisible (I) and cases were no face is visible at all (J).

2. Partial Face: the case where part of the face can be seen.
This case can be classified into further subcategories:
(a) Partial Face (2 eyes, mouth): Although the face is

partially out of the camera’s range, both eyes and the
user’s mouth can be seen (Figure 3D).

(b) Partial Face (2 eyes, no mouth): Both eyes are visible
but the user’s mouth is not (Figure 3E).

(c) Partial Face (1 eyes, mouth): Only one eye and the
mouth are visible (Figure 3F).

(d) Partial Face (1 eyes, no mouth): Only one eye is visible,
the mouth is not visible (Figure 3G).

(e) Partial Face (0 eyes, mouth): None of the eyes are
visible, but the mouth is visible (Figure 3H).

(f) Partial Face (0 eyes, no mouth): Although the face is
partially visible, neither the eyes nor the mouth are
visible, e.g., only the forehead is visible (Figure 3I).

3. NoFace: the case where no face is detected at all (e.g., only
the ceiling is visible in Figure 3J).

4. Both Eyes: this category includes cases where both eyes are
visible, i.e., it combines 1a, 2a and 2b.

RESULTS
Overall, the whole face is visible 28.8% of the time (see Fig-
ure 4). This is in line with the Rice TabletGaze dataset that was
collected in a lab and found that the whole face is visible in
30.8% of the cases [27]. Although there are many cases where
the face is not visible at all (29.3%), there are even more cases
where the face is partially visible (38.2%). More importantly,
there are many cases where the entire face is not visible, but
one or more of the user’s eyes are visible. Figure 4 shows
that the face and eyes visibility is almost consistent across
Screen On, Notification, and Random triggers. But visibility
is generally low when there is a switch in orientation. We also
found that both eyes are overall visible 47.9% of the time in
our dataset, and 54% of the time when using an application.

Investigating application usage further, we found that the face
and eyes are more likely to be visible in social apps (e.g., Face-
book, Instagram), messaging apps (e.g., Facebook Messenger,
Whatsapp), reading and writing apps (e.g., pdf reader and text
processing apps), video apps (e.g., YouTube), and games (see
Figure 5). Many of these apps, such as video apps and games,
typically run in landscape orientations. But when looking into
the distribution of face and eye visibility across the landscape
and portrait orientations, we find that using the smartphone
in portrait mode is more likely to result in the face and eyes
appearing in the front-facing camera’s view (see Figure 6).

Users could be holding their phones with their dominant, non-
dominant, or both hands. We found that the face and eyes
are more likely to be visible when holding the hand with
both hands (see Figure 7). Holding the smartphone with the
dominant hand seems to result in higher visibility of the face
and the eyes. Finally the face and eyes are rarely visible
when the smartphone is not held by the user, but rather put
on a surface (e.g., watching a video or playing music while
doing something else). Figure 8 shows that the whole face is
rarely completely visible when lying, yet visibility of eyes and
whole face is fairly consistent when standing or walking. The
face was slightly more likely to be visible when exclusively
using the phone (32%) compared to when doing something in
parallel (27%) such as reading news, watching T.V., etc.

In the interviews, we asked participants to indicate on a 5-point
scale whether their participation in the study influenced their
regular smartphone usage behavior (5=significantly changed
my behavior;1=did not change my behavior at all). Partici-
pants indicated that they have not changed their behavior sig-
nificantly (Median=2, StDev=1.3). P2 mentioned not using the
smartphone as usual to avoid having to delete many pictures.
P8 said that he avoided taking the smartphone to the bathroom
during the study, while P11 sometimes avoided it intention-
ally when others were around. Other than that, there was no
evidence that participants’ sense of security influenced their
behavior and hence the results. Overall participants deleted
4,468 out of 30,194. The vast majority of those (3,348 photos)
were deleted by P11, who was very careful not to share photos
of others. Otherwise, participants mainly deleted photos that
were taken in private or awkward contexts.

Faces of Other Persons
In several cases more than one face was (partially) visible.
This can be attributed to screen sharing, shoulder surfing [17],
or due to a passerby unintentionally coming in the field of
view of the camera. In the interviews, multiple participants
reported feeling obliged to delete photos in which someone
else appeared, since that other person was not a participant in
our study and hence did not approve sharing the photo. In our
dataset, we have 99 photos in which the face of another person
was (partially) visible to the camera. We included these photos
in the analysis, but excluded them from the public dataset. The
interviews revealed that out of those, only 11 were strangers
while the rest were acquaintances of the participants.

Reasons Behind Obscured Faces
The major reason for missing facial landmarks was that these
were out of the camera’s field of view. While future smart-



Figure 4. The figure shows the distribution of photos for each trigger.
The face is almost equally visible when turning the screen on, running
an application, and in random events. Visibility is generally low when
there is a switch in orientation. However both eyes are visible in many
cases when an application is being used.

phones are likely to adopt cameras with wider angle lenses,
a multitude of other objects were found to obscure the user’s
facial landmarks when interacting with their smartphones. We
logged many cases where part of the user’s face was obscured
by the user’s hand or fingers (see Figures 3B and 3C). The
second most occurring reason was due to wearing high collars
or scarfs. On the other hand, one participant was on vacation
during the study and was wearing sun glasses for a long time,
which in turn obscured his eyes. This means that external
factors such as weather conditions could heavily influence the
visibility of the user’s faces and eyes in the front facing camera
view. We also logged cases where the face was partially ob-
scured due to smoking, drinking, holding a telephone’s headset
(e.g., making calls at work), or eating.

Face Detection Performance on the Dataset
We evaluated OpenFace [5], a state-of-the-art framework for
face detection, against our dataset. OpenFace uses a state-of-
the-art constrained local neural field model, and was developed
with the aim of detecting faces in poor lighting conditions and
in the presence of extreme poses or occlusions [4]. As shown
in Figure 9, the OpenFace framework failed to detect faces
in the vast majority of the dataset; faces were detected in
approximately one third of the dataset (33.44%). In the many
cases where the face was present but some of its landmarks
were hidden (e.g., by fingers, like in Figure 3B), the OpenFace
framework successfully identified a face in only 18.87% of
the cases. Performance was also very low when the mouth, or
one or both eyes were hidden (between 8.21% and 34.53%).
Even in cases where the whole face was visible, only 75.91%
of the faces were successfully detected, due to motion blur
and poor light conditions. While this is a relatively high value
compared to the other cases, it still means that in one out of
four times, OpenFace will fail to detect the face appearing in
the view of the front-facing camera.

Figure 5. The figure shows the apps that are associated with the high-
est visibility of the face and eyes. Compared to other apps, both eyes
are more likely to be visible when gaming, using social networking apps,
messaging an watching videos.

These results suggest that to exploit the pictures from a front-
facing camera for the suggested scenarios, there is a need for,
either, novel face detection and gaze estimation approaches
that do not rely on a full-face, but rather make use of the
partially visible features of the user’s face; or means to make
the user hold their phone appropriately need to be investigated.

DISCUSSION
While in some cases the user might be aware that they should
make their face visible to the camera (e.g., explicit authenti-
cation), in many other applications such as emotion detection,
gaze estimation, and continuous authentication the detection
needs to happen implicitly. Our results indicate that the whole
face is rarely visible in the front-facing camera’s view. In our
dataset, that’s the case only 28.8% of the time. We found that
there are many cases in which the face is not visible, but both
eyes are clearly visible. We also found that the user’s face
and eyes were visible the most when our participants were
using certain applications, in particular, watching videos, us-
ing social apps, messaging apps, email apps, reading/writing
apps, and when gaming. We found that the face and eyes are
more likely to be visible when holding the phone with both
hands. Finally, we found that OpenFace, a state-of-the-art face
detection framework, succeeds only one third of the time in
our dataset. Even when the whole face is shown in the front-
facing camera view, OpenFace is able to detect a face in about
75% of the time. The reason behind the poor performance
of OpenFace against our dataset is that in-the-wild photos of
faces taken from from front-facing cameras are taken from
diverse angles, have very diverse lighting conditions, could
contain faces that are partially occluded because of the limited
camera view or due to the user’s hair, hands, fingers, or clothes,
or distorted due to motion blur.



Figure 6. Compared to the portrait orientation, holding the phone in
landscape orientation seems to result in more cases in which the face is
not visible in the camera’s view. However the difference in the visibility
of both eyes is not as big.

Gaze Estimation Should not Depend on Face Detection
One of the major conclusions from this study is that the user’s
whole face is not always visible in the front-facing camera’s
view. This finding is not only important for applications that
require face detection, but also for those that employ eye de-
tection or tracking. Many of state of the art algorithms for
gaze estimation require detecting the entire face as a prerequi-
site for eye tracking [20, 36, 41, 48, 52]. On the other hand,
in many cases where the face was not visible, one or more
eyes were visible. More specifically, both eyes were visible in
47.9% of our dataset. Given that the face is not always visible
to front-facing cameras of smartphones, gaze estimation for
mobile devices should not rely entirely on detecting the full
face, but fall back to using the eyes that are more often visible.

Therefore, while the aforementioned methods can be useful
for many other contexts, such as public displays or desktop set-
tings, they are less suited for mobile devices. We recommend
using approaches that do not require full face detection for eye
tracking on mobile devices. For example, an alternative could
be gaze estimation based on the whites of the eyes [7].

Guide the User to a Suitable Holding Posture
While an obvious solution is to use cameras with wider angle
lenses to increase the chances that the user’s face is shown,
there are still cases where a wide-lens angle might not capture
the face, for example if the user is lying, or if the face is ob-
scured by an object or the user’s hair or hand (see Figure 3B).

Another solution that would work on off-the-shelf mobile
devices, is to guide the user to holding the smartphone in an
optimal posture that would make the face visible. This can be
achieved by borrowing concepts from public display research,
in which a common problem is that users need to position
themselves in an optimal spot at the outset of interaction. For
example, GazeHorizon guides its users to the optimal position
for interaction via gaze by using mirror video feed overlaid

Figure 7. Face and eyes are rarely visible when the device is on a surface.
There is a higher probability the face is visible to the camera when hold-
ing the phone with the dominant hand, and even higher probability that
the face and eyes are visible when it is held with both hands.

with a face outline [53]. Similarly, a mobile app that requires a
visible face could show a video feed and overlay a face outline
to guide the user. While this approach is likely accurate in
guiding users to hold the phone in a way that shows their faces,
this form of explicit guidance might not always be feasible
due to, for example, the visual clutter caused by overlaying
the video feed on the the current view. In situations where
showing a video feed is not optimal because, for example, the
user is typing, reading text, etc. an implicit guidance method
could be employed. For example, similar to GravitySpot [2]
which guides users of public displays to certain positions, the
interface of a mobile device could implicitly guide the user’s
holding posture by blurring the view when the user’s face is no
longer detected by the front-facing camera, and deblurr when
the face is visible.

Know When to Track Eyes and Faces
Our results show that the user’s face and eyes are more likely
to be visible when using particular types of apps. This presents
an opportunity for researchers and practitioners to exploit this
for building affective applications that respond to users’ fa-
cial expressions. For example, there has been a recent grow-
ing interest in augmenting messaging apps with context and
emotional awareness [21]. Future work could leverage facial
expressions to detect the user’s emotions to share them on
social media websites, respond to posts and messages, or log
them for reflection. Our results also indicate that both eyes are
visible the majority of the time while watching videos (see Fig-
ure 5). Gaze estimation could be leveraged in advertisement
videos to collect insights about the user’s interests.

Furthermore, our results could be useful for designers of com-
puter vision mobile applications by knowing when not to
employ face and eye detection. Face and eye detection tasks



Figure 8. The face and eyes are most likely to be visible while standing
and while walking.

are computationally expensive tasks that can drain the battery
or even overheat the device. Our results indicate that there
are many cases where it is very unlikely that the user’s face
or eyes will be visible. For example, when the device is on a
surface (Figure 7), or when the user is lying (Figure 8). Mobile
apps could use the inertial sensors or knowledge about usage
patterns to determine when not to track the eyes.

Design with Privacy Implications in Mind
“My Facebook app has a permission to use my camera, does
this mean that it could be taking pictures all along?”. Some
of our participants were surprised to see that our application
could inconspicuously take photos without showing the cam-
era feed. As commodity devices become more capable of per-
forming visual computation tasks, they also become platforms
for collecting private data. This highlights the importance of
making computer vision mobile apps transparent by, for exam-
ple, making them open source. While the average user might
not be well equipped to check if the currently used mobile
app violates privacy, developers and enthusiasts have found
vulnerabilities in open source software in the past, which in
turn resulted in average users learning about these issues. We
argue that we need a mechanism, similar to that of certificate
authorities used in HTTPS, to certify mobile apps that do not
violate the user’s privacy.

Several approaches have been proposed to nudge users when
certain permissions or private data is shared with an app [1, 3].
These approaches can be adopted to warn the user when the
camera feed is being processed by an app, and in turn encour-
age using mobile apps that employ face and eyes detection.

Figure 9. OpenFace is a framework that employs state-of-the-art meth-
ods for detecting faces in the wild. Yet, it detects faces in only one third
of our dataset. Even in case where the entire face is visible to the front-
facing camera, it succeeds only 75.9% of the time, which means that it
would fail once every four times even though the face is perfectly visible.

Furthermore, our participants tried to delete most of the photos
that included people other than them, due to their fear of
violating that person’s privacy. This also has implications
on face and eye detection apps on mobile devices; if a user
allows a device to take photos of her face, it does not mean that
photos of other people’s faces could also be unintentionally
taken. Hence, future apps that employ face and eye detection
should automatically filter out photos in which a person, other
than the user, is visible in the camera view.

Rather than Storing them, Process Photos on the Fly
It was challenging to find participants willing to participate.
This could be attributed to the effort needed for reviewing the
photos before sharing them, but could also be due to privacy
concerns. We recommend designers of systems that employ
face and eye detection to process the frames in real time rather
than storing them locally or on the cloud. For future in-the-
wild studies that involve photos taken from the front facing
cameras, we recommend researchers to allow participants to
review the data before sharing it, offer them to opt out from
and pause/resume participation at any time during the study.

One possible way to overcome privacy issues in future work is
to log the positions of facial landmarks rather than storing the
actual photo. However this means that the detection has to be
highly accurate for the data to be reliable. Future work should
investigate how to collect accurate yet privacy-respectful data.

Another interesting direction for future work is to study the
factors that influence adoption of apps that leverage face and
eye detection. For example, while Android offered FaceUn-
lock long ago, studying whether or not users will adopt the
FaceID on the long run could reveal factors that influence the
user’s trust in face and eye detection apps.



CONCLUSION
In this work we collected a dataset of 25,726 photos taken
from front-facing cameras of smartphone in the wild and anal-
ysed it with respect to face and eye visibility. We are happy
to share the dataset for the community to build over our work;
please contact the first author for a link to the dataset. Be-
ing the first dataset of its kind, we gained several insights.
Most importantly, we showed that the user’s face and eyes are
not always visible in the front-facing camera view, and not
always detectable by state-of-the-art face detection methods.
We found that the currently running application, the hand used
to carry the phone, and the state of the user influenced the
visibility of the user’s eyes and face. There are many cases
where the user’s eyes, but not the whole face, were visible. We
discussed how the results motivate the need for new computer
vision algorithms that rely on the eyes only and not necessar-
ily on the visibility of the full face. We also discussed how
applications could guide the user to revealing her face to the
front-facing camera, directions for exploiting the dataset and
the results of this study, privacy implications, and challenges
of this type of research.
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