
Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

Playing with the Real World

Paul Holleis, Matthias Kranz, Anneke Winter, Albrecht Schmidt

University of Munich
Research Group Embedded Interaction

Amalienstraße 17
80333 Munich, Germany

{paul,matthias,anneke,albrecht}@hcilab.org
www.hcilab.org

Abstract

In this paper we provide a framework that enables the
rapid development of applications using non-standard
input devices. Flash is chosen as programming lan-
guage since it can be used for quickly assembling
graphical applications. We overcome the difficulties
of Flash to access external devices by introducing a
very generic concept: The state information generated
by input devices is transferred to a PC where a pro-
gram collects them, interprets them and makes them
available on a web server. Application developers can
now integrate a Flash component that accesses the data
stored in XML format and directly use it in their appli-
cation. We show two examples, one from a pervasive
gaming background and one from an installation in an
office setting.

Keywords: Design, Experimentation, Human Fac-
tors, Pervasive Computing, Input Device, Output De-
vice, Sensors, Game Controller, Playful Computing

Digital Peer Publishing Licence
Any party may pass on this Work by electronic
means and make it available for download under
the terms and conditions of the current version
of the Digital Peer Publishing Licence (DPPL).
The text of the licence may be accessed and
retrieved via Internet at
http://www.dipp.nrw.de/ .
First presented at the Workshop PerGames 2005
held at PERVASIVE 2005, extended and revised
for JVRB

1 Introduction

Gaming is and always was ubiquitous and pervasive:
children play card games on long travels in the back
seat of the car, teenagers use their high-end personal
computers and business people play with their highly
sophisticated mobile devices - as is stated in [Nie05]
killing time is the killer application and gaming cer-
tainly is designated for this purpose.

In this paper we present a general concept for rapid
prototyping games that reach out in the physical world.
Our focus is on non-standard input techniques using
physically embedded controllers. We concentrate on
prototyping devices beyond mouse and keyboard as
we think that special purpose devices are much more
interesting and suitable to gaming.

We provide a general architecture for communica-
tion between input and output devices and applications
using existing standards and protocols. The data, es-
pecially sensor data, representing the physical states
of the input device is transferred to a server where
it is made available to applications. The actual sen-
sor data is provided in human readable form coded in
XML. The server is a lightweight web server that can
be accessed via the HTTP protocol which is available
in a great variety of programming platforms and lan-
guages.

On the gaming application side, we demonstrate
the integration of novel input devices in Macrome-
dia Flash. This multimedia authoring tool and the
programming language ActionScript offer great flex-
ibility and possibilities to integrate all kinds of media
(sound, graphics and movies). This platform has also
been widely accepted for small-scale applications, es-
pecially games. We therefore provide a Flash compo-

urn:nbn:de:0009-6-2948, ISSN 1860-2037

http://www.hcilab.org
http://www.dipp.nrw.de/

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

nent that entirely hides the complexity of the data re-
trieval, pre-processing and transfer to the application.
The Flash programmer can easily and directly access
the values delivered by the input device as local vari-
ables. No special knowledge of the input device like
design, electronic layout or hardware used, is needed
by the application programmer. These facts are com-
pletely hidden and shielded.

2 Programming Beyond the Desktop

The focus of traditional programs and especially
games has primarily been on running these applica-
tions on standard desktop computers, mobile devices,
and game consoles. Such devices unify input and out-
put (e.g. in the case of a standard PC mouse, key-
board and screen). Even with the emergence of multi-
player games and later on internet based online gam-
ing platforms, the computer screen and speakers re-
main the only output devices (besides force feedback
controls) and mouse, keyboard and joystick or con-
ceptually similar devices like rumble pads or steering
wheels are still the dominant input devices used.

From this perspective, we see a large potential for
the development of ubiquitous gaming devices. We
think, that this area is another fertile field of research
which can benefit from rapid prototyping. In recent
works on ubiquitous gaming, novel interaction devices
like a torche [GSK+02], a flying jacket [RSH+02] or
a cushion [SHK04] are proposed.

We contribute to this by providing a generic archi-
tecture and implementation for connecting novel and
non-standard input devices with applications.

2.1 New Input and Output Devices

The computer domain has largely been dominated by
systems with a relatively large display, capable of
showing (fast moving) high-resolution images in full
color and spatial sound output of high-quality. On the
input side a wide range of game controllers and point-
ing devices are available. Most of them are very simi-
lar in function and handling. The keyboard is still the
standard way to enter text and the mouse plays a major
role in interacting with different parts displayed on the
monitor.

More recently, camera based approaches have been
introduced as generic controllers for games. The Sony
EyeToy, e.g., allows interacting in the physical space
with games on a Playstation 2 [Son05].

Input Devices Since the invention of the computer
mouse, a great varity of input devices has been devel-
oped. Most input and interaction devices are not as
general as the mouse and hence, they are of great value
in specific domains.

Recently, research and industry focus on interac-
tions by directly observing movements or gestures
of users and translating them into interaction events.
However, this kind of processing needs an augmen-
tation of the users’ environment or the users them-
selves. Examples are presented in [VRC99],[MAS04]
and [Rek01].

Our approach differs from this in that we augment
existing objects or appliances that people have already
got used to and know their affordances. We then aim
for an easily understandable way of translating inter-
action with these devices into actions and events inter-
pretable by applications. By matching the affordance
of the object with the interaction to perform, we can
be sure that users will quickly be able to start using
the application in the intended way.

For enhancing existing appliances, we identified
several different types of sensors that can be cheaply
bought and easily integrated:

• Accelerometers: Can be used to detect absolute
angles with respect to the earth’s gravity field as
well as dynamic acceleration along their respec-
tive axes.

• Magnetoscopes: Can be used to detect absolute
angle with respect to earth’s magnetic field and
relative rotational changes.

• Pressure Sensors: Can be used to sense whether
users hold or squeeze a device in their hands, put
it into a pocket or exert pressure to initiate some
action, etc.

• Light Sensors: Can be used to decide whether a
device is put in some bag or left outside; can also
give information on the time of day and the type
of environment the user is in.

• Distance Sensors: Can be used to measure the
space between two objects or the user and an ob-
ject.

This is by no means an exhaustive list as there exist
many more types of sensors (temperature sensors, mi-
crophone, or more general, sonic sensors, etc.). How-
ever, the sensors listed above prove to be interesting in
our experiments for creating engaging and animating

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

Figure 1: Visualization of the basic architecture.

input devices. In many ways users can interact with
devices like a cube ([KSHS05]) or a chair ([Coh03].
This can easily be detected and interpreted.

We will show in Section 3.1 how we use a subset
of the mentioned sensors to capture movements of in-
terest of a user on a augmented IKEA balance cushion
([SHK04]).

Output Devices On the other end of the application,
we observe the trend to use more and different types of
screens and displays for output, depending on the type
of data that is to be visualized.

We also do not narrow the term output devices to
mere visual screens, but also include various means of
output devices, e.g., for tactile or haptic output. Sim-
ple occurrences of showing a one bit state can include,
e.g., LEDs or switching on and off any appropriate ap-
pliance.

Particularly interesting seems to be to use a com-
bination of distributed large public displays placed at
various points of interest in the environment and small
private displays visible only to a specific user or group
of users. Such forms of multi-display game environ-
ments have been suggested in [MMES04].

From an architectural point of view, we treat sensors
and actuators similar as will be shown in Section 2.2.

2.2 Basic Architecture

As is shown in Figure 1, the application is strictly
separated from any issues regarding sensor or actua-
tor hardware. There is a clear interface to access the
different devices. A realization for that (indicated by
the cloud in Figure 1) will be presented later in Sec-
tion 3. An application needs to send information to
output devices and receive information from input de-
vices. Communication in these two directions is aided
by two helpers, namely the Sensor Server and the Ac-
tuator Server. They are similar in structure in that they
have one or several registered devices with which they
communicate. The Sensor Server for example collects

data from all sensors known to the component. This
information can then be queried and used by the appli-
cation. The Actuator Server on the other hand has a list
of actuators, i.e., displays, lights, etc. The application
is then granted access to those via the communication
layer according to the capabilities of the respective de-
vice.

Of course, it is neither needed nor sensible that
every sensor sends its data to the Sensor Server by it-
self. In most hardware platforms, those will be col-
lected and sent by a central component. On the other
hand, this approach allows an arbitrary number of sen-
sors / actuators in the environment to be used without
needing any sophisticated knowledge in hardware or
communication protocols.

2.3 Abstraction from the Hardware

To accomplish the design goal described in the last
section, we must provide an abstraction from the avail-
able hardware. Especially to enable application devel-
opers and device builders to easily integrate their prod-
ucts into the architecture. In particular, we want to
ease the job for people building and integrating hard-
ware components and for game application develop-
ers. The field of virtual reality has brought with it
some platforms and architectures that use device ab-
straction. Open Tracker ([RS01]), e.g., bases its track-
ing framework on XML and defines interfaces to eas-
ily support different devices. The Virtual-Reality Pe-
ripheral Network (VRPN) [THS+01] includes a set
of servers that are designed to implement a network-
transparent interface between application programs
and a set of physical devices. In the following we de-
scribe how our concept can simplify the development
process of a real world computer application.

2.3.1 Support for Device Developers

The first thing to build a new interaction method, in
the sense we use it, is to search for a suitable device
and then decide upon which sensors can be integrated.
Subsequently these sensors have to be connected to
some hardware platform like Smart-Its [GKBS04] or
Particles [DKBZ05] that supports retrieving the data,
maybe combine them and send out the information.

The task of a device developer is then to enhance the
Sensor Server to receive the data and make it available
through a clean interface. Similar actions apply to new
actuators. Basic functionality must be provided to be

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

able to control the device. For displays, this may in-
clude writing text, drawing lines and displaying im-
ages, for others it might only mean specifying some
color or switching them on or off. The implementation
of these methods will of course again benefit from an
abstraction mechanism that hides the need of sending
sequences of high and low voltages and offers, e.g.,
access to each pixel.

2.3.2 Application Programmer

Somebody who wants to develop a game or some other
kind of application does not want to have to care at all
about hardware details, communication protocols etc.
Ideally, he or she does not even need to pay attention
to the type of input or output device. Much research
is currently done on automatically adapting content to
be able to display it equally well on a desktop PC, a
smaller PDA display and on a mobile phone. Sim-
ilarly, using different kinds of input devices that pro-
vide the same amount of information and therefore can
be interpreted in a similar way should be interchange-
able. In our example application (see Section 4.1) the
game can be controlled by a new interaction device or
by a standard keyboard.

We are therefore hiding as much of the hardware
details as possible from the developer providing him
or her with an already abstracted interpretation of raw
sensor values. As an example, consider a simple ball
switch and an accelerometer. The first is either 0 or 1,
depending on the way it is placed. The accelerometer
can convey exactly the same information when used
appropriately. However, the developer will probably
not be able to decide that so quickly. Therefore, there
will be an abstraction and the developer can build on a
set of small events and does not need to cope with raw
sensor values if not needed.

2.4 Middle Layer

To be able to get this kind of architecture, a middle
layer is needed that is responsible for providing eas-
ily accessible interfaces to the application and sensor
sides as well as managing the communication between
them.

We draw heavily on available standards to ensure
that the largest possible number of applications can be
used and that the learning effort for developers is min-
imized. As is described in more detail in Section 3.2
where our implementation of the layer is shown, we
currently favor XML as the data wrapping format as it

can be easily validated against, is human readable and
parsers exist for most applications and programming
languages.

As protocol to access the data, one of the most
widely supported formats is HTTP. Nearly all applica-
tions or languages that allow some kind of external ac-
cess are capable of reading web pages. The infrastruc-
ture needed can be found nearly everywhere and it is
particularly easy to create small viewers for prototyp-
ing and testing devices.

3 Real-World-Interaction
Architecture and Implementation

Our experiences from previous projects showed that,
for application developers and designers, the integra-
tion of non-standard hardware is extremely difficult.
To open up design options for interaction with the
physical world, we looked for a solution to easily in-
tegrate novel input and output devices into a program-
ming and authoring environment.

We chose Flash MX because it is commonly used by
developers and designers. It is suitable for easily and
quickly creating games and other small applications
that are accessible using web technology. Beginning
with version 2004, Flash provides an object orientated
programming language called Actionscript 2.0. We
therefore created an Actionscript 2.0 component that
can be incorporated in any Flash application by simple
drag and drop. After dragging the component onto the
Flash ’stage’ one has to configure the component by
setting two parameters: one for a link to the configu-
ration URI and one for the variables URI on the server
- both are described later in more detail. Afterwards
the developer has access to all variables made avail-
able from the component on the main time-line (called
’root-time-line’ in Flash).

From there, these can be used like every other global
variable for the application semantics. As has been
shown in the previous sections, all kinds of input de-
vices can be imagined. These produce sensor data in
completely different ways. The Sensor Server is re-
sponsible to convert this data into a specific XML for-
mat (see Section 3.2). The converted data is then avail-
able to the Flash application. The same applies to ac-
tuators where the flow of actions is reversed. The ap-
plication needs not be running on the same machine or
server, it only needs to know the URI where the XML
file is hosted or generated. Thus, it can read and under-

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

stand the data from the server. The information flow
is illustrated in Figure 2. It is a very powerful mecha-
nism to enable communication between hardware de-
vice and user interface even when those are not in the
same room, building or even country, enabling all sorts
of remote controlled applications.

Figure 2: Setup of the Virrig game application.

To be sure that only one device (or, more general,
the correct number of devices) is connected to the soft-
ware, each device is assigned a specific unique ID. At
the start of the program, there is a small dialog that
lets the user choose which of the devices found in the
environment should be chosen for a particular appli-
cation. Of course, a fixed coupling can also be pro-
grammed into the application by removing the dialog
and filter only those messages which originate from
the device with the specified ID. Since the device IDs
could be faked and the RF transmission currently is
not encrypted, this does not prevent malicious inter-
ference. Systems which rely on tight security would
need more sophisticated authentication and authoriza-
tion mechanisms.

It makes sense to enable the coupling of one device
with several programs. This provides different views
on one and the same set of sensors. It is also allowed
to connect several software programs with one and the
same output device. This implies that changes might
be overwritten by later messages. Although this might
not be desirable in some cases (e.g. when controlling
one light), there are many application areas where such
a behavior is wanted like competitive or collaborative
settings. A display used stand-alone or integrated into
an output device, for example, can easily cope with
input from many sources by listing them one after the
other and maybe tagging them.

In this section, we describe the implementation and
focus on sensors. The connection of actuator systems
is similar.

3.1 Sensor Hardware Architecture

We have implemented several sensing devices which
share the same basic hardware architecture. The sen-
sors are connected to a micro-controller. The micro-
controller is responsible for basic data acquisition and
processing. Via RF, the data is then sent to a base unit
that is connected to a computer in the network.

In one implementation we used the Smart-Its
platform [GKBS04] and attached a custom sensor
board. The Smart-Its provide a programmable micro-
controller (PIC 18F452) and several analog as well as
digital inputs and outputs. Sensor data can be sampled
at frequencies of several hundred Hertz (if supported
by the sensor). The RF sender can send data at a max-
imum rate of 14400 bps (including overhead for con-
trol, etc.) enabling even those applications that rely on
quick updates. This data is then transferred wirelessly
using a transceiver of the type Radiometrix SPM 2-
433-28. At the PC side, a similar construct is used:
Another SPM module receives the data and communi-
cates it to the PC via serial line input. From there, it
can be processed by software as is described in further
detail in Section 3.2.

In a new implementation we used Particles, devices
similar to Smart-Its. Particles are developed at TecO,
Karlsruhe [DKBZ05]. They are smaller and have more
sophisticated ways of transmitting data (including ac-
knowledgment etc.). This change has shown one of the
strengths of our architecture: since input devices are
separated from processing and the final application, it
has been very easy to switch to the new platform. Only
the receiving part of the communication server had to
be adjusted. The data is no longer sent over serial input
but in UDP packets.

Apart from the loose coupling to the used sensor
and actuator hardware, the framework also abstracts
from the actual object that is used as input device and
into which we embed the sensors. We deliberately
searched for objects that are known to most people, but
are not yet used as input devices. In this section, two
out of the many possibilities we found are presented.
First, we used an IKEA balance cushion named Vir-
rig shown in Figure 3 [SHK04]. It is a flat cushion
mounted on a robust hemisphere. Thus, it can be ro-
tated and tilted in all directions. It is very flexible in
use as the user can sit, stand, kneel or lie on it and it is
very robust, too, as it is designed for use by children. It
can be seen as a regular cushion or as a toy to practice
balance.

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

Figure 3: The Virrig input device shown from the side.

The digital device we attached inside the hemi-
sphere does not change the affordance or the physi-
cality of the cushion. The user still can sit or stand
on it as before, and since we use radio technology for
data transmission there are no cables leaving it, so it
can still be tilted and rotated like before. We show
how to use the cushion in an edutainment application
in Section 4.1.

Figure 4: Opened Virrig with the integrated Smart-Its.

Inside the cushion, attached to a wooden plate, there
is a Smart-Its (see Figure 4) with the following com-
ponents:

• 4 large batteries are used as power supply; this
ensures that the device needs not be opened even
for long term user studies and during everyday
use

• 4 ball switches indicate the tilt of the cushion in
8 directions

• a compass that shows relative rotational move-
ments as well as the absolute rotation of the cush-
ion

• a pressure sensor is used to sense if a user is cur-
rently sitting on the cushion and detect his or her
movements

• a radio transmitter sends the data to a receiver
connected to the PC

The overall hardware architecture is depicted in Fig-
ure 5.

Figure 5: Hardware architecture of the input device.

As another input device, we chose a small appliance
that is mounted at the doors of many offices, lecture
halls or assembly rooms. It shows the current state of
the room or its occupant. A magnetic pin is placed
on certain spots of a ferromagnetic plate to indicate
whether the person working in that room is in, busy,
out for lunch, etc. We enhanced such boards with mag-
netic switches that recognize where the button / pin is
placed and put a Smart-Its in each of them that com-
municate this state to a central receiver. The applica-
tion is briefly described in Section 4.2.

3.2 Sensor Server / Communication Server

After having described the parts connected to the in-
put device, this section goes into details about the PC
side of the system. A Smart-Its equipped with a radio
receiver is attached to the PC. The Smart-Its receives
sensor data from the cushion and forwards it to a pro-
gram called Serial Server over RS232 serial line. The
Serial Server interprets all received signals and trans-
forms them into XML format. This data is then stored
on a web server making it available for any application
capable of using the HTTP protocol.

The architecture of the receiver is outlined in Fig-
ure 6. As has already been stated, we believe that pro-
viding information via the HTTP protocol is one of

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

the best methods to allow a very high number of dif-
ferent applications as well as programming languages
easy access to this data. The choice of using XML
as storage and wrapping format has been made in the
same sense. A large number of applications and pro-
gramming languages inherently support reading and
writing data coded in XML structures. The fact that
the data is human readable and conveys some seman-
tics in its structure and named tags helps to imple-
ment applications using devices for which there is no
internal knowledge. It also enables the specification
of content structure and easy validation of incoming
data. The part that generates sensor values as well as
the application can therefore rely on a specific DTD
or schema being followed by transmitted sensor data.
This dramatically reduces the complexity of imple-
menting both sides. In our prototypes we did not expe-
rience any significant slow-down using XML instead
of, for example, using a file with comma separated val-
ues (CSV). Since, however, some system resources are
needed for parsing and processing of XML data, this
is not the optimal solution for devices with very low
processing power. The first step toward tackling this
problem is to send only that part of the data that really
changed (event based mechanism). Additionally, we
are planning on making the protocol XML exchange-
able with any other protocol like CSV or binary for-
mats.

3.3 Component and Test Application

To explain how to use the Flash component and how to
build applications on top of it we provide a small sam-
ple application that outlines the basic concepts in more
detail. After that, a more sophisticated program is de-
scribed for which we plan to undertake user studies to
evaluate some assumptions on the impact of physical
interaction in learning applications.

Figure 6: Hardware architecture of the receiver.

The component itself requires two input parameters:
the locations (URIs) of the XML configuration file and

the XML variables file. The XML configuration file
specifies the variables for faster parsing in the Flash
application. The component reads the file so it can
name and initialize variables and set an interval for the
reload rate.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE eventlist SYSTEM "configdtd" >
<config>

<interval>
<min unit= "sec" value="1" />
<max unit= "sec" value="3" />

</interval>
<vars>

<var name="rotation" startvalue="0" />
<var name="left" startvalue="0" />
<var name="right" startvalue="0" />
<var name="up" startvalue="0" />
<var name="down" startvalue="0" />

</vars>
</config>

Tag Tag Explanation
<interval> minimal and maximal sensor

refresh rate in seconds
<vars> block with available variables
<var> names, start values and types of

the variables delivered by the sensor
input device

XML Variables File: This file delivers the sensor
data to the application. Only the variables that have
different values from the last update appear so that the
component does not need to read all the variables each
time. This renders the Flash application notably faster
and also reduces traffic.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE eventlist SYSTEM "vars.dtd" >
<changedVars senderId="...">

<var name ="rotation" value="30" />
<var name ="left" value="1" />

</changedVars>

Tag Tag Explanation
<changedVars> variables whose value changed
<var> names and values of the variables

delivered by the sensor device

When the application starts, the first thing for the
component is to analyze the configuration file, to set

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

up and initialize the variables and to set the minimum
and maximum interval for reading the XML variables
file. Then the application starts reading the variables
for the first time. From now on it reads the variables
file as often as defined by the minimum interval in the
configuration file. It sets the received variables onto
the ’root-time-line’. That process is repeated as long
as the application is running. This is also shown in the
activity diagram in Figure 7. For the rare case of sen-
sors dynamically changing their update interval, the
configuration file could be read from time to time to
update the minimum nd maximum rate.

Figure 7: Activity diagram of the Flash component.

After programming the component, we imple-
mented the first test application. This application vi-
sualizes movements made by the Virrig cushion. The
application shows the cushion in the center of the win-
dow and indicates tilt and rotation. All possible move-
ments of the input device are shown on the screen. A
screen dump of the application is shown in Figure 8.
The green ball in the middle represents the Virrig cush-
ion. The arrow (black triangle in the top right in Fig-
ure 8) indicates the rotation sent by the sensor device.
The tiny black lines around the ball show, if painted
red, the activated ball sensors. The text window on the
right is an output window for testing and tracing the
correct functionality of the component.

Figure 8: Screen dump of the test application.

4 Sample Applications

In this section we introduce some applications based
on the introduced architecture demonstrating the fea-
sibility of our approach.

4.1 Virrig Race Game

The Virrig Race Game is a game application with the
sensor cushion as physical controller. It is a mixture of
car race and learning program, i.e. an edutainment ap-
plication. The car is controlled by the cushion. Since
the expected audience will be primary school children,
the whole design is aimed to be interesting for smaller
kids. Depending on the complexity and type of the
questions, the game is also fun and a nice learning ex-
perience for people of all ages.

The first step in integrating the cushion into the
framework is to augment the Sensor Server such that
it converts the sensor values it receives into an XML
tree. Second, the flash component used as described
in Section 3.3. The flash application can now use the
given sensor values to define its behavior. As one im-
plementation, we designed it the following way: The
user controls the car by tilting the cushion forward and
backward to accelerate or brake and left or right to go
in that direction, respectively (see Figure 10). There
are stop signs on the crossings where a question is dis-
played (see Figure 11). In this case, the rotational sen-
sor (compass) is used to implement a simple selection
mechanism by turning the Virrig. The user then com-
mits the choice by clicking, i.e. tilting forward. One
could also think of realizing the this by means of hop-
ping on the cushion as a load sensor is placed directly
below the user in the inner part of the cushion.

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

Figure 9: Start screen of the game application. The
user can choose to control the game with a standard
keyboard or with the Virrig.

Figure 10: Screen dump of the game application.

The user can continue driving after giving a (poten-
tially wrong) answer. If the answer was wrong, the
sign gets transparent until he or she has answered an-
other question. So the memory effect is not that se-
rious but imposes at least some pressure on the user
who can now try to answer it again. If the question
was answered correctly this time, the sign disappears.
After all signs have disappeared (i.e. all correct an-
swers have been given) the race has been successfully
completed. It could be imagined to display a score
board showing the 10 fastest users or those with the
least number of wrong answers.

The framework makes it particularly easy for devel-
opers to quickly change the interpretation of the sen-

sor values. The compass could for example be used
as sensor controlling instead of tilting. It also enables
exchanging the particular device that is producing the
sensor values or is consuming the software input with
another device, possibly with another set of sensors /
actuators.

Figure 11: Screen dump of the quiz window showing a
question on top and three possible answers below. The
one in the center has been selected by the user.

4.2 Room Occupancy System

This application visualizes the occupation of rooms in
a building, e.g. if the room is used for a meeting, a
lesson, or is empty (see Figure 13). The natural choice
for controlling such an application is an input device
placed at the entrance to rooms. This device is very in-
tuitive to use since a simple version of it can already be
found at many office doors. It is a board with switches
that are activated by magnets (see Figure 12). The state
of a room is set by putting a magnet on the sensitive
area of the Hall-effect switch. This data is wirelessly
transmitted per room to the Serial Server. The server
collects the information of each room and the appli-
cation get this information from a specific IP and port
from the HTTP server.

As can be seen in Figure 12, the device is also
equipped with four LEDs that serve as feedback when
setting the magnets but can also be controlled re-
motely. Thus, one could replace the magnets with sim-
ple buttons and the LEDs could show the current state
of the office. This state can then be changed by, e.g.,
the same Flash application that shows the state of the
room. It simply needs to write a specific value coupled

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

with those LEDs and the Actuator Sensor takes over to
pass the commands to the hardware component.

Figure 12: Screen dump of the Room Occupation Sys-
tem.

Figure 13: Picture of the Room Occupation System
user interface.

5 Related Work

Tangible User Interfaces (TUIs) have been subject to
scientific research for a long time. The initial works
by Ullmer and Ishii [IU97] and others show the high
potentials of intuitive, physical interfaces for human-
computer interaction. Holmquist et al. in [HSU04]
present a comprising overview of recent tangible user
interfaces.

ENI (for example used in [Gro02] is an event and
notification infrastructure using a client-server envi-

ronment. It allows attaching sensors and indicators di-
rectly to the client or enables them to communicate
with the server via a web-based interface. Adding
functionality of new devices requires writing plug-
ins and changing existing ENI clients or creating new
ones. The programming language needed to support
all features is fixed to be Java. The application of
the proposed architecture is similar to our work, but
oriented towards a collaborative scenario targeted at
group awareness and not for making sensor data of
physical and tangible user interfaces available to ap-
plication programmers as presented in this work.

With iStuff, Ballagas et al. [BRSB03], present an-
other flexible prototyping platform for explicit, post-
desktop interaction. iStuff allows multiple, co-located
users to interact with applications and displays in so-
called augmented environments such as the Stanford
iRoom. As our approach, their system is event-based
and allows dynamic re-mapping of devices to events.

Greenberg in [Gre02] discusses the problems of
making physical user interfaces available to applica-
tion programmers, which is still a challenging task.
He compares the difficulties for accessing physical
user interfaces to those the first GUI developers had
– building everything completely new from scratch.
By the proposed architecture we show application pro-
grammers a simple way of managing this problem.

Collabolla, presented by Bove et al. [BPW05], is
a physical interface for arcade games. Players sit on
inflatable balls, so-called Space Hoppers, and by hop-
ping, jumping and rolling control their game charac-
ters. As with the Virrig, the playfulness and the affor-
dances of the physical input device are exploited for
the game controller.

6 Conclusions

In this paper we have introduced an approach that
helps prototyping physical interaction. Our focus is
on the support for games. The examples given con-
centrate on physical input devices and their integra-
tion into Macromedia Flash MX. The abstractions pro-
vided aim at easing the task for hardware develop-
ers and game developers alike by providing a suitable
middleware.

By encapsulating the access to physical devices into
a component in Flash we see that implementations be-
come much simpler. Providing sensors and actuators
as variables makes their physical distribution transpar-
ent to the developer. The simple way of exchang-

urn:nbn:de:0009-6-2948, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

ing the information via XML and HTTP makes new
developments very simple as developers can use li-
braries already available. For some gaming domains
the proposed solutions has restrictions as the time de-
lay between the occurrence of a manipulation in the
real world and availability of the data in Flash can take
up to 200 ms. But even given this time delay games
that need ’immediate’ reaction can be prototyped with
the infrastructure described. Since some applications
are time critical and cannot live with such a delay, we
are currently optimizing data transfer, e.g., letting the
Flash application query for its data directly via TCP
and skip the HTTP server.

We are using this setup in other projects that we
are running. Especially colleagues and students who
are new to embedded device programming are very
pleased to be able to use devices and sensors with-
out having to get deeper knowledge about controlling
them.

Currently we are preparing a version of the Virrig
Race Game to perform a user study with children. In
future work we want to qualitatively and quantitatively
assess the advantages of physical controls for edutain-
ment systems.

Another project we are currently working on is con-
cerned with using the same technology of the Virrig
cushion. A similar device called therapy top is used in
professional sport schools for training and convales-
cence purposes. Athletes and patients have to perform
specific exercises defined by professional therapists.
It is very important that these exercises be done cor-
rectly. To support trainees without much supervision
effort, we are developing a training application where
people get immediate audio-visual feedback on their
actions. With the concept we presented the underlying
logic can be realized very quickly.

7 Acknowledgments

The work has been conducted in the context of the
research project Embedded Interaction (’Eingebettete
Interaktion’) and was funded by the DFG (’Deutsche
Forschungsgemeinschaft’).

References

[BPW05] Jennifer L. Bove, Simone Pia, and
Nathan Waterhouse,Collabolla, http:
//people.interaction-ivrea.

it/s.pia/collabo_1.htm , 2003,
visited 21/10/2005.

[BRSB03] Rafael Ballagas, Meredith Ringel, Mau-
reen Stone, and Jan Borchers,iStuff: a
Physical User Interface Toolkit for Ubiq-
uitous Computing Environments, CHI
’03: Proceedings of the SIGCHI con-
ference on Human Factors in Comput-
ing Systems (New York, NY, USA),
ACM Press ISBN 1-58113-630-7, 2003,
pp. 537–544.

[Coh03] Michael Cohen,The Internet Chair, In-
ternational Journal of Human-Computer
Interaction15 (2003), no. 2, 297–311.

[DKBZ05] Christian Decker, Albert Krohn, Michael
Beigl, and Tobias Zimmer,The Parti-
cle Computer System, Proceedings of the
Fourth International Symposium on In-
formation Processing in Sensor Networks
(IPSN), April 2005, pp. 443–448.

[GKBS04] Hans-Werner Gellersen, Gerd Kortuem,
Michael Beigl, and Albrecht Schmidt,
Physical Prototyping with Smart-Its,
IEEE Pervasive Computing Magazine3
(2004), no. 3, pp. 74–82, ISSN 1536–
1268.

[Gre02] Saul Greenberg,Rapid Prototyping of
Physical User Interfaces, Proc. Graphics
Interface, invited talk, May 2002.

[Gro02] Tom Gross,Ambient Interfaces in a Web-
based Theatre of Work, Proceedings, 10th
Euromicro Workshop on Parallel, Dis-
tributed and Network-based Processing,
2002, pp. 55–62.

[GSK+02] Jonathan Green, Holger Schnädelbach,
Boriana Koleva, Steve Benford, Tony
Pridmore, Karen Medina, Eric Harris,
and Hilary Smith,Camping in the Dig-
ital Wilderness: Tents and Flashlights
as Interfaces to Virtual Worlds, Confer-
ence on human Factors in Computing
Systems CHI’02, Extended Abstracts on
Human Factors in Computing Systems,
ACM Press ISBN 1-58113-454-1, 2002,
pp. 780–781.

urn:nbn:de:0009-6-2948, ISSN 1860-2037

http://people.interaction-ivrea.it/s.pia/collabo_1.htm
http://people.interaction-ivrea.it/s.pia/collabo_1.htm
http://people.interaction-ivrea.it/s.pia/collabo_1.htm
http://media.informatik.rwth-aachen.de/materials/publications/ballagas2003a.pdf
http://media.informatik.rwth-aachen.de/materials/publications/ballagas2003a.pdf
http://media.informatik.rwth-aachen.de/materials/publications/ballagas2003a.pdf
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Cohen&aufirst=Michael&title=international+Journal+of+Human+Computer+Interaction&atitle=The+internet+chair&date=2003&volume=15&issue=2&pages=297-311
http://www.teco.edu/~krohn/spots.pdf
http://www.teco.edu/~krohn/spots.pdf
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Gellersen&aufirst=Hans &title=IEEE+Pervasive+Computer+Magazine&atitle=Physical+Prototyping+with+Smart-Its&issn=1536-1268&date=2004&volume=3&issue=3&pages=74-82
http://www.graphicsinterface.org/proceedings/2002/greenbergInvitedGI2002.pdf
http://www.graphicsinterface.org/proceedings/2002/greenbergInvitedGI2002.pdf
http://media.informatik.rwth-aachen.de/materials/publications/ballagas2003a.pdf
http://media.informatik.rwth-aachen.de/materials/publications/ballagas2003a.pdf
http://www.cogs.susx.ac.uk/interact/papers/pdfs/chi02.pdf
http://www.cogs.susx.ac.uk/interact/papers/pdfs/chi02.pdf
http://www.cogs.susx.ac.uk/interact/papers/pdfs/chi02.pdf

Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 1

[HSU04] Lars Erik Holmquist, Albrecht Schmidt,
and Brygg Ullmer, Tangible Interfaces
in Perspective: Guest Editors’ Introduc-
tion, Personal Ubiquitous Computing8
(2004), no. 5, pp. 291–293.

[IU97] Hiroshi Ishii and Brygg Ullmer,Tangible
Bits: Towards Seamless Interfaces Be-
tween People, Bits and Atoms, CHI ’97:
Proceedings of the SIGCHI conference
on Human factors in computing systems,
ACM Press, 1997, pp. 234–241.

[KSHS05] Matthias Kranz, Dominik Schmidt, Paul
Holleis, and Albrecht Schmidt,A Display
Cube as a Tangible User Interface, In Ad-
junct Proceedings of the Seventh Inter-
national Conference on Ubiquitous Com-
puting (Demo 22), September 2005.

[MAS04] Christian Metzger, Matt Anderson, and
Thad Starner,FreeDigiter: A Contact-
Free Device for Gesture Control, ISWC
’04: Proceedings of the Eighth Interna-
tional Symposium on Wearable Comput-
ers (ISWC’04), IEEE Computer Society,
2004, pp. 18–21.

[MMES04] Carsten Magerkurth, Maral Memisoglu,
Timo Engelke, and Norbert Streitz,To-
wards the Next Generation of Table-
top Gaming Experiences, Proceedings of
the 2004 Conference on Graphics Inter-
face GI’04, Canadian Human-Computer
Communications Society ISBN 1-56881-
227-2, 2004, pp. 73–80.

[Nie05] Jakob Nielson, Killing time is the
killer application, TheFeature:
It’s all about the mobile internet,
http://www.thefeature.com/
article?articleid=8183 , visited
21/10/2005.

[Rek01] Jun Rekimoto,GestureWrist and Ges-
turePad: Unobtrusive Wearable Interac-
tion Devices, ISWC ’01: Proceedings of
the 5th IEEE International Symposium
on Wearable Computers, IEEE Computer
Society, 2001, p. 21.

[RS01] Gerhard Reitmayr and Dieter Schmal-
stieg,An Open Software Architecture for

Virtual Reality Interaction, VRST ’01:
Proceedings of the ACM symposium on
Virtual reality software and technology
(New York, NY, USA), ACM Press,
2001, pp. 47–54.

[RSH+02] Yvonne Rogers, Mike Scaife, Eric Har-
ris, Ted Phelps, Sara Price, Hilary
Smith, Henk Muller, Cliff Randell, An-
drew Moss, Ian Taylor, Danae Stanton,
Claire O’Malley, Greta Corke, and Sil-
via Gabrielli, Things aren’t What They
Seem to Be: Innovation Through Technol-
ogy Inspiration, Proceedings of the Con-
ference on Designing Interactive Systems
DIS’02, ACM Press, ISBN 1-58113-515-
7, 2002, pp. 373–378.

[SHK04] Albrecht Schmidt, Paul Holleis, and
Matthias Kranz,Sensor Virrig - A Bal-
ance Cushion as Controller, Workshop
Playing with sensors on UbiComp 2004,
September 2004.

[Son05] Sony, Eye-Toy, http://www.
eyetoy.com , visited 21/10/2005.

[THS+01] Russell M. Taylor, Thomas C. Hud-
son, Adam Seeger, Hans Weber,
Jeffrey Juliano, and Aron T. Helser,
VRPN: a Device-independent, Network-
transparent VR Peripheral System,
VRST ’01: Proceedings of the ACM
symposium on Virtual reality software
and technology (New York, NY, USA),
ACM Press, 2001, pp. 55–61.

[VRC99] Andrew Vardy, John Robinson, and Li-
Te Cheng,The WristCam as Input De-
vice, Proceedings of the 3rd IEEE Inter-
national Symposium on wearable Com-
puters ISCW’99, IEEE Computer Society
ISBN 0-7695-04280, 1999, pp. 199–202.

Citation
Paul Holleis, Matthias Kranz, Anneke Winter,
and Albrecht Schmidt,Playing with the real world,
Journal of Virtual Reality and Broadcasting,
3(2006), no. 1, April 2006,
urn:nbn:de:0009-6-2948, ISSN 1860-2037.

urn:nbn:de:0009-6-2948, ISSN 1860-2037

http://www.hcilab.org/documents/TangibleInterfacesInPerspective.pdf
http://www.hcilab.org/documents/TangibleInterfacesInPerspective.pdf
http://www.hcilab.org/documents/TangibleInterfacesInPerspective.pdf
http://tangible.media.mit.edu/content/papers/pdf/Tangible_Bits_CHI97.pdf
http://tangible.media.mit.edu/content/papers/pdf/Tangible_Bits_CHI97.pdf
http://tangible.media.mit.edu/content/papers/pdf/Tangible_Bits_CHI97.pdf
http://www.hcilab.org/documents/KranzSchmidtHolleisSchmidt_ADisplayCubeAsATangibleUserInterface_UbiComp2005.pdf
http://www.hcilab.org/documents/KranzSchmidtHolleisSchmidt_ADisplayCubeAsATangibleUserInterface_UbiComp2005.pdf
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Metzger&aufirst=Christian&title=ISWCernational+Symposium+on+wearable+computers&date=2004&pages=18-21
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Metzger&aufirst=Christian&title=ISWCernational+Symposium+on+wearable+computers&date=2004&pages=18-21
http://www.ipsi.fraunhofer.de/ambiente/paper/2004/gi_tabletop_final.pdf
http://www.ipsi.fraunhofer.de/ambiente/paper/2004/gi_tabletop_final.pdf
http://www.ipsi.fraunhofer.de/ambiente/paper/2004/gi_tabletop_final.pdf
http://www.thefeature.com/article?articleid=8183
http://www.thefeature.com/article?articleid=8183
http://www.csl.sony.co.jp/person/rekimoto/papers/iswc01.pdf
http://www.csl.sony.co.jp/person/rekimoto/papers/iswc01.pdf
http://www.csl.sony.co.jp/person/rekimoto/papers/iswc01.pdf
http://www.ims.tuwien.ac.at/media/documents/publications/opentrackervrst2001final.pdf
http://www.ims.tuwien.ac.at/media/documents/publications/opentrackervrst2001final.pdf
http://www.informatics.sussex.ac.uk/interact/papers/pdfs/dis02snark.pdf
http://www.informatics.sussex.ac.uk/interact/papers/pdfs/dis02snark.pdf
http://www.informatics.sussex.ac.uk/interact/papers/pdfs/dis02snark.pdf
http://www.hcilab.org/documents/sensorvirrigabalancecushionascontroller.pdf
http://www.hcilab.org/documents/sensorvirrigabalancecushionascontroller.pdf
http://www.eyetoy.com
http://www.eyetoy.com
http://www.cs.unc.edu/Research/nano/documentarchive/publications/2001taylor_vrpn.pdf
http://www.cs.unc.edu/Research/nano/documentarchive/publications/2001taylor_vrpn.pdf
http://www.scs.carleton.ca/~avardy/vardy_iswc99.pdf
http://www.scs.carleton.ca/~avardy/vardy_iswc99.pdf

	Introduction
	Programming Beyond the Desktop
	New Input and Output Devices
	Basic Architecture
	Abstraction from the Hardware
	Support for Device Developers
	Application Programmer

	Middle Layer

	Real-World-Interaction Architecture and Implementation
	Sensor Hardware Architecture
	Sensor Server / Communication Server
	Component and Test Application

	Sample Applications
	Virrig Race Game
	Room Occupancy System

	Related Work
	Conclusions
	Acknowledgments

