
Model-Based Testing for the Menu Behavior of Automotive
Infotainment System HMIs

Linshu Duan
Ludwig-Maximilians-
Universität München

and
AUDI AG

linshu.duan@audi.de

Heinrich Hussmann
Institut für Informatik
Ludwig-Maximilians-

Universität
München

heinrich.hussmann@ifi.lmu.de

Dieter Niederkorn
and

Alexander Höfer
Infotainment System

Testing
AUDI AG

dieter.niederkorn@audi.de
alexander.hoefer@audi.de

ABSTRACT
Testing the graphical human machine interface (HMI) of au-
tomotive infotainment systems has shown to be costly and
challenging due to its large function scope, high complex-
ity and multiple variants. To ensure the quality and reduce
testing costs we are working on a model-based testing con-
cept for graphical HMIs of infotainment systems. In our
work the short form ”HMI” is used for the term ”graphical
HMI”. In this paper, we present some preliminary results
of our model-based testing research. We firstly introduce
the classification and distribution of HMI errors. This statis-
tic shows that errors in the menu flow construct an essential
part of HMI errors. In this paper we focus on the detection
of this kind of errors. For this UML state machine has to be
extended to describe the menu behavior, so that valid tests
can be generated from its instances. Common coverage cri-
teria for the state machine can not produce efficient tests for
infotainment system HMIs. Therefore, we discuss some de-
fined adequacy criteria for infotainment system HMI tests.
At last we briefly introduce how we use software product-
line approaches to integrate variability into the model-based
HMI testing concept.

Author Keywords
Model-Based Testing, Test Models, HMI-Testing, Software
Product-Line, Statechart with Variability

INTRODUCTION
Infotainment system HMIs of new generations have a very
wide function scope and can contain more than 2000 menus
and 100 pop-up menus. They usually have many variants
caused by different markets, product-lines, individually con-
figurable features and equipments.
To reduce the testing costs and ensure a systematic code
coverage, we are working on a model-based and automated

testing concept specific for infotainment system HMIs. The
concept has been introduced in previous papers [5] [6]. In
this paper we present some new results of our ongoing work.
This paper is organized as follows. In order to clarify which
kinds of HMI errors can occur in practice, we have evalu-
ated some parts of a past HMI development project. We will
present our results of the error classification and a rough dis-
tribution.
UML statechart, which graphically represents a state ma-
chine, is widely used for the development and specification
of infotainment system HMIs. However, the standard UML
state machine from the OMG (Object Management Group)
[14] is not sufficient for specifying the menu behavior so that
valid and automatable tests can be generated from the spec-
ification. We firstly introduce the test-oriented HMI spec-
ification in which the menu behavior model is located and
then required extensions of the state machine for creating a
testing-ready menu behavior model.
Test generation based on common coverage criteria can not
produce adequate tests for infotainment system HMIs. We
firstly introduce the generated tests based on two chosen
common coverage criteria and then explain the specific ade-
quacy criteria for infotainment system HMI tests.
Finally, we will introduce the variability of infotainment sys-
tem HMIs and how variability handling can be integrated
into our model-based testing concept.

RELATED WORK
A number of research efforts have addressed the model-based
testing of GUI applications [17], [16], [1], [10] and [11].
The NModel framework introduced in [2] supports finite state
machine (FSM) models and automatic test generation for
GUI-driven applications. In this approach binding user data
or data exchange with external components are not consid-
ered.
In [17] a model-based software testing method for web ap-
plications is presented. This method focuses on testing the
functionalities of the front end of web applications, i.e., the
linking behavior of the links and forms, which is modeled
with statecharts. However, this method has not yet found so-
lutions to the problems of modeling the back-ends of a web
application. Without the behavior of the back-end, a gener-



ated test only describes a possible sequence contained in the
model and does not consider the conditions. So generated
tests are usually infeasible for the test automation. For info-
tainment systems HMIs the behavior of the back-end is very
complex and error-prone. Testing this logic automatically is
a very important test purpose.
The concept described by Memon [11] does not separate the
menu flow behavior and the physical structure of the HMI,
which is inappropriate for specifying the infotainment sys-
tem HMI. Different variants of infotainment system HMIs
are usually developed in one model as one product family.
The variants in the family usually have the same or very sim-
ilar behavior but different physical HMI elements or struc-
ture. Separation of them is an important requirement in the
HMI specification.
In [10] LTS (labeled transition system) with action-word and
key-word technique is used. The concept separates the spec-
ification of the business logic and the presentation logic.
The action model contains action-words, which are abstract
events. They describe the behavior of the system. The re-
finement model contains both action-words and key-words.
Key-words are user events or menu navigation, which are
performed by concrete HMI elements. Refinement model
describes also how action-words can be refined with key-
words.
In [1] the authors extend the state machine with regular ex-
pressions to consider not only correct HMI actions but also
incorrect transitions.
In [12] and [16] some specific coverage criteria for HMI test-
ing are introduced in addition to common coverage criteria
[13] [7].
Works [18] and [9] focus on variability of SW products with
product-line approaches in the domain of SW development.
In [9] a state machine contains all potential features of all
products in the product family. The goal is to choose re-
quired sub states from the state machine, resolve the rela-
tions and generate code for a certain product. In [18] for
each feature of the product family there is a state machine
available. The task is to select the required state machines,
find the connections of them and generate code for a certain
product.

ERROR CLASSIFICATION AND DISTRIBUTION
Past infotainment system projects containing advanced and
complex HMIs are chosen for a statistical analysis. HMI
error tickets are evaluated which were created during the de-
velopment phase. Figure 1 presents the classification and
distribution of the errors.
About a quarter of HMI errors are in the menu logic, so-
called menu behavior errors. They appear in the form of
switching to an unexpected menu in response to some inputs
from the user or underlying applications. In practice of auto-
motive HMI domain, the menu behavior is usually specified
with statechart models.
More than the half of the HMI errors are in the views and
contained graphical elements. Views are usually called screens
in the automotive domain.
A view usually contains static contents such as a title and

Figure 1. Error classification and distribution

subtitle as in Figure 2, which are displayed at any time and
in any context. The error statistic has shown that an essential
part of HMI errors arise from erroneous static content such
as a missing text. They can be easily found, if menu behavior
tests are extended with sub tests verifying the static contents.
Required information for testing static contents are specified
in the presentation layer of the test-oriented HMI specifica-
tion, which will be introduced in the next section. Simple
image processing methods can be used to get the presented
texts from the display [5].

Figure 2. Static content of a menu and a mask

Infotainment system HMIs are usually available for many
languages. Language errors are either contained in the lo-
calization database or caused by erroneous linking between
entries in the localization database and representing widgets.
Errors caused by erroneous linking and representing widgets
can also be found by static content tests.
Infotainment system HMIs contain usually a lot of advanced
widgets with dynamic behavior. Dynamic widgets lead to
a lot of HMI errors. The widget behavior can also be de-
fined with statechart models. Widget behavior tests can be
generated from these models and extended to menu behavior
tests. However our prototype of a widget behavior model has
shown that modeling widgets can be very work-intensive and
time-consuming. It only makes sense to model especially
errors-prone widgets and test them automatically. Therefore
it is very important that the menu behavior and the widget
behavior are separated in different models in a HMI testing
concept.
There are many other errors, which are not in the HMI but
directly affect the HMI behavior. They are either due to the
HMI framework or underlying applications. For example,
the phone application has sent an empty string as a con-
tact name to the HMI or the switching between different



menus have some delay because the bus system is heavily
loaded. Modeling the behavior of underlying applications or
the whole infotainment system is infeasible for infotainment
system HMIs. This category of errors can not be found with
the concept.
Preliminary evaluation results provide only a picture of the
error classification and contribution. One can define the cat-
egories in a very different way and we believe, statistic of
other projects can deviate from current results.

TEST-ORIENTED HMI SPECIFICATION
In the last section, we have introduced that menu behavior
errors construct an essential part of HMI errors. To detect
menu behavior errors, a test model has to be available which
specifies the expected menu behavior. In our concept, such
a test model is called menu behavior model and is arranged
in the behavior layer of the test-oriented HMI specification.
A test-oriented specification [5] [6] is a HMI specification,
which contains sufficient information for testing purposes.
It’s constructed with a layered structure as shown in Figure
3:

Figure 3. Layers of the test-oriented specification

The presentation layer contains testing-relevant information
about screens and their graphical elements thus: potential
events which can be triggered by a screen and the abstract
content and structure of a screen. Data and event layers con-
tains variables and events used in other layers. The widget
behavior models describe the behavior of complex widgets.
The design layer which contains design information is op-
tional. It is only required if design tests should be performed.
This is not the focus of our work. As shown in Figure 3,
menu behavior models are separate to other models or infor-
mation. This separation provides the possibility to specify
the menu behavior and perform menu behavior tests inde-
pendently.

THE MENU BEHAVIOR MODEL
In this section we focus on the specification of the menu be-
havior and introduce some required extensions of the UML
state machine for specifying the menu behavior with testing
purposes. We introduce our extensions based on the state
machine definition from the OMG [14].

ViewState
Currently three kinds of states are distinguished in the state
machine: simple state, composite state and submachine state.
A new kind of state: ViewState has to be extended for de-
scribing the HMI menu behavior. A view state is a special
kind of simple state signifying that the current state is asso-
ciated with an abstract screen in the presentation layer. A
views state has an attribute of type string, which is the name
of the associated view in the presentation layer. When a view
state is active, the associated view has to be displayed.

PreStepsCondition
In many situations some user actions are only enabled, if
some other actions are previously performed. For example,
entering a city name as navigation destination is only en-
abled, if a country name has been entered. A test which
enters a city name and starts the guidance without to enter
a country name before is an invalid test. PreStepsCondi-
tion is extended into the state machine, which indicates this
dependency for the test generator. Transitions which need
other transitions as previous steps, have to be labeled with
a PreStepsCondition. Transitions fulfilling some PreStep-
sConditions have to be labeled with actions making these
conditions true. A PreStepsCondition contains a function,
which evaluates to a boolean value. For each PreStepsCon-
dition, there must be at least one transition labeled with an
action which makes the contained function true.

RuntimeCondition
An infotainment system HMI is not a closed application such
as a simple calender, which contains the complete behavior
logic in itself. During the runtime, an infotainment HMI
communicates with the underlying applications almost all
the time. The menu behavior is strongly dependent on the
runtime data. However at the time of creating models and
generating tests, the runtime data and consequently the com-
pletion of conditions are unknown. For example, when a
user has entered the destination completely and started the
route guidance, the screen with the map and calculated re-
sults should only be shown after that the calculation is fin-
ished. However, the calculation is performed by the under-
lying application. That means, the transition pointing the
view state associated with the map screen is only active if
a condition is fulfilled during the runtime by the underlying
application. A new type of condition ”RuntimeCondition”
has to be extended to describe this dependency. A Runtime-
Condition contains a function, which evaluates to a boolean
value. The function has to be bound with runtime variables,
from e.g. the interface between the head unit and the under-
lying application. The function can only be fulfilled by the
runtime variables.



Some new event types
Figure 4 show the event types defined by the OMG for the
UML state machine.

Figure 4. Event types in a UML state machine

We have defined different types of events depending on their
sources. For instance, the type ApplicationEvent is defined
for events initialized by underlying applications. An ap-
plication event can be a message event or a change event.
In events which are performed by users we distinguish two
types: GlobalEvent and ReacionEvent. Global events can be
performed via the control unit anytime and they are effective
for any HMI states. For example, for switching between dif-
ferent infotainment system functions such as radio and navi-
gation, buttons are provided in the control unit, which trigger
global events. In contrast to global events, a reaction event
can only be triggered in certain screens. Distinguishing dif-
ferent event types is very important for the test generation
and instantiation.
A lot of functions of infotainment systems require user input-
data, e.g. a phone number to dial or a destination for the
guidance. Representatives for each user input-data equiva-
lent class have to be tested. User input-data for tests should
better be separately defined independent from the test model
(not a part of the test model). In this way, to change the user
input-data for different testing purposes or phases would not
lead to some model changes. On the other hand, the sepa-
rately defined user input-data can be reused for other tests.
To bind the user input-data, ”UserInputEvent” has to be ex-
tended into the state machine. Currently we have defined
equivalent classes for correct user inputs and unexpected
user inputs.

COVERAGE CRITERIA FOR INFOTAINMENT SYSTEM HMI
TESTS
We have implemented test generation algorithms based on
some common coverage criteria in order to evaluate their
adequacy for infotainment system menu behavior testing.
As explained, the menu behavior of an infotainment system
HMI is strongly dependent on the runtime data. For an in-
fotainment system HMI with 1000 menus, up to 250 condi-

tions states are needed to model the dependency of the menu
behavior on runtime data. So we have implemented a gener-
ation algorithm based on the branch coverage, which means
all outgoing transitions of existing condition states have be
tested. Our implementation is based on the depth search and
allows currently each cycle for once. The generation results
have shown that the generated tests can cover all branches,
the number of generated tests is limited and the tests are very
short. Generated tests are very unusual user scenarios.
Infotainment systems are very function-oriented. Each func-
tion e.g. starting the route guidance is usually accessible
on one unique menu. We have implemented an algorithm,
which generates all paths to a destination menu in which a
certain function is accessible. All-path coverage could pro-
duce infinite tests. To limit the number of generated tests
we allow each cycle only once. The generated tests cover
all possible paths to the destination menu. However, most
of the tests are in the same equivalent class, which means,
the error could already be found with only one of the tests.
Execution of all tests is unnecessary and impossible in the
testing life due to very limited testing time and resources.
Evaluation of other common coverage criteria e.g. transition
coverage and HMI-special criteria as introduced in [12] and
[16] is planned.
We firstly discuss criteria of adequate and efficient tests for
infotainment system HMIs.
One of the most important requirements in premium HMIs
is a faultless textual and graphical representation. So view-
ing all existing menus for all languages at least once would
be the first criterion for infotainment HMI tests. We could
derive the ViewState-coverage from this criteria.
Reusability of menus is very common in the implementation
of infotainment system HMIs. For example a menu repre-
senting the contacts exists only once and is accessible from
both the navigation and address book context. The menu
shows different color and widgets depending on the access-
ing context. The reuse of menus could be very error-prone.
So tests accessing reused menus from different ways can be
very efficient to find errors.
We are still working on the definition of infotainment system
HMI-specific coverage criteria based on the found adequacy
criteria.
At last we would like to show a small example of a gener-
ated test, which firstly enters a destination and then starts the
route guidance. We use the syntax [] for an expected menu
name and () for a test step:
[navMain]−> (enter on widget “country”) −> (wait(5ms))
−> [navCountryList]−> (userInput selectCountry correct)
−> (enter) −> [navMain]−> (enter on widget “startRG”)
−> [navRgStarted]

INTEGRATING VARIABILITY INTO MODEL-BASED HMI-
TESTING
A software product-line (PL) [3] [8], also called system fam-
ily, is a set of software systems sharing common features that
satisfy the specific need of a particular market segment and
that are developed from a common set of core assets in a
prescribed way.



Infotainment system HMIs are multi-variant products. The
variability results from product series such as different gen-
erations, market variants such as for Europe or Asia, config-
uration variants such as with or without DVD player and sys-
tem variants such as standard resolution with normal display
or higher resolution with larger display. In practice many
of these variants are developed in one project due to a large
set of commonalities in features, looks and behaviors. That
means, an HMI model in such a project describes all fea-
tures, looks and behaviors potentially required for different
variants e.g. for both Europa- and Asia-market. A prod-
uct, which is created from such a model exactly satisfies one
variant e.g., a standard system with navigation feature for
the Europa market. For these reason, the model-based HMI
testing concept has to be extended to support the variability.
We reuse feature models to extend the test-oriented HMI
specification for the variability management. Feature mod-
els (FMs) allow us to describe both commonalities and dif-
ferences of all products of a PL and to describe the rela-
tionships between them. A FM configuration (FMConf) is
an instance of a FM that describes the properties and func-
tionality of a product. In [4] FM and FMConf are described
in details. We extend the in [4] defined FM and FMConf
with distinction of two kinds of children: functional features
and non-functional features. A functional feature can be e.g.
the feature radio or navigation. A non-functional feature
can be a variant feature, e.g. Europa variant or Asia vari-
ant. Usually, the relationship between functional features
is or-relation and the relationship between variant features
is alternative-relation. Figure 5 shows a strongly simplified
example: f stands for a functional feature and v stands for
variant feature.

To extend menu behavior models for variabilities, some

Figure 5. A FM with functional and non-functional features

new elements have been introduced as extensions for UML
state machines. A feature composite state is a special kind
of composite state in which the behavior of a function fea-
ture is described. A feature composite state is always re-
lated to a functional feature in the FM. An HMI allows inter-
feature activities e.g., from the feature navigation the user
can switch to the feature telephone and choose an address
of a contact as destination. Therefore, in the menu behavior
model there can be transitions between two feature compos-
ite states, which are called inter-feature transitions. Further-
more, variation points and junction points which are origi-
nally defined in [15] for activity diagrams are extended for
the state machine. Each variation point is related to a child

node which is marked with v in the FM e.g. ”system” in
Figure 5. Each outgoing transition is related to one of the
contained variant features e.g. ”standard” or ”high”. A vari-
ation point can only be used within a pair with a junction
point, which merges the distinction of the variant feature be-
haviors.
Also the presentation layer has to be extended for variabili-
ties. Parameterized inheritances are used in the abstract de-
scription both of the screen structure and events which can
be potentially triggered by the screen. Since presentation
layer is not the focus of this paper, it is thus not further dis-
cussed.
Each infotainment system test bench conforms to a valid
FMConf. For instance, a test bench is a ”high” system for
Europa with the basic feature radio and configurable fea-
ture navigation as shown in Figure 5. In a testing farm test
benches for many configurations are available. Since many
configurations share a common set of functional or non-functional
features, avoiding the redundancy is one of the most im-
portant requirements for the test generation and test execu-
tion. Therefore the test generation is composed of two steps.
Firstly, algorithms traverse the whole test model and gener-
ate partial tests for all required functional and non-functional
features. Then tests are created from these partial tests for
all required configurations. In this way redundant genera-
tion of common features are avoided. If changes are only
carried out in a sub set of the features, the test generation is
able to regenerate partial tests from the affected partial test
model and the second step has to be executed for the affected
features. Avoiding redundant test execution is especially im-
portant in industrial practice due to limited test resources.

CONCLUSION
In this paper, we introduced some preliminary results of our
model-based testing research for infotainment system HMIs.
Error statistic and some additional elements needed for mod-
eling the menu behavior were introduced. We also discussed
which tests are adequate and efficient to detect errors in our
area. Furthermore, we have briefly introduced the main ideas
how we extend the model-based HMI testing for variabili-
ties.

ADDITIONAL AUTHORS
REFERENCES
1. F. Belli. Finite-state testing and analysis of graphical

user interfaces. In ISSRE ’01: Proceedings of the 12th
International Symposium on Software Reliability
Engineering, page 34, Washington, DC, USA, 2001.
IEEE Computer Society.

2. V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, and
P. L. Jones. Model-based testing of gui-driven
applications. In Software Technologies for Embedded
and Ubiquitous Systems, volume 5860/2009, pages
203–214. Springer-verlag New York Inc, 2009. 7th
IFIP WG 10.2 International Workshop, SEUS 2009
Newport Beach, CA, USA, 2009 Proceedings.

3. P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in SE.
Addison-Wesley, 2002.



4. K. Czarnecki. Generative programming: Methods,
techniques, and applications. In Proceedings of the 7th
International Conference on Software Reuse: Methods,
Techniques, and Tools, ICSR-7, pages 351–352,
London, UK, UK, 2002. Springer-Verlag.

5. L. Duan, A. Hoefer, and H. Hussmann. Model-based
testing of automotive hmis based on a test-oriented hmi
specification model. In Proceedings of the the 2nd
International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2010), August
22-27 2010, Nice, France. IEEE, Aug. 2010.

6. L. Duan, H. Hussmann, and A. Höfer. A test-oriented
hmi specification model for model-based testing of
automotive human-machine interfaces. In GI
Jahrestagung (2), pages 339–344, 2010.

7. C. Gaston and D. Seifert. Evaluating coverage based
testing. In Model-Based Testing of Reactive Systems.
Springer-Verlag New York, LLC, 2005.

8. H. Gomaa. Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. The Addison-Wesley Object Technology
Series. Addison-Wesley, 2004.

9. A. Gonzalez and C. Luna. Behavior specification of
product lines via feature models and uml statecharts
with variabilities. In 2008 International Conference of
the Chilean Computer Science Society, pages 32 – 41.
IEEE Computer Society, 2008.

10. A. Kervinen, M. Maunumaa, T. Pkknen, and M. Katara.
Model-based testing through a gui. In In Proceedings of
the 5th International Workshop on Formal Approaches
to Testing of Software (FATES 2005), number 3997 in
Lecture Notes in Computer Science, pages 16–31.
Springer, 2006.

11. M. A. M. An event-flow model of gui-based
applications for testing: Research articles. Softw. Test.
Verif. Reliab., 17(3):137–157, 2007.

12. A. M. Memon, M. L. Soffa, and M. E. Pollack.
Coverage criteria for GUI testing. pages 256–267,
2001.

13. J. Offutt and A. Abdurazik. Generating tests from uml
specifications. page 76, 1999.

14. OMG. Omg uml, superstructure.
http://www.omg.org/spec/UML/.

15. S. Reis and K. Pohl. Wiederverwendung von
integrationstestfällen in der
software-produktlinienentwicklung. Inform., Forsch.
Entwickl., 22(4):267–283, 2008.

16. H. Reza, S. Endapally, and E. Grant. A model-based
approach for testing gui using hierarchical predicate
transition nets. In Proceedings of the International
Conference on Information Technology, ITNG ’07,
pages 366–370, Washington, DC, USA, 2007. IEEE
Computer Society.

17. H. Reza, K. Ogaard, and A. Malge. A model based
testing technique to test web applications using
statecharts. In ITNG ’08: Proceedings of the Fifth
International Conference on Information Technology:
New Generations, pages 183–188, Washington, DC,
USA, 2008. IEEE Computer Society.

18. N. Szasz and P. Vilanova. Statecharts and variabilities.
In P. Heymans, K. C. Kang, A. Metzger, K. Pohl,
P. Heymans, K. C. Kang, A. Metzger, and K. Pohl,
editors, VaMoS, ICB Research Report, pages 131–140,
2008.

http://www.omg.org/spec/UML/

	Introduction
	Related work
	Error classification and distribution
	Test-oriented HMI specification
	The menu behavior model
	ViewState
	PreStepsCondition
	RuntimeCondition
	Some new event types

	Coverage criteria for infotainment system HMI tests
	Integrating variability into model-based HMI-testing
	Conclusion
	Additional Authors
	REFERENCES 

