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Abstract
As Brain-Computer interfaces are getting less complex
and more portable, they provide opportunities to be used
in mobile interaction. Collecting information about the users’
mental states passively, or actively providing signals for
hands-free interaction with various systems and applica-
tions, are among the rising uses of BCIs of the future. How-
ever, many challenges still exist in the design, aesthetics,
and reliability of BCIs to be used in everyday life. In this pa-
per, we introduce challenges hindering BCIs from becoming
mainstream in our lives and explore several use cases in
which BCIs can be used to enrich the mobile interaction.
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ACM Classification Keywords
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Introduction
Brain Computer Interfaces (BCIs) are currently making
the transition from being high complex lab-only devices to
mass-market products (cf., Table 1). During this transition,
the ease of use, mobility, and usability increase. New de-
vices utilize Bluetooth as an easy way for connecting the
device to the computer and run several hours on battery.
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Emotiv EPOC+ Neurosky Mindwave Mobile Myndplay Brainband Muse OpenBCI

Chip Emotiv Neurosky Neurosky InteraXon TI ADS1299
Electrodes 14 (+2 ref) wet 1 dry 1 dry 5(+2 ref) 8 per board

Senses 7 emotional states
2 mental states, 2 mental states,

2 mental states Raw EEG
4 EEG signals 8 EEG signals

Connectivity Bluetooth 4.0 LE Bluetooth 2.1 Bluetooth 2.1 Bluetooth 2.1 Bluetooth 4.0 LE
Battery 6h 8h 8h 5h external batteries

Table 1: Overview of the most common consumer BCIs and their EEG chip, type and number of electrode, connectivity, and battery.

Although the number of channels is mostly reduced com-
pared to medical devices, off-the-shelf BCIs provide infor-
mation about the mental state of the user including level
of focus, or meditation. This information and the raw EEG
signals provided by BCIs may be used in several ways. On
the one hand, by implicitly sensing the user’s mental state,
provide rich data the can be utilized in the area of personal
informatics (PI), such as tracking the user‘s mental activ-
ity and trends through the day and providing feedback. On
the other hand, explicitly where users utilize their raw brain
signals to interact with mobile devices.

Nevertheless, even the current commercial BCIs are mostly
used in the lab rather than used in everyday life, making
most of them so far rather useless for the average user.
The reasons for this include the lower signal resolution, low
usability, the mostly futuristic look and thus the reduced
social acceptability. The usefulness for healthy users is to
this day limited. Although APIs are available, the number of
applications providing a benefit for the user is still low.

In this work, we discuss the challenges that need to be
tackled for BCIs allowing their usage in everyday life in ex-
plicit and implicit interaction, as well as discuss possible
application scenarios in the mobile domain.

Related Work
There are many techniques to measure brain signals rang-
ing from invasive to non-invasive ones. Although invasive
techniques provide more accurate and less noisy signals,
they are risky and not suitable mobile applications for healthy
users. Non-invasive techniques such as functional near
infra-red spectroscopy (fNIRS) and electroencephalography
(EEG) have recently become more available to the masses
and affordable with the emergence of more commercial de-
vices (cf., Table 1).

EEG signals from the brain can be used for explicit and
implicit interaction. For instance, they can be used for ex-
plicit control tasks such as selecting a contact on a mobile
phone [1] or controlling a smart home [3]. Scenarios for
implicit interaction include neurofeedback applications for
giving feedback to the user about their mental state. For
example, for retaining focus during reading tasks [7] or per-
sonalizing computer games by adapting the content and
difficulty depending on the player‘s state of mind [9]. Addi-
tionally commercial BCIs are used for recognizing different
cognitive activities such as reading and listening to mu-
sic [6] or annotating videos by detecting their highlights [5].
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Challenges of Everyday Life BCIs
A multitude of challenges stand in the way before BCIs can
be used as everyday wearables. These challenges mainly
fall into three categories: (1) signal quality and artifacts, (2)
usability and integration, and (3) aesthetics.

EEG signals are typically weak signals measured in micro-
volts, which makes them highly susceptible to noise from
various sources. Head movements and eye blinks introduce
motion artifacts to the EEG signal which should be removed
prior to emotion extraction [8]. Any excessive movement
while wearing the EEG sensor also adds further motion ar-
tifacts to the signal. Various algorithms for artifact removal
currently exist. However, it is still a challenge to obtain a
noise free EEG signal [4]. Reduced signal reliability due to
electrode drift and dryness over time is also an issue. Fi-
nally, machine learning and algorithmic complexity pose
significant challenges for an everyday BCI. Additionally, the
signal classification requires a considerable amount of train-
ing to be able to provide valid information.

Figure 1: Examples of consumer
BCI: the Emotiv EPOC and the
Myndplay Mindband.

On the aspect of usability, current commercial BCIs are
trying to achieve an integration into the microcosm of the
user’s devices by providing mobile APIs and Bluetooth con-
nectivity. However, battery life, device weight, and form
factors are still important issues. A trade off between the
cost of high sampling rates, an ’always-connected’ state,
and battery life has to be made to sustain the long hours
required for robust day-to-day usage. Additionally, users
should not have to equip themselves with complicated hard-
ware or long setup times. Many devices currently use wet
electrodes dipped in gel or saline solution which is not suit-
able for everyday life. Nevertheless, recent research shows
that dry electrodes are capable of producing similar results
compared to wet ones [2].

A final aspect that needs to be considered is the visual aes-
thetics of such a device. While most current systems rather
look futuristic (cf., Figure 1) and may not be socially ac-
cepted, everyday life BCIs should be able to weave them-
selves into the clothing of the user, for example, by inte-
grating into hats, ice caps, glasses, or other head worn gar-
ments. In this way, users can wear the BCI on a daily basis.

BCI Opportunities for Ubiquitous Interaction
In this section we discuss use cases for using BCIs for both
implicit and explicit mobile and ubiquitous interaction in ev-
eryday life.

Enriching Interaction with Mobile Devices
Hands-free interaction with mobile devices, smart-watches
could be made possible using BCIs. Brain signals such as
Event Related Potentials (ERP) or Visual Evoked Poten-
tials (VEP) which can currently be sensed by off-the-shelf
BCIs can be used for explicitly control. Applications such as
hands-free calling a contact, navigation, zooming, or other
control functions can be realized. Concentration or med-
itation levels or can be utilized as implicit input that helps
providing an adapted user interface depending on the cur-
rent capabilities of the user. For instance, if the user gets
stressed, the interface might be simplified.

Implicit Quantified Self
The most common source for Quantified Self (QS) data
nowadays comes from fitness tools such as bracelets and
mobile phones. These tools mainly provide motion data
such as actual step-count or motion type. We envision the
usage of BCI to get knowledge about the mental and emo-
tional state of the user communicated through mobile de-
vices. This can be either used stand alone or support the
classical QS data, for example, by handing out advices on
what activity needs to be done to increase the happiness of
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the user. This can be achieved by correlating positive states
with performed activities.

Enriching Mobile Social Interaction
BCIs gather emotional data from the user. While this data
is relevant for self-reflection, it may also help to better un-
derstand others. Recently, the mood of the user can be
added to social media posts. By using BCIs, this can be
automated. Furthermore, this information can be commu-
nicated to remote persons such as the partner or friends
(e.g., during chatting or automatically). This will generate
awareness of the emotional condition.

Conclusion
In this work, we present challenges and use cases for an
everyday life BCI. We present recent off-the-shelf BCI sys-
tems and discuss related work in explicit and implicit in-
teraction using BCI. We argue for the use of BCIs in the
future in everyday life for a in controlling other systems in
the user’s microcosm (mobile phones/smart watches) and
collecting rich data about the user’s mental state implicitly.
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