
Model Driven Development of
Multimedia Applications

Heinrich Hußmann and Andreas Pleuß

Institut für Informatik, Ludwig-Maximilians-Universität München
Munich, Germany

{hussmann, pleuss}@ifi.lmu.de
http://www.medien.ifi.lmu.de

Abstract. The development of multimedia applications is a branch of
software development of increasing importance. Many advanced user in-
terfaces integrate multimedia elements, and critical multimedia systems
are emerging, e.g. in training and simulation areas. Multimedia user in-
terfaces pose a number of new challenges to the software development
process and technologies. Unfortunately, software engineering principles
are mostly ignored in current practice of multimedia application devel-
opment. This paper suggests a way of how the gap between multimedia
applications and software engineering can be made smaller. A modeling
language is presented which is based on UML 2.0, but is tailored for effec-
tive, platform-independent abstractions from concrete multimedia tech-
nologies. Using such a modeling language, we show it is possible to apply
the paradigm of Model-Driven Development to multimedia applications,
leading to better structured and more maintainable applications, and
a much higher degree of independence from multimedia platform tech-
nologies. The language is described using a medium-sized case study, and
concepts for prototypical tools supporting model-driven development of
multimedia applications are outlined.

1 Introduction

Multimedia application development is a branch of software development which
is growing rapidly but often not recognized as a subject of software engineering.
The term multimedia application refers to program systems which are heavily
based on a user interface using powerful graphical effects, which integrate sound
and other time-dependent media in the user experience and which usually in-
clude a high degree of interactivity. Examples are games, teaching and training
applications, and various simulation tools. Multimedia applications are slowly
entering the critical-systems area, for instance in simulation and training appli-
cations (e.g. for operating or maintaining complex systems in aircraft).

Typical platforms for multimedia application development are development
environments which integrate graphical design and programming. Rather popu-
lar development environments of this type are Macromedia Director and Macro-
media Flash [1], but also emerging standards for the Web like the SVG (Scal-
able Vector Graphics) [2] format are moving into a similar direction by enabling

2 Heinrich Hußmann and Andreas Pleuß

arbitrary JavaScript programming. “Programs” appear in such a development
process only as small snippets in a scripting language which are attached to
individual parts of the graphical design. Such a script may, for instance, control
the movement of a graphical element on the drawing surface, or may handle
user input. There is a clear trend towards development environments for multi-
media applications which comprise standard software development technologies
like object-oriented programming (e.g. the powerful ActionScript language in-
cluded in the most recent versions of Macromedia Flash). So it is obvious that
very complex systems are realizable on such platforms.

A serious engineering problem appears when highly complex multimedia ap-
plications including non-trivial application logic are designed in a naive way using
the existing development tools. In fact, software design does not take place at
all in such a scenario. Moreover, it is almost impossible for the developer to get
a serious overview of the whole code contained in an application and the way
how it interacts, since the code is scattered all over a working document the
structure of which is dominated by the graphical design. (Tools like application
browsers or separately stored code do not improve the situation essentially.)
In principle, it is possible to use classical software design techniques to make
e.g. a Flash/ActionScript application better structured and more maintenance-
friendly. For instance, it is possible to apply the Model-View-Controller (MVC)
paradigm [3] also to Flash/ActionScript applications. Interestingly, the litera-
ture (and even the online discussion forums) on Flash/ActionScript generally
talk little about such design principles, and the practical realization makes it
necessary to use a few design “tricks” which need to be applied consistently at
many places of the code.

At this point it becomes obvious that the design of multimedia applications
is an excellent candidate for the application of the principles of Model Driven
Development (MDD, [4], [5], [6]). Model Driven Development relies on a pro-
cess using high-level abstract representations of a system design and stepwise
refinement into specific executable code. In particular, it distinguishes between
a platform-independent level of design and the refinement onto platform-specific
designs. Here are a number of benefits of a Model-Driven development style for
the development of multimedia applications:

Platform independence: Often a basic design idea for a multimedia appli-
cation can be described in an abstract way which is not yet specific about the
platform (development environment and runtime system). Examples of platforms
are here Macromedia Director, Macromedia Flash, SVG/JavaScript, native Java
applications and many more. Using MDD, valuable design work can be re-used
for different platforms, and the decision for a specific platform can be delayed.

Integration of graphical design and software design: As mentioned, multime-
dia applications often have only a graphical design but no software design. Using
MDD, a software design can be described on a high level of abstraction, and –
using appropriate abstractions from the graphical design – the combination of
graphical and software design can be specified in a clear way. Ideally, the high-
level models can serve as a means for better communication between graphical

MDD for Multimedia Applications 3

designer and software designer, thus relieving a serious communication problem
for multimedia projects.

Better structured applications: The resulting applications from a Model-Driven
development benefit from the better thought-out design anyway. But moreover,
and more specifically, an automatic generation of (parts of) the application code
from abstract models enables a possibility which is otherwise not achievable:
The generated code can be defined in such a way that it realizes structural
patterns (like the above-mentioned MVC pattern) that make it much easier to
extend or modify the code afterwards or even at runtime. The generation en-
forces the application of the design patterns at all relevant places in the generated
code, a property which is very difficult to achieve with hand-crafted code. So,
the effect of MDD is similar to aspect-orientation: Platform-specific “tricks” for
better-structured code are “woven” into the application code automatically at
the appropriate places.

In order to realize the vision of MDD for multimedia applications, many open
questions have to be answered e.g. about the modeling language, the refinement
levels, platform-specific models, and tools. In this paper, we will concentrate on
an appropriate language for abstract models of multimedia applications, partially
based on previous work by Stefan Sauer [7]. The modeling language we will
present in the following is based largely on UML 2.0 [8] but also deviates from
the standard slightly where adequate for the application domain. The paper
is structured as follows: Section 2 presents an example application. In sections
3, 4, 5 and 6, four different modeling views of a multimedia application are
considered: The static structure of the application including media assets, a
simple abstraction of the graphical design usable for the software designer, the
basic structure of the user interaction, and the internal temporal structure of the
application. Section 7 provides an overview on the integration into MDD and
code generation. Section 8 discusses related work and explains the innovative
aspects of this work. Section 9 finally gives an outlook to the many further steps
required, in particular the ongoing work on tool development.

2 Example Application

This section presents a multimedia application used as example throughout the
whole paper. In contrast to most other application areas, games like e.g. a racing
game traditionally make intensive use of multimedia effects to provide the user an
impressive atmosphere. Therefore even a small sample extract of the application
seems sufficient to point out the challenges of multimedia applications. For this
reason, we choose a racing game as running example in this paper.

For the purposes of this paper we restrict the example to the following fea-
tures: The application starts with a menu where the user may set various options,
like the car and the track for his next race. After the user has started the race he
has to steer his car over the track to absolve a number of laps. During the race
the display shows beside the track some information on the player’s state, like
lap number, current speed, and current fuel status of his car (figure 1). When

4 Heinrich Hußmann and Andreas Pleuß

the race is finished the player’s score is displayed. Afterwards the application
returns to the menu screen. The user can always refer to a help text, where the
initially displayed content depends on whether it is called from the menu screen
or from the race. For the example in this paper we omit further functionality.
Of course, current professional racing game products provide much more func-
tionality and options for the user as well as sophisticated application logic and
complex multimedia effects for a realistic driving experience.

Sample implementations of racing games, using Flash/ActionScript technol-
ogy, have been developed at University of Munich under the supervision of the
authors. Seven teams with six or seven students each worked for 3 months to
develop different racing games with distributed multi-user support and intensive
use of sound and animations. The project was part of the course “Multimedia-
Programmierung” in the summer term 2004. This paper is partially based on
experiences from these projects.

Fig. 1. A screenshot of the racing game example

3 Application Structure and Media Integration

The following section presents our modeling language for multimedia applica-
tions. The base part of the model is a model of the static application structure
explained in this section. It contains the application’s domain specific classes
(application entities). As our approach uses the standard UML 2.0 diagrams, we
base on UML class diagrams to model the application structure. We support all
usual UML 2.0 class diagram elements, i.e. class properties like attributes, asso-
ciations and operations and class relationships like generalizations. The classes

MDD for Multimedia Applications 5

LocalPlayerRemotePlayer

Player
Track

Fuel

Car
+ lap : Integer = 0
+ speed : Integer

+ accelerate()
+ brake()
+ turnLeft()
+ turnRight()

11 11
1..n 11..n 1

1

1

1

1

Animation
<<Media>>

Text
<<Media>>

Choice
<<Widget>>

miniView

lap

speed

Fig. 2. Example classes and media integration

can be structured into packages and enriched e.g. with comments. Figure 2 shows
an exemplary class diagram for the example application, including the classes
Car (containing some exemplary properties), Fuel, Track, Player, LocalPlayer
and RemotePlayer as well as relations between them. The grey colored elements
and their relationships are explained below.

As the user interface presentation is the main characteristic of multimedia
applications, it is an important design decision, how to represented the applica-
tion entities on the user interface. In multimedia applications the user interface
elements are mainly media objects, i.e. objects of a discrete or continuous media
type as in multimedia standards like [9]. As an example, in a racing game a car
may be represented by an animation and sound.

In many cases individual media objects are required for the application. Then
they are designed with a multimedia authoring tool (e.g. an animation) or pro-
duced in a separate process (e.g. a video). These time consuming tasks have
to be considered as early as possible in the development process. Especially for
interactive applications the relationship between application logic and media
object is essential. In the example above, the car animation moves according
to the behavior defined in the car class and the car class instance is influenced
by events occurring for the car animation. Besides media types, other custom-
ary UI elements like buttons, check boxes, lists etc. (so-called widgets) can be
required analogous to media objects. For example in menu of a racing game a
choice widget presents the user all available car objects for choice. As the user
interface objects (media and widgets) are important assets of the application
with direct relations to application entities, we include them and their relations
to the application entities in the structural model.

In our approach the relationship between UI elements and application entities
is a special kind of dependency, called UI Representation, which specifies that
the UI element represents the application entity. It is defined as a relationship
(instead of e.g. specifying the application entities as a type of the UI element
itself), because often an application entity has multiple representations. The UI

6 Heinrich Hußmann and Andreas Pleuß

Representation defines a new subtype of the specified UI element specialized for
the presentation of the entity. This is necessary to enable multiple instances on
the user interface, e.g. several car animations on the screen. These instances are
specified in the presentation model in section 4.

The example in figure 2 shows the UI elements Animation, Text, and Choice.
For distinction with application entities they are branded with the keyword
Widget respectively Media. Additionally they are grey colored. The notation of
UI Representations corresponds to dependencies in UML. In the example, the
entity Car is represented by animations for position and speed, a choice, and text.
The entities Fuel and Track are represented by animations. UI representations
can have an assigned name, which is optional for the first, and mandatory for
further UI Representations between the same two elements (like for Track in
figure 2). If no name is specified, by convention the name is composed of the
name of the entity and the UI element, e.g. Car Animation. Another convention
allows the representation of a single property of an entity: in this case the name
of the UI representation corresponds to the property’s name. In the example the
UI representation speed is used to introduce a speedometer, which represents
only the car entity’s speed attribute.

For the purpose of easy to handle models and an automatic generation of
useful code with minimized effort, we define the UI elements as kinds of reusable
components (e.g. classes) with internal implementation of common required func-
tionality. This should be obvious for widgets, as they are usually provided by
object oriented programming languages in class libraries. Media elements, at a
first look, represent only a media type, i.e. there is no implementation. However,
for the purpose of application development obviously the developer does not only
refer to a media document itself, but he additionally wants it to be accessed by
the user. E.g. a video should not only exist, it should also be possible to play
it. Following the current state of the art, it should also be possible to pause, re-
sume, stop, etc. the video. Furthermore events are required, e.g. to notify other
application parts when the video is finished. For such sophisticated functionality
usually a reusable player component is used, which can be customized by pa-
rameters. Likewise, this functionality should not always be modeled explicitly.
Therefore in our approach a media element acts as a component, providing the
required display functionality for a specified media type. As a consequence, it is
possible to define attributes and operations as well as provided events for media
and widget components. The modeler can reference these properties and events
to define the behavior of the application (see section 5).

As an additional mechanism for structuring the application statically, we
introduce scenes, which are a common metaphor in multimedia authoring tools.
In our approach a scene is a state of the user interface, which displays a given
screen layout over a period of time. For each scene, exactly one screen layout is
defined (see section 4). As always exactly one scene is active, they can be referred
to as the top-level states of the application (see section 6). The transition to
another (possibly the same) scene corresponds to an initialization of the user

MDD for Multimedia Applications 7

interface. Examples for scenes in the racing game are Menu, where the menu
screen is displayed or Race, where the race is played.

As scenes structure the application, we define them as part of the structural
model. A scene may have attributes and operations. Therefore we consider them
as a special case of a class.

A scene’s operations are restricted to so-called entry- and exit-operations.
Entry-operations are called by each transition into the respective scene. They
are responsible for the initialization of the user interface. As in interactive ap-
plications the scenes are not completely predefined, the entry-operations may
have parameters for the scene. For example the race scene needs has to be aware
about the decisions made by the user in the race menu (e.g. the selected car).
Additionally a scene may have multiple exit operations (e.g. startRace() and
continueRace()). Thus, the scenes are reusable in a flexible way.

Exit-operations perform a transition to another scene. For each possible tran-
sition an exit-operation is defined. In addition to the transition, exit-operations
may perform some “clearing work”, e.g. release resources used by the scene. Usu-
ally it is not mandatory for the modeler to specify exit-operations explicitly in
the structural model, because they correspond to the possible transitions. There-
fore it is possible to derive them automatically from the transitions specified in
the temporal model as explained in section 6.

A scene may have attributes (usually private) to store parameters values
of their entry-operations and to enable an internal state. Additionally a scene
contains references to objects created within the entry-operation.

Finally, a scene may have attached a UI Representation. In some cases a
UI element doesn’t represent an application entity, but a scene itself. Examples
are the help text, which represents the help scene itself or e.g. an intro video
representing the intro scene (not part of our example application). Help text and
intro video don’t have any direct relationship to an application entity. Therefore
we allow UI representations also between scenes and UI elements.

Menu

<<entry>> + menu()

<<Scene>>

Help
- isRaceHelp : Boolean

<<entry>> + raceHelp()
<<entry>> + manuHelp()

<<Scene>>

Text
<<Media>>

RaceScene

<<entry>> + startRace(r : Race)
<<entry>> + continueRace()

<<Scene>>

Score
<<entry>> + score

<<Scene>>

Fig. 3. Example scenes and media integration

8 Heinrich Hußmann and Andreas Pleuß

Figure 3 shows an extract of the structural model containing the scenes
Menu, RaceScene, Score, and Help. For distinction to application entities, scenes
are branded with the keyword Scene. They contain entry-operations, which are
branded with the keyword entry. Additionally the scene Help contains a private
attribute isHelpScene which e.g. holds the information, which of the entry
operations has been called. The Help scene is represented by a text object to
display the help text.

Widget MediaRelationshipApplicationEntity

EntryOperation
+ history : Boolean

ExitOperation

Scene

1..n

1

1..n

1

1..n

1

1..n

1

Operation

Class

Event

UIRepresentation UIElement

0..n

1

0..n

111
MMA_Class

0..n1 0..n1

AssociationDataType MultimediaApplication

0..n

1

0..n

1

0..n

1

0..n

1

0..n1 0..n10..n 10..n 1

Fig. 4. Metamodel diagram for application structure and media integration

As a reference for the full abstract syntax of the static structure diagrams,
we show the metamodel in figure 4. Its base is an excerpt of the UML 2.0
metamodel (not shown in this paper), which defines basic model constructs and
all model elements necessary for UML 2.0 class diagrams. Metamodel elements
with omitted attribute compartment are already defined in other parts of the
metamodel – i.e. here in this figure the UML 2.0 excerpt. General information
about our metamodel is also provided in section 7.

Top-level element of the metamodel is MultimediaApplication, which builds
the container for the model and contains all other model elements. Application-
Entity, Scene and UIElement are subtypes of Class, i.e. they may have all
properties and relationships like classes. Additionally, ApplicationEntity and
Scene may have assigned a UIRepresentation which references a UIElement.
The operations of Scene are restricted to EntryOperation and ExitOperation
(the restriction is not visible in the metamodel, but defined in additional well-
formedness rules). The history attribute for EntryOperation is explained in

MDD for Multimedia Applications 9

section 6. UIElement is specialized by Media and Widget and may additionally
provide Events.

4 User Interface Presentation

A sophisticated user interface is one of the main goals of multimedia application
development. Often the basic idea for an application is a vision of a user inter-
face presentation. Also customers often describe a multimedia application by its
desired screen layout. The application logic is often subordinate to these ideas
and results from the decision, which elements to present to the user.

Therefore we include the user interface presentation in our model, which
describes the spatial structure of the visual user interface. It is modeled at a
simple level of abstraction usable for software engineers as well as designers.
Thus, the UI presentation model may additionally be referred as base for com-
munication between different developer teams, like software engineer and media
designer. Besides, the presentation model shows the concrete instances of the UI
Representations from the structural model and their allocation to scenes.

In our approach the spatial structure of the screen layout is directly notated
by arranging UI objects on in a diagram representing a screen. We represent
the UI objects by simple bounding boxes, i.e. primitive shapes like rectangles or
ellipses. The concrete look of the UI elements and all additional UI design are
not part of our models. We supposed these tasks to be done in adequate author-
ing tools under consideration of the presentation model. Thus, the presentation
models can be referred as templates with the bounding boxes as placeholders.
Ideally, tool support allows loading the models directly into the authoring tool,
where the media designer fills out the placeholders and adds adornments.

As mentioned in section 3, each scene has exactly one initial UI representa-
tion. As consequence, exactly one presentation diagram is assigned to each scene.
However, the presentation diagrams can be subdivided in several subdiagrams
for different output channels, e.g. visual and auditory channels. In this paper,
we restrict to the description of the visual channel, i.e. the screen layout. Like in
multimedia authoring tools, the screen layout may be structured in z-direction
by layers. On the layers the UI objects are arranged. The concrete UI objects
can be referred to as instances of the UI Representations from the structural
model (see section 3).

Figure 5 shows a presentation diagram for the scene RaceScene. A UI object
is identified by a name and the type of its UI Representation (separated by ’:’).
If only one instance exists for a given UI Representation, the UI object name
may be omitted, as shown in the example. A possible implementation of the
presentation diagram is shown in figure 1.

Figure 6 shows the metamodel for the UI presentation model. The meta-
classes Scene and UIRepresentation form the connections to the structural
model in section 3. Besides Graphics, further subclasses of OutputChannel (like
Audio), are omitted in this paper.

10 Heinrich Hußmann and Andreas Pleuß

��������	
��	��

���������

��������	
������

����	
������

����

��	
��	��

	�	�	���

��	
��	��

������

��	
��	��

����

��	
��	��

Fig. 5. Example presentation

BoundingBox
- x : Integer
- y : Integer
- width : Integer
- height : Integer

UIRepresentation

RectangleBox

EllipseBox

Scene OutputChannel1 1..n1 1..n

UIObject
11 11

1

1..n

1

1..n

Layer
+ zIndex : Integer

1

0..n

1

0..n

Graphics 1..n1 1..n1

Fig. 6. Metamodel diagram for presentation

MDD for Multimedia Applications 11

5 Interaction

A characteristic property of multimedia applications is the high degree of user
interaction. It is highly related to user interface elements and controls the ap-
plication logic. Therefore we introduce an interaction model.

The interaction model is based on events. They are provided by UI element
classes from the structural model. The purpose of the interaction model is to
provide an overview, which concrete UI objects (defined in the presentation
model in section 4) of a scene listen to which events and which other application
parts are influenced by the event handling. As the applications are expected to
be highly interactive, in many cases UI objects listen to multiple events, e.g.
whether the mouse pointer is over a specified area within the UI object, the
mouse is pressed or the mouse is released. Additionally, the behavior connected
to an event may heavily depend on conditions, e.g. in the racing game the car
is controlled by key event whereby different keys trigger different behavior. To
provide an easy to handle overview over the different cases, we use tables to
denote the interaction. For each scene there is a table containing the interactive
UI objects, the events they listen to, conditions over the events, and the triggered
event handling.

The event handling consists of one or more actions to achieve the required
behavior triggered by the event. The actions are usually method calls, as the
event handlers do not contain any application logic themselves. Target objects
of an action are the triggering UI object itself, other UI objects in the scene,
the application entity represented by the UI object or the scene class (e.g. to
call one of its exit-methods). While the operations of application entities often
contain sophisticated application logic (like the movement of a car according to
its parameters, including collision detection), the event handling usually consist
of a few method calls. Thus, the complete event handling methods can easily
be specified completely in the model. As a consequence, a code generator can
automatically generate the complete interaction code. This can be very helpful,
especially as the interaction code consists of small code snippets which must be
put on various different places within the application code.

As event handling methods are intended to be defined completely in the
model, in some cases additional actions besides method calls are required. There-
fore we include the UML 2.0 actions in our model approach, which allow complete
behavior specifications. Basically, the provided constructs would also be suitable
to define the operations of the application entities. However, as we explain in
section 6 they are preferably implemented directly in an adequate development
environment with the help of platform specific features and the ability for an
immediate testing of their effects on the user interface.

Table 1 shows an example for the interaction model denoted in a table. The
UI object Car Animation listens to the KeyPressed event. The event handling is
dependent of a constraint, e.g. if the pressed key is ’8’ the method accelerate()
from the Car entity is called. The MouseClicked event at Track Animation
triggers a call of the scene’s exit-method exitToHelp().

12 Heinrich Hußmann and Andreas Pleuß

UIObject Event Constraint Action

car Animation KeyPressed(c) c = ’8’ car.accelerate()

c = ’2’ car.brake()

c = ’4’ car.turnLeft()

c = ’6’ car.turnRight()

track Animation MouseClicked() exitToHelp()

Table 1. Example interaction

Figure 7 shows the metamodel for the interaction model. An EventOccurence
refers a UIObject (from the presentation model) and an Event (from the struc-
tural model). The corresponding Interaction consists of an optional Constraint
and a set of Actions. The metaclass Action is specialized by various subclasses,
not shown in this paper, analogous to the metaclass Action in UML 2.0.

Event is part of the
UIElement, which
corresponds to
UIObject

UIObject Event

EventOccurrence

0..n

1

0..n

1 1..n1..n

Constraint

Interaction
1..n1 1..n1

0..1

0..1

0..1

0..1

Action11 11

Fig. 7. Metamodel diagram for the interaction model

6 Temporal Structure

Another important aspect of multimedia applications, which is highly related to
the user interface, is the temporal model. In conjunction with the presentation
model, it covers the complete spatio-temporal presentation of the application.
As multimedia applications are supposed to be highly interactive and especially
through the integration of various time-dependent media objects, the overall
temporal behavior of the application is very complex and can only be modeled
with a high amount of effort. However, the scenes introduced in section 3 – which
were also used to structure the spatial UI presentation (see section 4) – are a well
suited level of granularity. As a scene corresponds to a period of time, the order
of the scenes defines the overall temporal presentation of the application. How-
ever, as the applications are supposed to be interactive, the order of the scenes
is usually influenced by the user. Therefore our approach models the possible
temporal relationships between the scenes, referred as temporal structure.

MDD for Multimedia Applications 13

For the modeling we use an adapted version of UML state charts. We consider
the scenes as states, as at each point of time during the application execution
exactly one scene is active (scenes, entry- and exit-methods are defined in section
3). A transition between two scenes (source scene and target scene) indicates that
after the source scene was active, the target scene may be the next active scene.
The execution of a transition corresponds to the execution of an exit-method
in the source scene, followed by the execution of an entry-method in the target
scene. Each outgoing transition corresponds to exactly one exit-method in the
source scene. Thus, a scene’s exit-methods are usually derived from the temporal
structure model (instead of modeling them explicitly in the structural model).
To allow adaptable scenes, they may have multiple entry-methods which may
provide parameters. Hence it is possible to specify for a transition, which entry-
method of the target scene it addresses. Parameter values for entry-methods are
not specified in the model, as they are usually computed in the code of the source
scene.

Figure 8 shows an example for the temporal structure model. The scenes -
Menu, RaceScene, Score, and Help - correspond to the structural model. The
arcs between them represent the transitions. Each transition has attached the
name of the addressed entry-method; e.g. startRace() of RaceScene is called,
if the user leaves from the Menu to the RaceScene.

Menu RaceScene

Help

Score

menu()

score()

raceHelp()
continueRace

<<history>>

menu()

startRace(r: Race)

menuHelp()

{isRaceHelp = false}

{isRaceHelp = true}

Fig. 8. Example for the temporal structure

Additionally it is possible to attach a constraint to a transition. Transition
are may only be performed, if associated constraints are evaluated to true.
Constraints refer to properties of the respective source scene. In the example
(figure 8), it depends on the property isRaceHelp of the Help scene, whether
leaving the Help leads back to the Menu or to the RaceScene.

To model start and termination of the application, we use (analogous to UML
state charts) a start and an end state. The transition from the start state defines
implicitly a start method without parameters in the target scene.

14 Heinrich Hußmann and Andreas Pleuß

Finally, two different kinds of semantics for a scene entry exist. In most cases,
a scene starts with an initial state, which depends only on the parameters of the
entry-method. However, it might be required to resume the scene’s internal state,
which it had when it was active before (similar to history states in UML state
charts). For example, if the user calls the help function during a race, he wants
to continue the race afterwards. To model this situation, entry-methods may be
branded with the keyword history. As a consequence, whenever a scene is left
via a transition which may later lead to a history entry, the scene has to keep is
internal state. In figure 8, the entry-method continueRace() of RaceScene has
assigned the keyword history, to specify that the previous race can be resumed.

Besides temporal structure on scene level, the detailed behavior within the
operations of application entities and scenes has to be defined. Basically, the
UML 2.0 behavior diagrams are sufficient for this task. However, as we also men-
tioned in section 5, the implementation of these operations is not part of our
modeling approach. As they often contain non-trivial code, modeling the opera-
tions would require a high effort and result in very large models. Especially for
the purpose of code generation, a complete specification of the operations would
be necessary, because an operation code containing scattered semantic gaps will
usually not help the user. Additionally, to achieve complex effects combined with
optimal performance requires in many cases platform-specific code. Furthermore,
the operation code often has to be executed and tested immediately to ensure the
estimated effects on the user interface. Therefore, the operations of entities and
scenes are preferably implemented directly within an appropriate development
environment.

If the modeler desires a visual model of an operation, e.g. to increase the un-
derstanding of very complex operations, he may use the UML sequence diagram.
In contrast to previous versions, in UML 2.0 the sequence diagram provides both
a generic description of the operation’s logic as well as the possibility to specify
time related constraints, e.g. for synchronization tasks. Therefore they may be
used for the (optional) modeling of the detailed behavior of the application, if
required.

Figure 9 shows the metamodel for the temporal structure. The grey colored
metaclasses show the basic principle derived from UML state charts. As a State
may act a Scene as well as the pseudo states representing the start and the end
of the application execution (StartState and EndState). A Transition corre-
sponds to the execution of an ExitMethod (respective ApplicationStart for the
StartState) and the execution of an EntryMethod (respective ApplicationExit
for the EndState). Additionally a Constraint may be attached to the transition.

7 Overall Approach and Tool Support

In this section we integrate the presented views of the model and explain the
integration into MDD, including tool support and code generation.

The four views presented in the preceding sections are highly interrelated by
the model elements which occur in several diagrams. The structural model is

MDD for Multimedia Applications 15

State

ApplicationStart ApplicationExit

StartState

1

1

1

1

EndState

1

1

1

1

MultimediaApplication

1

1

1

1

1

1

1

1

EntryOperation

Scene
1

1..n

1

1..n
ExitOperation

1

1..n

1

1..n

{derived}
=> transient, unsettable

Constraint

State

StateEntry

Transition

0..1
0..1

0..1
0..1

1..n1
+/incoming

1..n
+/source
1

1..n1
+/outgoing

1..n
+/target
1

1

0..n

+callee 1

0..n

StateExit

1

1

1

+trigger1

Fig. 9. Metamodel diagram for predefined behavior

the base part of the model, as all other parts are related to it. A presentation
diagram is assigned to a scene. Within a presentation diagram, the UI elements
reference the UI Representations from the structural model. The events in the
interaction model connect UI elements of the presentation diagram to the struc-
tural model by calling operations. Additionally the events itself have to accord to
their definitions in the UI element classes. The temporal structure model is more
separated. On scene level, only scenes and their entry- and exit-methods from
the structural model are required. Each sequence diagram for the description of
detailed behavior is assigned to an operation.

For the definition of our modeling language, we use a metamodel, i.e. de-
scribing of the abstract syntax in terms of a model itself. The Object Man-
agement Group (OMG) is an industrial consortium defining various standards
related to modeling (including the UML), especially in context of MDA. MDA
(Model Driven Architecture, [4], [5], [6]) is the OMG-specific term for MDD.
The OMG also provides a meta-metamodel, called Meta Object Facility (MOF),
which serves as base for all MDA related technologies. Our metamodel is com-
pliant to MOF and therefore compatible to other MDA related technologies and
tools.

We provide tool support, based on the Eclipse [10] technology, an open source
project providing various frameworks to build high quality editor-based applica-
tions. Existing Eclipse-based applications are e.g. development environments for
Java like IBM Websphere Studio or UML modeling tools like the latest versions
of Rational Rose. Our metamodel is also compliant to an Eclipse-specific imple-
mentation of MOF (called Ecore) resulting in a modeling tool compliant to other
Eclipse technologies. Currently, our tool provides simple editors to create and
edit models in the terms of our modeling approach. Graphical diagram editors
(using the Eclipse Graphical Framework) are under development, whereby we

16 Heinrich Hußmann and Andreas Pleuß

partially reuse existing Eclipse-based UML tools to support the UML-compliant
parts of our modeling language.

From the models we can generate code easily. Possible target languages are
in principle all programming languages which allow a multimedia user interface,
like Java or C++. As there are several implementation technologies adapted
for multimedia applications, usually one of them will be the first choice, like
Flash/ActionScript or SVG (Standard Vector Graphics) in combination with
JavaScript. Merely document-oriented formats with very restricted programming
abilities, like SMIL or MPEG, are less suitable for our approach.

In the following we describe the general concepts for the code generation.
The models specify all parts of the application, apart from the concrete design
of the UI objects and the operations of scenes and application entities, as these
parts are preferably implemented in a development environment (see sections 3
and 4). This means that all parts of the application, which have to be filled out
manually, can easily be found at well-defined places. The sequence diagrams for
optional documentation of operations are not taken into account for the code
generation.

To structure of the application implementation as a whole, we use the MVC
paradigm. The application entities form the model part (in the meaning of
MVC). The classes for UI elements are usually already implemented in a class
library delivered with the target language, otherwise they have to be included
in the model. The view is directly derived from the presentation diagrams. The
scene classes act as controller. A scene class owns the UI objects of the view and
also the event handler methods according to the interaction model. Addition-
ally the scene’s entry- and exit-methods perform the control about the overall
application.

We implement the code generators also using Eclipse and in particular the
Java Emitter Templates (JET) technology, which allows a template based code
generation. As consequence, the generated code is encapsulated in separate tem-
plate files (in human-readable format) and can easily be adapted or refined. The
generators are integrated in our modeling tool. As our tool supports import and
export of models in XMI format (the OMG standard for model exchange be-
tween tools) the generators may also be used independently from our modeling
tool. Currently we provide the generation of SVG/JavaScript. A generator for
Flash/ActionScript is under development.

8 Related Work

Regarding the development of multimedia applications, the lack of adequate
software engineering methods is already a well known problem, discussed e.g. in
[11], [12], [13], or [14].

For model-driven approaches in general, the de-facto standard for visual mod-
eling is the UML [8]. We use it as base for the modeling of multimedia applica-
tions and define our extensions as much as possible consistent to UML 2.0. As
UML is a general object-oriented approach, for many specific application areas

MDD for Multimedia Applications 17

extension are defined (often as OMG standards itself). As we show in this paper,
important aspects of multimedia applications can not be modeled with UML in
an adequate way. These are especially the integration of media types (see section
3), the spatio-temporal structure of the user interface (see section 4 and 6) as
well as interaction (section 5). Several work exists addressing the modeling of
single of these aspects.

The modeling of temporal behavior and synchronization is addressed e. g.
in [15] or [16]. As the approaches focus on very detailed description of time
relations, we did not include them in our approach (see section 6).

The UML extension UML for interactions (UMLi, [17]) models interactive
user interfaces. The approach is explicitly restricted to form based applications.
Based on the restricted set of UI elements and events, they model presentation
structure, interactions, and resulting behavior in a very compact and straightfor-
ward way. An extension for support of media objects and more flexible interac-
tions would result in highly overloaded models. The UML profile for interaction
design [18] concentrates on architectural and structural aspects.

Work on the development process multimedia applications itself without the
use of multimedia-specific modeling concepts is presented in [19] or [20]. A mainly
document-oriented view on multimedia applications, i.e. without considering ap-
plication logic, is e.g. provided in [21] and [22].

A large area of research is the model driven development of web applications.
Several approaches allow to specify almost the complete application within the
model (except the concrete UI layout) and provide code generation, e.g. UWE
([23], [24]), OO-H ([25]) or [26]. As a result, they are also highly optimized
for web applications and base on the restricted set of user interface elements
and interaction for web browsers. For this reasons, they are less suitable for
multimedia applications, as complex UI elements are not supported, similar to
UMLi.

The most related approach is OMMMA (Object-oriented Modeling of Multi-
media Applications, [27], [7]). The approach provides an integrated modeling of
multimedia applications based on UML. They provide four views of the model.
Application structure and user interface structure are modeled similar to our ap-
proach in a class diagram respective presentation diagram. Interaction is modeled
using UML state charts. Extended UML sequence diagrams are used to model
temporal behavior. While on a first look our approach seems very similar to OM-
MMA, in detail we provide several changes for the purposes of easy to handle
models and code generation.

OMMMA refers media objects as abstract media types without including
their implementation related features. The modeler has to model required prop-
erties and events (like a method play() for a video – see section 3 for further
explanation) explicitly by hand. The relationships between media types in the
structural model and the UI objects in the presentation diagram are not directly
visible in OMMMA models, but only with help of the sequence diagrams. Wid-
gets are not part of OMMMA’s structural model. The interaction in OMMMA
is described by a UML state chart. As we argue in section 5, a compact notation

18 Heinrich Hußmann and Andreas Pleuß

like tables is suited best for modeling the events. Additionally in a state chart, it
is difficult to find out, which UI element triggers which events. Furthermore, the
modeling of a whole application in a state chart, as supposed in OMMMA, may
result in very complex models which are difficult to handle. For the modeling of
the temporal behavior OMMMA uses sequence diagrams. They are mandatory,
as they additionally contain the relationships between structural model and pre-
sentation model. As we discuss in section 6, the modeling of each operation in
a sequence diagram is not adequate for our purposes. Additionally to the men-
tioned differences to OMMMA, we extend the concept of scenes (with regards to
their implementation) by introducing entry- and exit-methods or the possibility
to assign UI elements directly to a scene (see section 3).

To summarize, there is currently no modeling language comparable to our
approach except OMMMA. As OMMMA provides important insights for the
modeling of multimedia applications, we use it as a base for our approach. We
add new ideas, refinements, and simplifications and develop tool support.

9 Conclusion and Outlook

The modeling language which was presented above is massively based on UML
2.0 and related technologies (like meta-modeling and MDA), but a model in
our language is significantly different from a standard model of an arbitrary
software application. It is our belief that multimedia applications, due to the
high involvement of presentation designers (graphical design, sound design etc)
and due to the time-dependent nature of some presentation media, need specific
concepts not found in standard modeling languages. To achieve a good inter-
face towards the presentation designers, specific diagrams for presentation and
interaction have been proposed above. To reflect the temporal flavor of media,
a special temporal structure has been introduced which structures the appli-
cation into scenes. Within a scene, presentation follows a specific presentation
diagram, so the structuring into scenes also assists communication with presen-
tation designers. To summarize the model concepts more abstractly, the classical
static structure of the application is enhanced by a sophisticated spatio-temporal
structure adequate for multimedia presentations.

Concepts for a tool suite covering modeling and code generation were sketched
above. A first prototypical set of such tools is available, however there is much
space for improvement. For instance, cross-platform code generation is not yet
supported (currently only one platform, dynamic SVG, is supported). But work
on other platforms is in progress, and we expect in particular to be able to re-
port success on the integration of the popular Flash platform soon. There are
two obvious strains for further work: Detail improvements of modeling language
and tool, and evaluation of the approach. Regarding the first aspect, many small
improvements are planned, e.g.: Notation for multiple UI objects in presenta-
tion diagrams, layout managers, support for UI objects moving their position
on the screen (usually animations), constraints and properties of different out-
put devices. Regarding the evaluation of the approach, we plan to use the new

MDD for Multimedia Applications 19

technology in student projects carried out by students of the “Media Informat-
ics” study program at our university, and to compare empirically the achieved
performance and quality of results with a more conventional, tool-driven and
platform-specific style of multimedia application development.

Besides these more short-term goals for further work, the introduction of
a very high abstraction level for multimedia applications also makes it possi-
ble to freshly discuss the old question of whether multimedia applications are
inherently different from other, more standard pieces of software. The abstract
modeling concepts may make it possible to define a formal, mathematical seman-
tics for multimedia applications, and may therefore contribute to the long-term
goal of better understanding the underlying principles of this class of computer
programs.

10 Acknowledgements

We would like to thank all students taking part in the multimedia development
projects for their help to gain additional insights to multimedia development as
well as K. Leichtenstern for the help on the tool development.

References

1. Macromedia, http://www.macromedia.com. (2004)
2. W3C: Scalable Vector Graphics (SVG) 1.1 Specification. 2003
3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture: A System Of Patterns . Volume 1. John Wiley,
West Sussex, England (1996)

4. Object Management Group, MDA, http://www.omg.org/mda. (2004)
5. Frankel, D.S.: Model Driven Architecture. John Wiley (2003)
6. Kleppe, A., Warmer, J., and, B.W.: MDA Explained. Addison-Wesley (2003)
7. Sauer, S., Engels, G.: Extending UML for Modeling of Multimedia Applications.

In Hirakawa, M., Mussio, P., eds.: IEEE Symposium on Visual Languages 1999
Proceedings. IEEE Computer Society (1999)

8. Object Management Group: UML 2.0 Superstructure Final Adopted Spec. (2003)
9. Moving Pictures Expert Group (MPEG): MPEG-4 (2002)

10. The Eclipse Project, http://www.eclipse.org. (2004)
11. Hirakawa, M.: Do Software Engineers Like Multimedia? In: IEEE International

Conference on Multimedia Computing and Systems (ICMCS) 1999 Proceedings.
Volume 1. IEEE Computer Society (1999) 85–90

12. Arndt, T.: The Evolving Role of Software Engineering in the Production of Multi-
media Applications . In: IEEE International Conference on Multimedia Computing
and Systems (ICMCS) 1999 Proceedings. 1 edn. IEEE Computer Society (1999)

13. Rahardja, A.: Multimedia Systems Design: A Software Engineering Perspective.
In: International Conference on Computers and Education (ICCE) 95 Proceedings.
(1995)

14. Bianchi, A., Bottoni, P., Mussio, P.: Issues in Design and Implementation of Mul-
timedia Software Systems. In: Proceedings of IEEE International Conference on
Multimedia Computing and Systems (ICMCS ’99), Florence, Italy, Volume I. IEEE
Computer Society (1999) 91–96

20 Heinrich Hußmann and Andreas Pleuß

15. Bertino, E., Ferrari, E.a.: Temporal Synchronization Models for Multimedia Data.
TKDE 10 (1998) 612–631

16. Wahl, T., Wirag, S., Rothermel, K.: TIEMPO: Temporal Modeling and Authoring
of Interactive Multimedia. In: International Conference on Multimedia Computing
and Systems. IEEE Computer Society (1995) 274–277

17. da Silva, P.P., Paton, N.W.: UMLi: The Unified Modeling Language for Interactive
Applications. In Evans, A., Kent, S., Selic, B., eds.: UML 2000 - The Unified Mod-
eling Language. Advancing the Standard. Third International Conference, York,
UK, October 2000, Proceedings. Volume 1939. Springer (2000) 117–132

18. Nunes, N.J., e Cunha, J.F.: Towards a UML profile for interaction design: the
Wisdom approach. In Evans, A., Kent, S., Selic, B.a., eds.: UML 2000 - The Uni-
fied Modeling Language. Advancing the Standard. Third International Conference,
York, UK, October 2000, Proceedings. Volume 1939. Springer (2000) 101–116

19. Boehm, B.W., Egyed, A., Kwan, J., Madachy, R.J.: Developing Multimedia Appli-
cations with the WinWin Spiral Model. In Jazayeri, M., Schauer, H., eds.: Software
Engineering - ESEC/FSE ’97, 6th European Software Engineering Conference Held
Jointly with the 5th ACM SIGSOFT Symposium on Foundations of Software En-
gineering, Zurich, Switzerland, September 22-25, 1997, Proceedings. Lecture Notes
in Computer Science. Spinger (1997)

20. Depke, R., Engels, G., Mehner, K., Sauer, S., Wagner, A.: Ein Vorgehensmodell
für die Multimedia-Entwicklung mit Autorensystemen. Informatik: Forschung und
Entwicklung (1999) 93–94

21. Marculescu, R., Pedram, M., Henkel, J.: Distributed Multimedia System Design: A
Holistic Perspective. In: 2004 Design, Automation and Test in Europe Conference
and Exposition (DATE 2004), 16-20 February 2004, Paris, France. Volume 2. IEEE
Computer Society (2004)

22. Mines, R.F., Friesen, J.A., Yang, C.L.: DAVE: A Plug and Play Model for Dis-
tributed Multimedia Application Development. In: Proceedings of the second ACM
international conference on Multimedia. ACM Press (1994)

23. Koch, N., Kraus, A.: Towards a Common Metamodell for the Development of
Web Appliactions. In Lovelle, J.M.C., Rodŕıguez, B.M.G., Aguilar, L.J., Gayo,
J.E.L., Rúız, M.d.P.P., eds.: Web Engineering, International Conference, ICWE
2003, Oviedo, Spain, July 14-18, 2003, Proceedings. Volume 2722 of Lecture Notes
in Computer Science. Springer (2003)

24. Hennicker, R., Koch, N.: Modeling the User Interface of Web Applications with
UML. In Evans, A., France, R.B., Moreira, A.M.D., Rumpe, B., eds.: Practical
UML-Based Rigorous Development Methods - Countering or Integrating the eX-
tremists, Workshop of the pUML-Group held together with the UML2001, October
1st, 2001 in Toronto, Canada. Volume 7 of LNI. GI (2001)

25. Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent
Web Applications. IEEE MultiMedia 8 (2001) 26–39

26. Muller, P.A., Studer, P., Bézivin, J.: Platform Independent Web Application Mod-
eling. In Stevens, P., Whittle, J., Booch, G., eds.: UML 2003 - The Unified Mod-
eling Language, Modeling Languages and Applications, 6th International Confer-
ence, San Francisco, CA, USA, October 20-24, 2003, Proceedings. Lecture Notes
in Computer Science. Springer (2003)

27. Engels, G., Sauer, S.: Object-oriented Modeling of Multimedia Applications. In
Chang, S.K., ed.: Handbook of Software Engineering and Knowledge Engineering.
Volume 2. World Scientific, Singapore (2002) 21–53

