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Abstract: The software functionalities and complexity of today’s in-car infotainment
HMIs (human machine interface) have grown significantly in recent years. While
model-based testing and test automation are widely-used for testing system functions,
testing the HMI remains manual tasks, which are very demanding and time consuming.
In our research at AUDI AG a model-based testing approach is proposed for testing
both the logical behavior and the graphical interface of the automotive infotainment
HMIs. As an important part of the testing approach a test-oriented HMI specification
model will be designed, which describes the theoretical behavior of the HMI and con-
tains the necessary information for automated HMI testing. HMI tests can be generated
from this model. In this paper, we discuss at first the reasons why model-based testing
is still not accomplished for HMI testing and introduce a technical solution from a new
perspective.

1 Introduction

The complexity of HMI software is growing with functionalities and complexity of info-
tainment systems very strongly [GmbO05]. A user interface giving a faultless experience
is one of the most important requirements of today’s infotainment systems. However du-
ring the development phases, 50 percent of the time and more than 50 percent of the costs
are expended for testing [MS04]. While testers of non-HMI applications have been enjoy-
ing the convenience of tools to automate their tests, GUI testers still toil in their tedious
works. Test designers have to spend a lot of time for defining tests and especially adap-
ting the existing tests for different system variants and software updates. The testers have
to execute the tests step by step manually. The reasons why it is so difficult to permute
model-base testing are discussed in Section 3. Our technical solution of a new perspective
is introduced in Section 3.

2 Related Work

Automotive manufacturers and suppliers have busied themselves with the model-based
testing of the infotainment system HMI since some years. In [Fle07] a model-based HMI



prototyping tool is suggested from the supplier prospect to manufacturers for a model-
based specification. In [SBKOS5] a similar HMI framework is proposed for model-based
HMI specification, development and testing for infotainment HMIs. In [GB09] domain
specific languages are introduced to specify the different layers of an infotainment HMI.
Model transformation is proposed to be used for integrating these specifications together
into one model, which should be able to be used for test generation. But actually, almost all
HMI prototyping tools use their own domain specific languages for different layers of an
HMI and support visual editors to edit the domain specific languages. A model created by
such a tool is already a integrated and complex model of HMI. These existing approaches
all focus on HMI frameworks.

3 Model-based Testing for Infotainment HMIs

At the moment, the existing approaches in automotive area look for solutions in HMI spe-
cification and development frameworks to enforce the model-based testing approach for
infotainment HMIs. However, the true reasons are not the only absence of a suitable fra-
mework. Firstly political problems exist. Company frontiers and fears of changes in the
work process prevents the efforts. Secondly the designer and IT engineer problem, which
is fully discussed in [PVHO7] are very often the reasons for insufficient quality of the
model-based specifications, which is the precondition for model-based testing.

In our approach, we don’t face the politic, process or designer and engineer problem di-
rectly. In our respects, it is missing a complete model-based testing approach specially
identified for infotainment system HMIs, which covers all process parts and is evaluated
as practical and usefully. Existing approaches search solutions in the HMI framework. We
try to resolve the problem from another perspective. We focus on the content, methods and
needed interfaces of the model-based testing approach for infotainment context. Which
information we need to automate HMI testing, what kind of tests we need specific for in-
fotainment HMIs, how can tests be generated and executed, which interfaces are need for
observation of the SUT behavior are questions we face. In the Section 3.2, a test-oriented
HMI specification model is introduced as one of the parts of our solution.

3.1 HMI Specifications

HMI specifications are usually created by the manufacturers and describe the requirements
in the HMI implementation. Thus, they define the theoretical behavior the implementation
has to conform to. Visio and PDF documents are the most widely used format to speci-
fied the HMI, although model-based development and specification have been made quan-
tum jump in many other areas. Suppliers performing the HMI implementation promise
continuous HMI development process with there HMI prototyping tools [FleO7]. Howe-
ver, the reality is not far from the promise. The working process to create a model-based
HMI specification concerns usually more departments with persons coming from different
subject areas and requires incessant and interactive corporation between the supplier and
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the manufacture. Furthermore, the resulted specifications are not satisfying. Specifications
and the specification phases have totally different purposes then the implementation. The
reuse of elements and efficiency are not focuses of the specification. Instead, simple and
understandable descriptions are the main purposes of the specification phases. This diffe-
rent result additional works and insufficient quality of the produced specification models.
These models are usually not qualified for the implementation on this base or automated
testing. In this paper we don’t want to discuss how to resolve the process problem to achie-
ve a qualified model-based specification. We focus on the testing perspective and strive to
identify all information needed for automated testing. Certainly, the approach bases on
the assumption, that a model-base HMI specification has to be exist, but it tries to base
on the minimum requirements in a model-based specification model and does not make
any additional demands. The following subsection will introduced the test-oriented HMI
specification model.

3.2 Test-Oriented Specification Model

A test-oriented specification model is a model, which describes the theoretical behavior of
the SUT and contains sufficient information for testing. Depending on the HMI develop-
ment process, a test-oriented specification model can be created corporately by the HMI
designers and test engineers or by the test generation process on the bases of a normal spe-
cification and additional information for testing defined by test engineers. In this case the
test-oriented HMI specification model does not have to own a visual form as in a specifica-
tion tool, it could be a composition of information in the memory. We demonstrate at first
a normal specification model, and then create a test-oriented specification model directly
with a HMI specification tool and show it visually in order to facilitate the introduction.

An HMI specification is usually composed of two parts according to the two layers of
HMIs: Statecharts defining the menu behavior (shown in Figure 2) and the graphical ele-
ments i.g., screens and widgets defining the HMI looks (shown in Figure 1). Figure 2
shows a strongly simplified cutout from the statecharts of a model-based specification.
The statechart cutout describes the simplified menu behavior in navigation feature. Each
state in the diagram is a view state, i.g., associated with a defined screen. As soon as the
HMI enters a view state the according screen will be displayed. The HMI stands in Navi-
gation_Main_Screen when the feature navigation is accessed. As explained, event mapping
details of widgets are contained in the graphical layer, but not in the statechart. The first
outgoing transition from the left hand side is executed by the event country, which is fired
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Abbildung 2: Simplified Cutout of an HMI Specification

by the widget country as reaction to the user input through a touch screen or a control
panel. In the state Country_List the HMI returns to the main screen, when the user has
selected a country. From the main screen it is possible to enter a city as destination. If
the selected country has less then 20 cities, the screen City_List from which the user can
directly select the expected city will be entered. Otherwise, the user will be lead to En-
ter_City_Speller which offers a speller for the user to enter the city name. So the next
state after the event city dependents on the selected country and the database used. By a
complete user input the route guidance can now be started. The HMI accesses the screen

Calculate_Route.

The specification introduced above only defines the theoretical behavior of the HMI. Tests
can still not be generated from this specification. In this paper, we want to introduce two
mostly important information needed for the testing purpose. Firstly, many important con-
ditions are not accessible for the test generation. The statechart in Figure 2 defines the
possibility to reach City_List from the main screen. However, the condition to do this is
hidden in the widget. The widgets for the specification are usually implemented by the sup-
plier and are available for the specification as libraries. As long as the widget city is active,
it fires the event city as reaction to the enter event from the user. The widget city is only
active when the underlying application, which is not a part of the model-based specificati-
on has received a valid selected country and set the widget active. This condition is hidden
in the widget library and is not accessible for test generation. Similarly start guidance can
only be performed, if the country and a city or a street are given correctly. Without these
conditions many invalid tests will be generated. E.g., starting the rout guidance immedia-
tely from the main screen without any destination inputs. Secondly contents of user inputs
e.g., the city name to be entered do not exist in the specification. Generated tests are not
complete without these user input contents.

Figure 3 shows the resulting model after adding the information above into the specifica-
tion. Actions and conditions are inserted into some of the transitions. E.g., to be able to
enter a city the condition countrySelected==true must be satisfied. This condition can only
be satisfied by the action of the transition from Navigation_-Main_Screen to Country_List.
This condition constraints that the country must be selected at first. The conditions will be
considered by the test generation introduced in the section 3.3. In this way, it is ensured to
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Abbildung 3: Sample of a Test-Oriented HMI Specification Model

generate correct and usable tests and to avoid invalid tests. Some self-transitions indicating
the needs for user input contents are inserted into the diagram. Section 3.3 will introduce
how user inputs can be integrated into generated tests.

3.3 Test Generation and Execution

In order to generate tests form the test-oriented specification, test case specification has to
be defined by the testers and a test coverage criterion has to be selected for the forthcoming
generation. Test case specification defines the contents and ranges of tests to be generated,
i.g., the states and transitions a test should cover. In our work, infotainment system specific
coverage criteria are identified. Our previous paper has introduced them in detail.

Before the test generation selects a transition labeled with a condition as the next test step,
actions of other transitions have to be determined at first whether make the condition ful-
filled. E.g., to select the transition with event city, the transition with event country has
to be selected as previous step. The transitions with Userlnput events will be selected as
steps before all other outgoing transitions from the same state. We explained that the event
country is the reaction event fired by the widget country. So the test generation selects the
action event enter on widget country as the test step instead of the reaction event country.
Generated tests contains both test steps and expected screen or state name.

In the previous paper test tools for infotainment system function tests were introduced.
Tests generated from our test-oriented HMI specification model can be executed automa-
tically with the help of such test tools. Test actions performing needed user input contents
have to be defined in the test tools before. They will be executed as sub sequence before
the rest of the generated tests is executed. Image processing is intensively used to locate
the correct widget on the screen and verify whether the HMI stands in the correct menu
as expected. Details of test execution, observation and verification will not be explained in
this paper to avoid exceeding the paper range.



4 Conclusion

The purpose of our research is to find a model-based testing approach for infotainment
HMIs. We introduced a test-oriented specification model, which contains both the theo-
retical behavior of the HMI and sufficient information for testing purposes. Tests can be
generated from the test-oriented model and executed with the help of test tools for info-
tainment system function tests automatically. In future papers, we will introduce details
of methods and interfaces executing the generated tests and verifying the SUT behavior.
Also solutions for testing the dynamic widget behavior and displaying graphical elements
will be introduced. We believe, that we’ve provided a practical and complete model-based
testing approach for infotainment HMIs and other advanced HMIs in this way.
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