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exposing users and application programmers to the com-
plexities of the physics engine.  
We demonstrate the applicability of the technique using a 
commercially available games physics engine and a proto-
type vision-based interactive surface. We highlight some of 
the interactions such an approach affords, for example ga-
thering multiple digital objects or fine control of a virtual 
ball using friction and collision forces, as shown in Figure 
1. Our system creates natural and fluid physics-based inte-
ractions “for free”—i.e., without the need either to explicit-
ly program this behavior into the system or to recognize 
gestures. We also demonstrate the ability of advanced 
physics simulators to enable user interaction with more 
complex materials such as soft bodies and cloth, as shown 
in Figure 1. 
We have experimented with various alternatives for simu-
lating surface input within the physics world, the trade-offs 
of which are discussed in this paper. Our aim is to allow 
practitioners to understand the nuances of these alternatives 
so that they may further explore the intersection between 
interactive surfaces and physics. We also discuss both early 
experiences using our technique and some of its limitations.  
RELATED WORK 
Much work has recently been published on interactive sur-
faces, and particularly on direct-input tabletops [7,14,25]. 
Some of this work examines physics-like interactions. For 
example, Kruger et al. [17] explored simple notions of fric-
tion and motion to allow an object to be translated and ro-
tated using a single point of contact. Other systems [12,22] 
have implemented gestures such as flicking, throwing, and 
pushing to add velocity and inertia to onscreen objects. 
Beyond tabletops, a number of interactive systems have 
explored the physicality of objects as a principle around 
which interaction is organized. Electronic files stack like 
real documents [19], move out of the way as if they have a 
solid form [23], peel back like paper [8], and move as if 
alive [5]. Rather than employing a full physics model, such 
systems use pseudo-physics in minimal ways to support 
subtle interaction possibilities. The present work looks to 
address a richer set of physics-enabled behavior, and focus-
es on problems related to input. 
Various attempts to provide richer and more realistic 3D 
interactions have also been explored in the context of inter-
active tabletops [13]. Stahl et al. [24] describe a tabletop 
where objects float to the surface when accessed and sink 
back to the ground when no longer used. Hancock et al. 
present a set of methods to compensate for off-axis viewing 
[16] on multi-user tabletops, as well as techniques for shal-
low-depth interaction [15]. These systems allow basic ma-
nipulation of 3D objects but do not model interactions 
based on a physics simulation. 
Realistic dynamics simulation has a long history in graph-
ics and animation communities. Baraff [3] gives an over-
view of the main concepts for calculation of rigid-body 
dynamics. More recently, real-time collision detection and 
response with stable friction calculations became feasible 
[4]. Erleben et al. [9] provide an overview of current tech-

niques and advancements that led to the development of 
sophisticated physics engines for simulation and gaming, 
such as PhysX, Havok, Newton, and ODE. However, these 
techniques have yet to reach the user interface and interac-
tion research communities broadly.  
One notable exception is BumpTop [1], which uses a phys-
ics engine to add real-world dynamics to the Tablet PC 
desktop. It supports notions such as collisions, mass, and 
inertia, and higher level constructs such as piling. The work 
nicely demonstrates some of the capabilities of a modern 
physics engine. However, the approach is based on a single 
point of input and menu-based selection. Compared to the 
rich means available for manipulating physical objects, this 
single-point input model can be limiting.  
Multiple inputs are considered in the application of an early 
physics engine by Baraff with the Responsive Workbench 
[10]. This system simulates a 3D bimanual assembly task 
using two 6 DOF input devices and a stereoscopic display. 
An object may be manipulated with one hand by placing 
eight springs connected to the corners of a virtual cube ri-
gidly attached to the user’s hand. Bimanual interactions are 
supported by the superposition of forces from both hands. 
Thus, when one hand is released, the object snaps to the 
position and orientation of the other.      
Interactive surfaces, particularly vision-based systems 
[14,20,25,26], allow the capture of rich sensor data that not 
only includes multi-touch data but also detailed shape in-
formation, such as images of the users’ entire hands or oth-
er tangible objects near the surface. We present a technique 
for modeling this rich and diverse sensor input, 
representing these effectively as friction and contact forces 
in the physics simulation. These capabilities augment and 
extend the single contact model utilized in BumpTop and 
the bimanual approach in Responsive Workbench, support-
ing single-touch, multi-touch, contour-based, and tangible 
input using a single technique.  
INTERACTIVE SURFACE INPUT 
A contact on an interactive surface (e.g., a fingertip touch-
ing the surface) is most easily represented as a discrete 2D 
point. In the case of vision-based interactive surfaces, 
neighboring sensor pixels are usually grouped into conti-
guous regions or connected components [6], with the idea 
that each component corresponds to a contact. The center 
of the component is then easily calculated. This approach 
thus reduces each contact to a point-based representation, 
regardless of shape. 
This point representation of contacts allows application 
developers to think in terms of familiar point-rectangle hit-
testing algorithms typical of traditional cursor-based sys-
tems, but it imposes significant limits on interaction. First, 
point-based hit testing may fail to catch the user touching a 
virtual object if the contact is not compact, as when the user 
places a large part of their hand on surface. In this case, the 
center point may lie outside the target object. Secondly, 
tracking point-based contacts to deduce motion can lead to 
difficult problems related to correspondence. For example, 
consider two fingers that move so near to each other that 
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they now appear as a single contact. The choice of which of 
the original contacts to eliminate can result in very different 
motion interpretations. Finally, reducing contacts to points 
prevents users from drawing on the full spectrum of mani-
pulation styles found in everyday life. Consider the mul-
tiple grasping strategies illustrated in Figure 2, for example. 
Each gives a different feeling of control in the real world. 
Ultimately, it seems that point-based systems encourage the 
exclusive use of index fingers on interactive surfaces. 

     
Figure 2. Multiple grasping strategies for rotating a 
resting object. 

One approach for preserving more information about con-
tact shape is to determine the bounding box of the contact, 
or the major and minor axes of an ellipse model that ap-
proximately fits the shape. These approaches work well for 
compact contacts (e.g., fingertips) and certain hand poses 
[27], but less so for complex shapes and their motion. Al-
ternatively, the shape may be represented more precisely as 
a polygon mesh by calculating each contact’s contour, 
represented as a closed path [11]. Another technique is to 
take pixels lying near the contour by computing the spatial 
gradient using a Sobel filter [11].  
These approaches allow us to support even more sophisti-
cated representations of user input. We would like to com-
bine this broad fidelity of input with advanced physics si-
mulations to expand the vocabulary with which we can 
manipulate digital objects. Our aim is to make manipula-
tion of digital objects less scripted, using rich and varied 
interaction techniques and strategies. 
PHYSICS SIMULATIONS 
Today’s physics engines enable the creation of real-world 
mechanics and behavior in graphical applications while 
hiding computational complexity. They employ many 
physics concepts such as acceleration, momentum, forces, 
friction, and collisions. In addition to rigid bodies, many 
systems model particles (for smoke, dust, and so forth), 
fluids, hair, and clothes. Virtual joints and springs give “rag 
doll” characters and vehicles appropriate articulation, and 
materials can be programmed with specific properties—so 
that ice is slick, for example. The present work primarily 
concerns contact forces, such as those due to collisions and 
friction between simulated bodies. 
The handling of collisions is typically divided into collision 
detection, the determination of whether two rigid bodies are 
in contact, and collision response, the application of appro-
priate forces if they are in contact. For example, the colli-
sion of a cube falling on the floor may be detected by con-
sidering the intersection of the faces defining the cube with 
those of the floor. The change in motion of the cube as a 
result (the response) is a function of mass, inertia, velocity, 
the point of contact with the floor, and other factors. 

Friction forces resist motion when the surface of one body 
stays in contact with the surface of another. If two surfaces 
are moving with respect to each other, kinetic friction op-
poses the forces moving the bodies. If two surfaces are at 
rest relative to each other, static friction opposes forces that 
would otherwise lead to the motion of one of the bodies. 
SURFACE INPUT WITHIN A PHYSICS SIMULATION 
In order to interact appropriately with virtual objects in a 
physics engine, surface contacts must be represented within 
the simulation. These engines have enormous potential and 
flexibility. Accordingly, there are many strategies for mod-
eling surface input in the physics world. We briefly de-
scribe these strategies here, and give more detail later.  
• Direct force: A force is applied where a contact point 

touches a virtual object. The force direction and magni-
tude is calculated from the contact’s velocity and size if 
available. 

• Virtual joints and springs: Each contact is connected to 
the virtual object it touches by a rigid link or spring, so 
that the object is dragged along with the contact. 

• Proxy objects: Contact points are represented as rigid 
bodies such as cubes or spheres. These bodies are an ap-
proximation of the contacts, and interact with other vir-
tual objects by collisions and friction forces. 

• Particles: Where additional information about a contact’s 
shape is available, multiple rigid bodies—or particles—
are combined to approximate the shape and motion of the 
contact more accurately. This allows for better modeling 
of interaction with the whole hand or other contacts such 
as tangible objects. 

• Deformable 2D/3D mesh: Another approach for model-
ing more sophisticated shapes is to construct 2D or even 
3D meshes if appropriate sensors are available.  

It would seem that a deformable 3D mesh of the hand 
would achieve the highest degree of fidelity. But a number 
of difficulties exist with this approach. First, most interac-
tive surfaces provide sensing at or near the surface only, 
not full 3D shape. Similarly, because the manipulated ob-
ject exists only on the (flat) display surface, the 3D shape 
of the hand, if captured, would not conform to the object 
and so would not reflect the shape of a real hand grasping a 
real object. Finally, constructing such an animated mesh is 
difficult, requiring robust tracking of features and accurate 
deformation of the 3D object.  
That leaves us with a key question that motivates this pa-
per: How does one best use surface input to interact with 
advanced physics simulations in useful ways? We describe 
our rationale and experiences in implementing and evaluat-
ing the above alternatives. The main contribution of this 
paper is a novel Particle Proxy technique that retains most 
of the benefits of mesh-based representations—in particu-
lar, a high fidelity of interaction—but is considerably easier 
for application programmers to implement.  
Applying External Forces Directly 
A typical strategy for moving an object on an interactive 
surface in response to touch is to continually update its 
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position to match the touching contacts’ position. Generally 
we will refer to this manner of moving objects by setting its 
position and orientation directly generally as kinematic 
control. 
Within a physics simulation, however, the most common 
way for an application to control the movement of a rigid 
body is to apply one or more forces. For example, a space-
ship in a game might have thrusters on either side of its 
body. The ship may be propelled forward by applying for-
ward force at the location of both thrusters. If one of the 
forces is applied in the opposite direction, the ship will 
turn. Rotation is the by-product of torque, which occurs 
when forces are applied off-center (of mass) because dif-
ferent “parts” of the body are moving at different speeds. 
From a programmer’s point of view, this approach is very 
different than moving the ship by setting its position. To 
effect kinematic control within a physics simulation, we 
must calculate the precise force and torque required to 
move the object into its target position. This method of 
positioning an object ensures correct collision response 
with other bodies in the simulation. In comparison, directly 
setting the position of the body within a simulation can lead 
to unstable and unpredictable results. Absolute positioning 
might be analogous to teleporting a real object from one 
location to another. Issues such as interpenetration whereby 
objects become partially embedded in each other, can arise.  
A natural strategy for moving an object to follow a contact 
on an interactive surface is therefore to consider that each 
contact imparts a friction force to the body it touches ac-
cording to the contact’s motion (and presumed mass). 
These multiple friction forces may be applied to the body, 
as in the example of the spaceship. Unfortunately, to calcu-
late the forces necessary to match a contact’s movement, all 
other external forces acting on the body must be taken into 
account and counteracted. These may include friction 
forces and collision responses that are difficult or impossi-
ble for application developers to obtain. 
This difficulty extends to considering forces corresponding 
to surface contacts. In the case of multiple contacts, the 
correct friction forces corresponding to each contact must 
be determined simultaneously. Consider the case where one 
or more of the contacts exhibits static friction. Recall that 
static friction exerts a force that counteracts forces that 
would otherwise lead to a body’s motion. For example, if 
one contact “pins” an object so that it will rotate due to the 
motion of another contact (e.g, Figure 2, left), the applica-
tion of correct friction force due to one of the contacts re-
quires knowing the friction force due to the other. 
In fact, at the heart of any physics engine is a sophisticated 
constraint solver that addresses this very problem. Without 
essentially constructing a new solver within the physics-
engine, or without access to internals of the existing solver, 
it would seem impossible to correctly apply contact forces 
directly. Even if it were possible to change the solver or 
embed another, such an approach would go against the spi-
rit of the present work, wherein an existing full-featured 
physics engine is leveraged rather than built from scratch. 

One possible solution is to treat all frictions as kinetic. But 
this poses a problem in the “pinning” example. Because 
kinematic friction forces only act in the presence of relative 
motion, the counteracting force that keeps the “pinned” part 
of the object stationary must first move. Thus, this ap-
proach results in a somewhat viscous and slightly unpre-
dictable feel when moving objects. 
Connecting to Objects with Joints and Springs 
Another kinematic approach, used in systems such as 
BumpTop [1], is to connect virtual objects and an input 
contact using a joint. Think of this as an invisible piece of 
rope of predefined length that is tied to the object at a par-
ticular anchor point. The object is then pulled along using 
this rope. 
By attaching a joint off-center, the object is subject to both 
force and torque—allowing the object to move and rotate 
using a single connection. In our earlier pinning example, 
one joint attaching a stationary contact point to one corner 
of the object would serve as a pivot point. A second joint 
attaching a second moving contact point to an opposing 
corner would cause the object to spin around the first con-
tact point.  
This approach is not well suited for multiple simultaneous 
contact points, particularly those pulling in opposite direc-
tions. Whereas in the real world, multiple contacts pulling 
in opposite directions on an object would result in the fin-
gers sliding, or the object deforming or tearing, neither be-
havior is supported by joint constraints on a rigid body. It is 
thus easy for multiple rigid constraints to overconstrain the 
simulation, resulting in numerical instability and unpredict-
able behavior. 
Springs can in part alleviate some of these issues by provid-
ing more flex in the connection. However, a trade-off exists 
between the elasticity of the spring and how responsive the 
connected object is to contact motion (springs should be 
fairly short and rigid to allow for a faster response). Prob-
lems of numerical stability and uncontrolled oscillations are 
likely [10]. Another approach is to allow the joint or spring 
to break in these situations, but this can easily lead to situa-
tions where objects fly out of the user’s reach. 
SETTING THE SCENE FOR A NEW TECHNIQUE 
We have so far described two techniques that one would 
typically employ in single-point physics-enabled applica-
tions, and discussed the limitations of both in terms of 
modeling multiple contacts. The modeling of such input is 
challenging but only part of the story with respect to the 
limitations of these approaches.  
First, as we described earlier, contacts are not always dis-
crete 2D points, and it may be desirable to match the shape 
of the contact input closely. It is unclear how one would 
model more sophisticated shapes and contours with either 
of these initial approaches. Second, the above techniques 
address the case where the user touches the object directly, 
thereby moving the object by friction forces. Neither of 
these approaches addresses the movement of objects by 
collision forces, i.e., from contact forces applied to the side 
of the object (as in Figure 2, middle).  
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back of Joints was represented as red lines drawn from the 
contact point to the anchor point on the object (these disap-
peared if the joint was broken); Proxies as red cubes at each 
center point where contact was sensed; and Particles as 
smaller red cubes per pixel in the contour image. We ran 
each technique with and without visual feedback as our 
third independent variable. 
The task setup (see Figure 8) was as follows. In Task 1, 
each of four spheres and rectangles were placed exactly on 
matching targets; each object disappeared upon proper 
placement. In Task 2, an assortment of objects of different 
shapes, sizes, and masses were sorted onto the left or right 
portions of the screen depending on their color. In Task 3, a 
cylindrical object was steered from a set starting position 
(far top right of photo) to a target (shown in red) by passing 
several waypoints (shown in blue) without dropping the 
object from a platform (which caused the task to restart). 
The tasks were presented in the same order to each partici-
pant, whereas the order of interaction techniques was coun-
terbalanced across participants using a Latin-square design. 
Experimentation occurred in two main phases (with visual 
feedback of the input and without), presentation of which 
was, again, counterbalanced across participants. During the 
experiment, participants were not given any direct instruc-
tion, but had several attempts to try out each new puzzle. 
Participants performed each task twice (excluding any 
training), under experimental conditions, to provide an av-
erage completion time for each condition. Participants were 
interviewed informally after completing their session. 

 
Task 1  Task 2  Task 3 

Figure 8. Task 1: Exact positioning of boxes and 
spheres. Task 2: Sorting by color. Task 3: Steering.  

Early Issues with Direct Forces 
Initially, the Direct Forces technique was implemented by 
applying a smooth velocity at a given contact point on the 
object, computed as a measure of the displacement between 
the contact’s current and last positions (i.e., kinetic fric-
tion). This seemed a fair approximation for modeling sur-
face input as direct forces. However, our pilots questioned 
the efficacy of this technique. Specifically, users found it 
difficult to complete tasks that involved accurately posi-
tioning objects; i.e., moving and then stopping an object at 
the target location. Moving the object could be performed 
reasonably, but to stop it the user needed to counteract the 
motion in the opposite direction. This often led to excessive 
velocity applied in the reverse direction, causing objects to 
“overshoot” the target. Consequently, performance with 
this technique was so poor that we felt it needed no further 
evaluation. Based on these issues and feedback from the 
pilots, we excluded this technique from analysis. 
Initial Results and Observations 
Although this was only an initial exploration, we observed 
many promising interactions and forms of gesture within 

the study. Users seemed aware of the potential of this new 
type of environment and exploited the physics-based sys-
tem’s facilitation of experimentation, and we observed 
many new interaction strategies. 
Kinematic Control and the Curse of the Single Finger 
Figure 9 shows the completion times for all tasks. Joints 
provide kinematic control that closely mimics drag-and-
drop behavior, and thus facilitate easy positioning of ob-
jects. This is reflected in the results. After some experimen-
tation, there was a moment when users discovered that the 
object was under familiar kinematic control. Users com-
mented that “my hands are like magnets” or “I can press 
hard and stick my fingers.” Of course, pressure and mag-
netism were not factors at play here (in fact, post-study 
interviews revealed that participants were unsure of the 
general principle behind the Joints technique). Neverthe-
less, users performed the task rapidly after discovering the 
object was somehow fixed to their fingers. 

 
Figure 9. Task completion times. FB denotes condi-
tions in which visual feedback of the user’s input 
was provided. 

However, the quantitative results tell only part of the story. 
During the study we also observed many limitations with 
the kinematic approach. The discovery of this type of es-
sentially drag-and-drop behavior in the Joints condition led 
users to predominately interact with a single finger and 
with a single object at a time. Even rotations of an object 
were predominantly undertaken using a single finger [17].  
Experimentation with multi-fingered or bimanual tech-
niques was therefore rare in the Joints condition. During 
informal interviews, users commented that the condition 
was “limited” and “less satisfying” than the other tech-
niques even though they performed the tasks rapidly. Al-
though it is too preliminary to draw significant conclusions, 
it does suggest the need to measure more than task comple-
tion time when evaluating such physics-based techniques.  
Users also had a poor understanding of how collisions were 
supported in a kinematic approach such as Joints. We ob-
served many instances where accidental collisions caused 
by hit-testing on the side as opposed to the top of the object 
would cause an object to move away from the user and 
cause a great deal of confusion. This makes us revisit 
whether a kinematic-plus-collision model makes any sense 
to the user at all: Why indeed should an object only be 
sticky when you touch its top as opposed to its sides? This 
actually led some users to infer that objects were magne-
tized in a way that supported both attraction (when touch-
ing the top) and repulsion (when colliding with the sides). 
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Using Feedback to Go Beyond Kinematic Control 
As shown in the results, feedback did not play a significant 
role in the Joints condition, as one might expect given the 
familiarity of the approach. Feedback played a more signif-
icant role for Particles in Task 1. After some training time, 
users discovered they could interact with more than just 
their fingertips. Bimanual “cupping” and “throwing and 
catching” techniques were devised to rapidly move objects 
to target positions (Figure 10). These strategies, and the 
general level of fine control, enabled users in the Particle 
condition to obtain completion times comparable to more 
kinematic approaches. During interviews, users reflected 
positively about the interactions Particles afforded. 
However, these types of contour-based bimanual interac-
tions could not be utilized with Proxy objects—although 
participants did try. In fact, in many cases, a hand gesture 
on the surface would be poorly approximated as a single 
proxy (the center of mass of the contact shape), causing 
objects to slip through a hand or causing other peculiar hit- 
testing behavior. Multiple fingers were used to reorient 
boxes effectively, but overall, bimanual control was rare. 

   

   
Figure 10. Using contours of the hand to move mul-
tiple boxes (top left); provide a barrier to change 
ball motion and position smoothly over target (top 
middle, right); throw and catch an object from a 
greater distance (bottom). 

While the “drag and drop” nature of Task 1 clearly favored 
kinematic control such as that offered by the Joints ap-
proach, Task 2 offered a clear advantage to concurrent ma-
nipulation of multiple objects for rapid sorting. As might 
therefore be expected, use of both Proxy and Particles tech-
niques, which seemingly promoted multi-touch interaction, 
led to faster completion times in this task (Figure 11). 

   
Figure 11. Two-handed and multi-fingered strate-
gies adopted in the proxy and particle conditions. 
Coarsely moving objects using both hands (left), 
two-fingered rotation by applying torque to align a 
box (middle); fine-grained movement of two objects 
using a single finger of each hand (right). 

Coming to Grips with Non-planar Objects 
Another specific trade-off in our design was that the rigid 
body cubes in the Proxy condition only provided an effec-
tive means for interacting with flat objects. They provided 

little grip of spherical objects (or more complex 3D mesh-
es). This was clearly evident in the final task where the 
Proxy cubes struggled to keep the cylindrical object under 
control, as shown in Figure 8. In this task, we found users 
often reverted to point-based interaction to control the 
small non-planar object; the use of contours was infrequent. 
However, our initial results suggest that Particles still out-
perform Proxy objects for these purely point-based interac-
tions. This suggests that for scenarios where touch-only 
input is available, the Particle model subsumes the single 
Proxy object model. 
DISCUSSION 
The results of the user study and general experimentation 
suggest that while the more familiar kinematic approaches 
(somewhat inevitably) offer more predictable control in 
some situations, the particle proxy approach can offer com-
parable performance while providing new modes of inte-
raction (such as cupping the ball in Figure 10). That our 
study participants were able to devise new manipulation 
strategies from limited feedback and training is encourag-
ing. With more time, we expect users to further draw on 
their experience with real-world manipulations. 
There are a number of ways in which our interactive sur-
face simulation does not match the physics of the real 
world. In suggesting that we abandon familiar, kinematic 
point-based control in favor of strongly physics-based 
techniques, an important consideration is whether users are 
able to negotiate these differences.  
First, while in the real world one might apply more or less 
force to control friction, our system has no sense of how 
hard the user is pressing. When using particle proxies, the 
amount of friction applied is instead proportional to the 
number of proxies applied to the object, which itself is re-
lated to the surface area of the touch. For example, a single 
finger moving across an object will apply less friction than 
multiple fingers. Not surprisingly, this distinction was gen-
erally lost on study participants, who often tried to press 
harder to bring an object under their control. Similarly, our 
users would sometimes apply multiple fingers to an object 
when they wanted precise movement. Because of the in-
evitable imprecision of the simulation, the object would 
move too unpredictably for very fine control. In many of 
these cases, it would have been better to use a light (small) 
touch rather than a full grip. 
Second, grasping a virtual object by placing contacts on 
either side can be difficult if not impossible in many of our 
techniques. Such manipulations require persistent resting 
contacts to be placed on virtual objects. The particle-based 
approach, in which each proxy is created every frame, 
places the proxy corresponding to a grasping finger on top 
of the object, thus defeating attempts to grasp it. The single 
proxy object approach uses persistent proxies, and so al-
lows grasping of an object resting on the floor. It may be 
possible to extend the particle approach to allow proxies to 
persist at a given depth when it seems appropriate, or to 
explore a hybrid approach in which both the particle and 
single proxy techniques are used simultaneously. 
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Grasping may be difficult to replicate for more fundamental 
reasons. Virtual objects exert no counteracting force against 
the fingers, so it is difficult to know how “hard” the fingers 
are pressing on an object. Grasping an object in order to lift 
it out of the plane may be challenging to depict directly on 
an interactive surface with a 2D display. Similarly, the sen-
sation of moving the hand across an interactive display 
surface is the same regardless of the simulated material, 
and whether the contact exerts static or kinetic friction. 
Some of these problems may be addressed by improving 
the basic sensing techniques. For example, our system may 
be able to sense pressure by interpreting the gray levels of 
the input image as light touches or heavy touches. For 
proxy-based techniques, this could be implemented by 
changing the mass of the proxy. New range-sensing cam-
eras [26] providing per-pixel depth information may also be 
appropriate. Per-pixel depth might be used to construct a 
rich 3D model of the hand, opening new opportunities in 
modeling grasping behavior. It might also assist in grasping 
an object in order to lift it up and place it on another object. 
Clearly one need not completely replicate the physics of 
object manipulation in order to construct useful applica-
tions exhibiting physics-inspired behavior. The appropriate 
degree to which the techniques in this paper are applied 
depends on the application. A game might naturally exploit 
detailed physics throughout, while a graphical layout appli-
cation might be very selective. Joint constraints provided 
by physics engines may be used to constrain motion, for 
example, to ease alignment tasks. While joints can be used 
to simulate the real-world counterparts of traditional GUI 
sliders, dials, buttons, and the like (as suggested by [10]), 
some aspects of traditional interactions do not naturally 
lend themselves to a physics implementation. Changing the 
size of an object dynamically, for example, does not lend 
itself to rigid-body simulation.   
CONCLUSION 
We have introduced a number of techniques to incorporate 
interactive surface input primitives into a real-time physics 
simulation. Our techniques take advantage of the fidelity of 
sensing provided by vision-based interactive surfaces, with 
the goal of enabling in a virtual domain the range of object 
manipulation strategies available to us in the real world. 
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