
292

Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ‚13), October 28–30, 2013, Eindhoven, The Netherlands.

Graphic Toolkit for Adaptive Layouts in In-Vehicle User
Interfaces

Renate Häuslschmid
Technische Universität

München
Department of Informatics

Boltzmannstr. 3, Garching bei
München

renate.haeuslschmid@mytum.de

Klaus Bengler
Technische Universität

München
Institute of Ergonomics

Boltzmannstr. 15, Garching
bei München

bengler@lfe.mw.tum.de

Cristina
Olaverri-Monreal

∗

Technische Universität
München

Institute of Ergonomics
Boltzmannstr. 15, Garching

olaverri@lfe.mw.tum.de

ABSTRACT
Currently, the processes used by many car manufacturers to
adapt information from the head unit to the intended dis-
play platform are outdated and extremely cumbersome. The
individual graphic elements are not designed for use in dif-
ferent contexts and many steps must be done manually to
achieve a proper in-vehicle information visualization. Ad-
ditionally, the amount of data that must be maintained is
extremely large, resulting in strong restrictions in the vari-
ability of appearance and displayed information. An ad-
ditional challenge is that multiple car brands belong to the
same main company with each brand having a separate iden-
tity. Therefore, the graphical user interface (GUI) elements
require resizing and recomposition which then reflects the
brand’s heterogeneous characteristics. To overcome these
drawbacks we present a software solution to create and edit
flexible, in-vehicle GUIs through reusable elements or wid-
gets that adjust their size and composition to their environ-
mental context in a dynamic and automatic manner. We
have examined the quality of the tool through validation
rules for each step and proposed calculation algorithms as a
possible approach for a largely automated evaluation.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: [Elicitation meth-
ods, Methodologies, Tools]; D.2.2 [Design Tools and Tech-
niques]: [Modules and interfaces]; D.2.5 [Testing and De-
bugging]: [Code inspections and walk-throughs.]

General Terms
Algorithms, Design, Human Factors, Verification

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
AutomotiveUI ’13, October 28 - 30 2013, Eindhoven, Netherlands
Copyright 2013 ACM 978-1-4503-2478-6/13/10... $15.00.
http://dx.doi.org/10.1145/2516540.2516580.

Keywords
Graphic elements, user interfaces, GUIs design

1. INTRODUCTION
Multi-platform applications and services conceived to run

in mobile screen terminals in different screen sizes can create
challenges for graphical user interface designers [1]. In an
automotive context, information is depicted to the driver
through visual displays that can be divided into the following
three main categories:

1. Instrument panel: primarily provides information on
driving speed and number of revolutions;

2. Head unit: offers the driver functions, which are di-
rectly required for driving, but which also provide ad-
ditional information from infotainment or safety-related
systems;

3. Head-up display: information related mostly to the
navigation system and to warnings from driver assis-
tance systems;

The small space available to display the relatively large amount
of data presents an acute challenge, as the driver must be
able to see the information immediately while still focus-
ing on the task of driving itself. Additionally, as more and
more in-vehicle systems begin to include further applica-
tions, such as those found in other mobile environments like
smart phones or tablets, the information must be reorga-
nized in digital screens located in new vehicular spaces in
addition to the traditional spaces, such as the instrument
panel or the center console [2]. Proper in-vehicle informa-
tion location and visibility in different screen sizes could fa-
cilitate driver interaction with device controls, assuring a
smoother automobile or information operation and reduc-
tion of distraction potential. Therefore, there is a need for
a more flexible development of user interfaces (UI) to better
support not only the user, but also different types of ap-
plications with reusable components that can automatically
adapt to different in-vehicle displays.
Currently, processes used by many car manufacturers to
adapt information from the head unit to the platform where
it is intended to be displayed are outdated and extremely
cumbersome. The individual graphic elements are not de-
signed for use in different contexts and many steps must be
executed manually, which often leads to errors and delays.

293

Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ‚13), October 28–30, 2013, Eindhoven, The Netherlands.

Additionally, the amount of data that must be maintained is
extremely large, resulting in strong restrictions in the vari-
ability of appearance and information.
An additional challenge is the fact that multiple car brands
belong to the same main company. For example, the Volk-
swagen Group sells automobiles under the following brands
Audi, Bentley, Bugatti, Lamborghini, Porsche, SEAT, Škoda
and Volkswagen [3]. As each brand has a separate iden-
tity, the GUI elements do not only require a resizing that
fits in the varied displays, but also a complete recomposi-
tion which reflects the brands heterogeneous characteristics.
Thus, there is an urgent need for a centralized GUI devel-
opment that decreases the complexity degree of managing
all possible variants for different displays and brand char-
acteristics [4]. Such an approach would help to create user
interface objects that are adapted to a certain environment.
Consequently, we present in this paper a software solution
for creating and editing flexible, in-vehicle graphical user in-
terfaces through reusable elements or widgets. These user
interface elements adjust their size and composition to their
environmental context in a dynamic and automatic manner,
allowing thus for flexible composition of elements within the
limited in-vehicle screens.
For the development of user interfaces for head units, the
automotive industry currently resorts to graphical mock ups
and documentation containing descriptions written mostly
in natural language, as well as guidelines and graphical wid-
get toolkits. These documents are then split into hierar-
chical object structures, object behaviors, logic descriptions
and content. The graphics of each head unit variant are
then manually defined and documented. As a consequence,
composition variations must be done manually and posteri-
orly analyzed with regard to their effects. This procedure
involves not only a tremendous amount of work, but also
produces inconsistent output.
To overcome the drawbacks related to the manual proce-
dures, our toolkit is based on automation and failure man-
agement in early development phases. The remainder of this
paper is organized as follows:
The next section considers related work in the areas of adap-
tive, flexible user interfaces. Section 3 presents a detailed
description of the methodology followed to implement the
approach presented in this study. Section 4 reports on the
tool evaluation. Finally, Section 5 concludes the paper.

2. RELATED WORK
Several authors have already stated the difficulty of spec-

ifying, implementing and testing in-vehicle Human Machine
Interfaces (HMI), due to the complexity of their static and
dynamic properties. According to [5] these interfaces can in-
clude 2000 graphical different views and more than 2500 sys-
tem states to describe the system behavior. Consequently,
the emerging need for more component-based user interfaces
development tools has been highlighted in various research
works [6]. The authors in [7, 8] presented a system to au-
tomatically adjust windows sizes and locations depending
on the system environment and to automatically alter the
layout of content-filled documents. A further approach to
adapt interfaces to small screens through the definition of
abstract widgets, deciding the new value in run time, was
suggested in [9]. However, these adjustments do not con-
sider a potential recomposition of the GUI elements.
A method to transfer and integrate mobile applications on

infotainment system displays was proposed in [10] using
HTML as main language for the layout description of the ele-
ments and guaranteeing a high graphical quality and reusabil-
ity. Additional adaptation approaches were presented in [11,
12] based on the idea of zooming or using a user-adaptable
hierarchical layout methodology, controlled by additional
user actions. These solutions are, however, not applicable
in an automotive context, as manipulating in-vehicle devices
using this kind of technology would divert the driver’s at-
tention from the road.
The reutilization of graphical components to support not
only an specific application but also other types of appli-
cations has been the focus of several other studies [13, 14].
In this context, a review of current technology related the
dynamic compositional adaptation of software has been pre-
sented in [15].
A related work that additionally considered small mobile
screen sizes was presented in [1]. The authors proposed a
method that divided the screen space for components at
runtime, taking into consideration the terminal screen size
and current user interface components, thus allowing con-
stant information density, context visibility and better suit-
ability for small screens. The user interface elements used a
growth potential and an aspect ratio to adjust the expansion
of components. On large displays, the GUI was optimized
by enlarging the components. However, when the size of the
display was small, the information was reduced by minimiz-
ing or hiding less important components.
We propose a novel approach to automatically adapt the
layout of the information displayed in a head unit to the
platform where it is intended to be displayed. Our system
is based on algorithms that use independent fixed or vari-
able values or formulas to guarantee maximum flexibility in
element size and position, instead of relying on attributes
and fixed layout patterns. Our toolkit allows the creation
of all head unit views through the composition of standard
objects. In a sensitive environment such as a head unit dis-
play, information cannot always be reduced. Therefore, our
software solution is able to manage the brand and display
variants which allows for the creation, verification, and pub-
lishing of each variant as a single and independent build-
ing block. Additionally, through our approach we guarantee
flexibility and scalability through adaptation to changing
layout requirements as specified in [16, 17]. We also ensure
an independence of the content, layout and logic. This in-
creases flexibility through enormous variation possibilities
enabled by a graphic kit.

3. DEVELOPMENT PROCESS
The modular building kit enables the universal use of

various modules in several combinations. The tool design
process was iterative and user-centered. Consequently, the
implemented system contains all necessary features for the
user friendly design of the head units GUI elements inde-
pendently of the technical background of the user.

3.1 Requirements Analysis
In order to define the software requirements for the im-

plementation of the toolkit, we firstly performed an exten-
sive development process and system layout analysis. Next,
data related to user groups was collected through qualitative
techniques such as observation and interviews in order to de-
termine potential user types. According to the user types,

294

Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ‚13), October 28–30, 2013, Eindhoven, The Netherlands.

mental model diagrams and use cases were developed, a list
of functions and components consequently derived and fi-
nally a requirements specification was agreed upon.

3.2 Central Information Display System Anal-
ysis

From a functional point of view, a Central Information
Display (CID) view consists of GUI elements or widgets that
provide information that can be manipulated by the user,
such as a window or a text box. From a technical point of
view, these widgets consist of layout, content, and a specific
logic. A CID view is built through Layout Templates (LT)
in the Extensible Markup Language (XML) and, together
with data and logic, transferred to widget nodes. At the
lowest hierarchic level stand the containers into which the
content is inserted. We analyzed the relationship between
the interface elements in order to set up the requirements
for the tool as detailed below:

• In the view structure, links between an LT and the
contained LT through the widget are struck, the child
LT is linked. However, the kinship occurs only between
the Layout Templates, while the widgets are not ex-
pressly concerned. This relationship is already defined
during the LT creation, at a time when the content is
still completely excluded.

• Kinships are set as properties of the LT and handed
on to all variants. If the structure of the LT variants
differs with regard to the elements a child LT might
be embedded in only a Layout Template’s variant. In
any case, the embedded version of the LTs must be
mapped to the same brand and the same display.

• Kinships are set as properties of the LT and handed on
to all variants. If the variants of one Layout Template
differ regarding the embedded containers, and a child
Layout Template is embedded in these containers, the
structure of the view depends on the structure of the
Layout Templates. In any case, the embedded version
of the LTs must be mapped to the same automobile
brand and the same specific display.

• The Layout Template parameters summarize CID lay-
out versions that have common global properties.

• A container specifies defined types such as text, graphic,
or widgets which correlate with the planned content
and contribute to certain Layout Templates by means
of their exact size definition (height and width) and po-
sition (absolute or relative spacing). Variants contain
all information of the actual composition and calcula-
tion of standard layout elements specifically for one
or more runtime environments. Variants can differ
greatly from one another, for example with regard to
embedded containers.

We structured each CID view and its components in a hi-
erarchical manner in order to later subdivide them into sin-
gular elements to produce several UI versions. This allowed
for the union of the basic containers to each other, which
served as the basic elementary toolkit of the editor. Com-
posed by different layout patterns, these containers could
build higher level components and finally make an entire
presentation similar to a construction kit possible.

This set of elements and their combinations could then be
computed in a parameterized manner with different dimen-
sions and distribution algorithms in accordance with the
variations, thus allowing for flexible and automatic element
adaptation in size and appearance through information spec-
ified in different style sheets. As a consequence, the dynam-
ics of base elements and layout managers allow for the dy-
namics of the entire figure. Changes to individual items or
components can be shown through the version management
and analyzed due to the hierarchical structure of the kit.
In order to ensure the visual building blocks characteristics
of the widget, we determined the Layout Template’s param-
eters and the specific combinations, achieving thus all views
containing this LT. To accomplish a user-friendly environ-
ment, all dependencies, inheritance and differences between
the parameters and values were therefore made visible to the
user.

3.3 System Design
Figure 1 shows an activity diagram illustrating the cre-

ation process of a new CID screen design layout. Figure 2
shows the designed user interfaces, derived from the activity
diagram.

Figure 1: Different development processes to imple-
ment a unique layout template

295

Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ‚13), October 28–30, 2013, Eindhoven, The Netherlands.

Figure 2: User Interface showing two different
modes. A depicts the search mode for layout tem-
plates or variants. B depicts the layout template
mode.

Our tool enables the creation and adjustment of Layout
Templates. When the user gets a new screen design and a
matching Layout Template (LT) exists, it can be duplicated
and adjusted to the specific requirements of the target dis-
play. If the Layout Template meets all requirements, the
new parent and child Layout Templates can be added to the
user context. In any case, after all changes the LT needs to
be verified. According to the requirement analysis results,
the system was designed to target three different kinds of
users: designers, layout developers and system developers.
Each user group has different demands that concern not only
the functionality but also the GUI representation of the in-
vehicle information. Based on the conducted analysis, the
system was designed through a top-down and bottom-up
approach which allowed the creation of data flow diagrams
as the first step of the system design phase. The necessary
functions enlightened by the mental models obtained in the
requirement analysis phase were clustered to system compo-
nents and modules in order to develop Entity-Relationship-
Models (ERM), which are required for the system architec-
ture development.
Based on these levels of functions clustering, the front-end
was incrementally designed according to the process described
in [18]. The physical dialog structure, the system tree, and
the navigation were laid out according to the main use cases

and tasks. We then placed the previously defined functions
into this framework. The resulting design concept was sub-
sequently evaluated with users and usability professionals
and optimized accordingly.

3.4 System Components
Figure 3 shows the main system components in form of

a user work flow in which the functions are clustered into
system features and interface components. These functions
are additionally connected according to their accessibility in
the system. The data on which the system features are based
is reflected in the system components specification below.

• Search: search Layout Templates and variants.

• Relationship Control: visualizes parent-child structures
and LT connections.

• Style Control: creates, modifies and deletes styles. Lists
stylesheets for specific brands.

• Constants Control: creates, modifies and deletes con-
stants.

• State Preview: allows the nested display of Layout
Templates as a state.

• LT Control: management of all LTs (creation, edition,
deletion and view).

• LT Overview: all available LTs for selection.

• LT Comparison: detailed view of two LTs, editing or
transferring of properties.

• LT Properties: provides details about the LTs proper-
ties and variants.

• LT Parameters: subcomponent of the LT detail defini-
tion properties containing the LT-specific parameters.

• Variants Control: all LT variants and creation of new
ones.

• Variants Overview: all LT variants.

• Variants Comparison: two Layout Templates variants,
editing of parameters.

• LT Canvas: part component of the variant detail defi-
nition: creates graphic layout.

• Container Parameters: part of the variant properties.
They define the position and size of the elements con-
tained.

• Layout Pattern: detailed definition of a variant.

• Toolkit: elements (containers) for the construction of
LTs.

• Formula editor: makes possible for the user to insert
the formulas to calculate the containers size.

296

Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ‚13), October 28–30, 2013, Eindhoven, The Netherlands.

Figure 3: Main system components

4. CODE INSPECTION
To examine the quality of the tool implementation, we

performed a formative evaluation obtaining feedback in the
early design phase with the main goal being to improve de-
sign. Therefore, we provided the system with features in
order to evaluate the Layout Templates. The evaluation
was intended to be initiated by the user, producing feed-
back about the quality of the tested Layout Templates. In
the case of issues/errors , the procedure was disrupted and
the issues were displayed to the user.
We established verification rules which must be met for the
further and successful summative evaluation. In addition,
these rules were transferred into calculation algorithms, ex-
ecuted by a defined tree map algorithm relying on the ap-
proach by [1]. The tree map algorithms calculated the sin-
gle containers of the Layout Template positions and sizes.
A view of Layout Templates was defined for a variant or a
combination of brands and displays that produced a huge
variety of possible structures for different variants. This di-
versity can be highly complex as shown in the example in
Figure 4. Therefore, we additionally proposed calculation
algorithms and a possible approach for a largely automated
computation of variants. To test the functionality of the
tool, we divided the Layout Templates into the following
categories: referenced objects; such as styles, constants and
formulas; internal compatibility and external compatibility.

4.1 Internal Compatibility
The tool assesses the properties of the Layout Template

(such as kinship, name, widgettype, etc) and ensures that
the Layout Template contains a minimum of information
and values. Through verification rules, transferred into ax-
ioms and a procedural program code, circular references and
excessive or insufficient space in the formulas were shown to
the user.
The space condition rules defined are presented exemplary

Figure 4: Different Layout Templates combinations
depending on the brand or screen characteristics.
ELT denotes evaluated Layout Template.

below by the axioms relating the widths of a parent con-
tainer with its child containers. The axioms compare the
size of a certain container with the size of the embedded
containers when the embedded containers are positioned in
a row, one next to another. Other axioms apply if the con-
tainers are positioned freely or in a column layout.

α = {Slot||Total − LT}, n = Length(cslot[])
cslot = {directchildcontainers}/{childcontainersofchildren}

The width is calculated for the three different cases. Ax-
iom (1) denotes the calculation for fixed values, auto and
formulas. Axiom (2) is to be applied in case of a variable
value.

width(α) =

n∑
i=0

{width(cslot[i]) +margin left(cslot[i])}

(1)

width min(α) ≤
n∑

i=0

{width(cslot[i])+

margin left(cslot[i])} ≤ width max(α)

(2)

The height is calculated through the following axioms for
fixed values and formulas (3), auto (4) and variable values
(5).

height(α) = height(cslot[0...n])+

margin top(cslot[0...n]) (3)

height(α) = max(height(cslot[0...n])+

margin top(cslot[0...n])) (4)

height min(α) ≤ height(cslot[0...n])+

margin top(cslot[0...n]) ≤ height max(α)
(5)

297

Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ‚13), October 28–30, 2013, Eindhoven, The Netherlands.

4.2 External Compatibility
The LT is assessed in the context of other Layout Tem-

plates. We verified the space conditions between the Layout
Template and its parents and children. For example, the
next section illustrates two verification rules, potential error
cases and methods for determining the path and evaluating
the space distribution.
As a rule to verify the external compatibility test, we deter-
mined that the height and width of the top containers of the
Layout Templates must be equal to the height or width of
the container of the parent LT where the Layout Template
was embedded. This rule must be applied to every binding of
one LT to another. If a problem between the tested Layout
Template and the parent, or between the Layout Template
and a child arises, it is always assigned to the tested Layout
Template.

4.2.1 Error cases for the external compatibility test
We defined the following error cases for the described rule:

• a Layout Template provided insufficient space for the
contained child LTs;

• a Layout Template provided more space than the child
LTs occupy;

• a parent Layout Template provided insufficient space
for the tested LT;

4.2.2 Path discovery for different views containing a
LT

Each Layout Template has one or more variations which
represent one or more brand-display combinations. Addi-
tionally, each variant has one or more states, such as active
or inactive. Additionally, a LT has parent and child LTs, and
therefore different sets of parent-child combinations. As this
is the case for any Layout Template, the embedding of sev-
eral LTs to build up a view resulted in approximately 10000
paths to test. As a consequence, we defined an algorithm to
determine the correct path and to improve the performance
of the discovery processing time.

4.2.3 Evaluation algorithm for a view containing a
LT

We considered two cases: (1) the internal compatibility
of the LTS with the parent LTs, as well as (2) the internal
compatibility of the LTs children with the LT. In both cases,
the test was run according to the same pattern: an LT was
inserted into an assigned parent LT. For this purpose, the
algorithm calculated the total size of the LTs and the size
of the slot of the parent LTs, in which the LT had to be
inserted.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a software solution for

creating and editing flexible in-vehicle graphical user inter-
faces (GUI) through reusable elements or widgets. The so-
lution is based on variants, through the separation of con-
tent, layout and logic, and allows for a centralized, dynamic
creation of user interfaces which can be adapted to differ-
ent vehicle brands and displays. The embedded mechanisms
used to verify the applicability and reliability of our tool con-
firmed the gains in flexibility of the layout design. However,
future steps still need to be taken to extend and improve the

tool considering additional usage cases extending as well the
layouttypes functionality and evaluation in a final XML for-
mat.

6. REFERENCES
[1] H. Keränen and J. Plomp, “Adaptive runtime layout

of hierarchical ui components,” in Proceedings of the
second Nordic conference on Human-computer
interaction. ACM, 2002, pp. 251–254.

[2] C. Olaverri-Monreal, C. Lehsing, N. Trübswetter,
C. A. Schepp, and K. J. Bengler, “In-vehicle displays:
Information priorizitation and visualization while
driving,” in Intelligent Vehicles Symposium (IV13).
IEEE, 2013.

[3] Volkswagenag.com, “Volkswagen aktiengesellschaft
annual report 2008,” 2009.

[4] T. Fleischmann, “Model based hmi specification in an
automotive context,”Human Interface and the
Management of Information. Methods, Techniques and
Tools in Information Design, pp. 31–39, 2007.

[5] S. Hess, A. Gross, A. Maier, M. Orfgen, and
G. Meixner, “Standardizing model-based in-vehicle
infotainment development in the german automotive
industry,” in Proceedings of the 4th International
Conference on Automotive User Interfaces and
Interactive Vehicular Applications. ACM, 2012, pp.
59–66.

[6] E. Whitehead Jr, J. Robbins, N. Medvidovic, and
R. Taylor, “Software architecture: Foundation of a
software component marketplace,” in Proceedings of
the First International Workshop on Architectures for
Software Systems, 1995, pp. 276–282.

[7] K. Leong, R. Love, and H. Tsuji, “Display window
layout system that automatically accommodates
changes in display resolution, font size and national
language,” Apr. 30 1996, uS Patent 5,513,342.

[8] B. Ross, M. Schackwitz, and K. Young, “Desktop
publishing software for automatically changing the
layout of content-filled documents,” Feb. 15 2000, uS
Patent 6,026,417.

[9] J. Eisenstein, J. Vanderdonckt, and A. Puerta,
“Applying model-based techniques to the development
of uis for mobile computers,” in Proceedings of the 6th
international conference on Intelligent user interfaces.
ACM, 2001, pp. 69–76.

[10] F. Hüger, “User interface transfer for driver
information systems: a survey and an improved
approach,”Automotive UI, vol. 11, 2011.

[11] K. Perlin and J. Meyer, “Nested user interface
components,” in Proceedings of the 12th annual ACM
symposium on User interface software and technology.
ACM, 1999, pp. 11–18.

[12] E. Kandogan and B. Shneiderman, “Elastic windows:
improved spatial layout and rapid multiple window
operations,” in Proceedings of the workshop on
Advanced visual interfaces. ACM, 1996, pp. 29–38.

[13] R. Taylor, N. Medvidovic, K. Anderson,
E. Whitehead Jr, J. Robbins, K. Nies, P. Oreizy, and
D. Dubrow, “A component-and message-based
architectural style for gui software,” Software
Engineering, IEEE Transactions on, vol. 22, no. 6, pp.
390–406, 1996.

298

Proceedings of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ‚13), October 28–30, 2013, Eindhoven, The Netherlands.

[14] J. Greenfield and K. Short, “Software factories:
assembling applications with patterns, models,
frameworks and tools,” in Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications.
ACM, 2003, pp. 16–27.

[15] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng,
“Composing adaptive software,”Computer, vol. 37,
no. 7, pp. 56–64, 2004.

[16] C. Kerer and E. Kirda, “Layout, content and logic
separation in web engineering,”Web Engineering, pp.
135–147, 2001.

[17] C. Olaverri-Monreal, K.-J. Bengler, M. Breisinger, and
C. Draxler, “Markup languages and menu structure
transformation during the internationalisation process
of driver information systems,” Localisation Focus,
p. 4, 2010.

[18] J. Tidwell, Designing interfaces. O’Reilly Media,
Incorporated, 2010.

