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ABSTRACT
In this paper we introduce a novel approach for smooth pursuits
eye movement detection and demonstrate that it allows up to 160
targets to be distinguished. With this work we advance the well-
established smooth pursuits technique, which allows gaze interac-
tion without calibration. The approach is valuable for researchers
and practitioners, since it enables novel user interfaces and appli-
cations to be created that employ a large number of targets, for
example, a pursuits-based keyboard or a smart home where many
different objects can be controlled using gaze. We present findings
from two studies. In particular, we compare our novel detection
algorithm based on linear regression with the correlation method.
We quantify its accuracy for around 20 targets on a single circle
and up to 160 targets on multiple circles. Finally, we implemented a
pursuits-based keyboard app with 108 targets as proof-of-concept.
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1 INTRODUCTION
Gaze-based interfaces hold many promises: they work over dis-
tances, they are hygienic as there is nothing to touch, they keep
hands free for other tasks, they are silent, and they are maintenance-
free as eye trackers have no moving parts. However, gaze-based UIs
usually need a time-consuming calibration, they lack high accuracy,
and they are prone to the so-called Midas touch problem [14].

In 2013, Vidal et al. introduced a concept for gaze interaction
based on smooth pursuit eye movements [32, 33]. In interfaces with
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Figure 1: The 160 pursuit targets dial plate. The targets are
organized in 8 circles with 20 targets each. The targets on
a circle move alternately clockwise and counter-clockwise.
160 targets are the biggest number of targets reported up to
now which are detectable by an algorithm and from which
humans can select a target.

moving targets, they compare a user’s gaze and themovement of the
target, hence allowing a matching pursuit movement to be detected
by calculating Pearson’s correlation coefficient. The strength of this
approach is its independence from offset and scaling and, therefore,
the eye tracker does not need calibration but can be instantly used.
Another advantage is that due to being scale-independent, small
interfaces, e.g., for a smartwatch [11], can be built.

A typical smooth pursuits-based interface offers several targets
to give users a choice. Esteves et al. [11] showed that it is possible
to distinguish eight targets moving on a circle. Enhancements by
using PCA (principal component analysis) enable up to nine targets
to be distinguished [2]. Adding a second circle with targets moving
in the opposite directions allows doubling this number to 18 targets.

The motivation behind our research is to further increase this
number of distinguishable targets to hence enable novel applica-
tions not possible before. In particular, we envision that environ-
ments where targets can be displayed either on a single screen or be
distributed in the environment can benefit from such a technology.
This vision is supported by the availability of mobile eye trackers
and displays to show the stimulus. Possible applications include:
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PursuitKeyboard A possible application is a keyboard, allow-
ing for eye typing using smooth pursuits. Each character is
represented by one target.

Smart Home Previous work investigated the use of smooth
pursuits to control appliances in a smart home [31], e.g.,
controlling the volume of a music player. Our approach al-
lows more targets which in turn allows controlling a variety
of features for a large number of devices, such as toasters,
coffee machines, vacuum cleaners, smart televisions, etc.

Virtual Reality Our approach is also valuable for complex
virtual reality environment. Here, different virtual objects
can be controlled using gaze.

Virtual Shopping In 2011, Tesco presented a virtual super-
market, where users chose products for home delivery from
more than 100 items, using a QR code1. Pursuits allows se-
lecting items via gaze in a more privacy-preserving manner.

To achieve this goal we first introduce a new detection method
based on the slope of a regression line to which we refer as slope
method. This method is sensitive to scale which makes it less uni-
versal than other detectionmethods described in [30]. In the context
of eye tracking and the calibration issue, however, the differences
in scale between a calibrated and an uncalibrated eye tracker signal
are small. Typically these differences are smaller than factor 1.2. The
advantage of the slope detection method is that it can detect pursuit
movements on circles with different radii. A further advantage is
that this method can distinguish many targets on one circle. Our
first user study revealed that it is possible to distinguish pursuit
movements for 20 targets moving on a circle with the new method.
Together with circles of different sizes this allows to distinguish
between far over hundred pursuit targets. As the the layout of the
pursuit targets resembles old-style telephone interfaces we call this
pursuit interfaces DialPlates.

As a proof of concept we implemented an interface with 160
pursuit targets (Figure 1) and as a possible application the Pursuit-
Keyboard with 108 keys (Figure 2). In our second user study we
confirm our theoretical assumptions and demonstrate the capabili-
ties of the new detection method. Our research is complemented by
a discussion of questions arising from the large number of targets,
in particular, readability of target labels and layout.

2 BACKGROUND AND RELATEDWORK
While early works on gaze-based interaction relied mostly on fix-
ations, the research community started to move towards detect-
ing gaze behavior, such as gaze gestures [10] and smooth pursuit
[32, 33]. Smooth pursuit eye movements are naturally performed
when gazing at a moving target. Interaction using smooth pursuit
(aka Pursuits) is promising since it does not require calibration as it
relies on relative eye movements rather than precise fixation points.

2.1 Applications of Pursuits
Pursuits has been utilized in several applications and domains. Be-
ing a calibration-free and contactless gaze-only modality, a large
body of work investigated its use on public displays, where imme-
diate usability is essential [1, 23]. For example, Vidal et al. used
1Tesco Virtual Stores: https://goo.gl/L4mEgU

Figure 2: The PursuitKeyboard (Western variant) – 108 tar-
gets are distributed over 6 circles (18 targets each). The Pur-
suitKeyboard is a possible application of our algorithm.

Pursuits on public displays for gaming and entertainment applica-
tions [32]. EyeVote uses Pursuits for voting on public displays [20].
Pursuits was also used in active eye tracking settings, where the
tracker moved on a rail system to follow users as they pass by large
displays [17]. Lutz et al. used Pursuits for entering text on public
displays [22]. They worked around Pursuits’ limitations by per-
forming each letter’s selection on two stages: the user first selects
one of 5 groups of letters. The group then expands to allow the user
to finally select the desired letter.

Further application areas of Pursuits include interaction with
smart watches [11], interaction in smart homes [31], and using
Pursuits for authentication [7, 27, 28]. Kangas et al. [15] and Špakov
et al. [34] used Pursuits in desktop settings as a continuous signal
to control an on-screen widget to, for example, adjust volume.

In addition to using it as a calibration-free gaze interaction tech-
nique, Pursuits can also be used for calibration. Pfeuffer et al. [25]
introduced a method to calibrate the eye tracker as users follow on-
screen moving targets. Similarly, Celebi et al. [3] used Pursuits for
eye tracker calibration. Khamis et al. [19] used gradually revealing
text to calibrate the eye tracker while users read-and-pursue.

Further possible applications for selection from Pursuit are AR
and VR environments where the hands are used for other tasks and
noise or privacy concerns does not allow speech commands. VR
benefits from using Pursuits during interaction, especially when
moving in VR [18], and when interacting with occluded targets
[26]. Pursuits was also employed in augmented reality glasses [12].

2.2 Implementations of Pursuits
Different implementations exist to detect Pursuits. For an overview
on general pursuit detection methods we refer to Velloso et al. [29]
who discussed two detection methods: Euclidean distance and cor-
relation. Herlina et al. [13] report on a comparison of both methods.

The detection methods using the Euclidean distance between
the gaze estimates and target positions [15, 27, 28, 34] work very
well but need a calibrated eye tracker as the method is susceptible
to offsets from inaccurate detection. Methods using the standard
deviation of the Euclidean distance as suggested in [34] eliminate
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the offset problem and work well for linear trajectories without
calibration. In the context of circular trajectories, the challenge is
that the distance of one target to any other target stays constant.

The other detection method employs Pearson’s product mo-
ment correlation [11, 12, 16–19, 21, 29, 31]. In contrast to the Eu-
clidean distance, the correlation method is independent of offsets
and scaling. For this reason, it works reliably without calibration
[21, 29, 32, 33] and even on small interfaces such that of smart
watches [11]. On the downside, the accuracy of the correlation-
based detection drops significantly in the presence of more than
8 targets [11, 29, 32]. A recent suggestion for improving circular
smooth pursuit detection was proposed by Velloso et al. [30]. They
call their methods ‘2D correlation’ and ‘profile matching’. These
methods improve pursuit detection and reduce false positives.

We learn that despite the many different application areas, inter-
action using Pursuits is limited in the number of distinguishable
targets. This makes it difficult to apply Pursuits in scenarios, where
a lot of different targets are required, such as smart homes, virtual
reality, or user interfaces with many targets such as a keyboard.

3 PURSUIT DETECTION
Typical pursuit detection methods need a window size, a compar-
ison function and a threshold. The window size is a time interval
over which the comparison function is calculated. An eye tracker
delivers data at a certain frequency and, therefore, the important
value for the detection algorithm is not the time interval but the
number of samples n delivered during this time interval. From a
user’s perspective, short time intervals are preferable, since they
allow for faster selection. At the same time, shorter time intervals
increase the risk of either missing the detection or getting false
positives. Obviously, input devices delivering a high data rate are
preferable as they enable short detection times.

The comparison function is a metric giving a value for how good
two movements match. The detection algorithm compares every
target motion with the gaze motion. Selection takes place when the
value from the metric function matches a given threshold criteria.

3.1 Detection Using Correlation
If the eye follows a moving target, eye and target movements cor-
relate. Hence, calculating the correlation for detection seems the
obvious approach. Calculating correlation can be visualized by plot-
ting the corresponding values, the x-coordinates of the gaze and
the target, in a two-dimensional plane (Figure 3). Correlation is a
measure of how close the plot is to a linear relationship. For pursuit
detection, the correlation should be above a certain threshold, typ-
ically 0.8. The advantage of correlation is independence for scale
and offset: Hence, this method works without calibration.

3.2 Detection Using Regression Line Analysis
If the eye tracker is perfectly calibrated and the eyes follow the
target perfectly, the plot in Figure 3 is a line through the origin
with slope 1.0 – in other words, gaze and target coordinates are
equal. In case of a calibration error, there may be an offset between
the gaze and the target coordinates’ value. The slope may have a
value different from 1.0. The regression line analysis approach was
introduced by Drewes et al. [9] in the context of calibration.

Figure 3: Real data plot for calculating correlation and for
regression line analysis. Correlation is a measure of linear-
ity and regression line analysis provides intercept and slope.
In perfect calibration gaze and target coordinates are equal,
meaning correlation and slope are 1.0 and the intercept is 0.

Observing data from an uncalibrated eye tracker reveals a con-
siderable offset but the scaling error and, therefore, the error in
the slope typically stays within a range from 0.8 to 1.2. Hence, it is
possible to detect a smooth pursuit movement by testing how close
the slope of the regression line is to 1.0. Close to 1.0 means that a
threshold ts needs to be defined with 1/ts < slope < ts . From our
experience, values for ts between 1.2 and 1.3 work well. We refer
to this method as the slope method.

3.3 Designing a New Pursuit Detection
Algorithm

We use the following formula to calculate the correlation r :

r =

n
n∑
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n∑
i=1

д
n∑
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t√√
n

n∑
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д2 − (
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where g is a gaze coordinate, t the corresponding target coordinate,
and n the size of the data window. The following formula calculates
the slope s of the regression line:

s =

n
n∑
i=1

дt −
n∑
i=1

д
n∑
i=1

t

n
n∑
i=1

д2 − (

n∑
i=1

д)2
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which is similar to the formula for correlation. In contrast to
formulas which require mean values and consequently need to sum
up values over all data in the window, these formulas allow a sliding
window by only subtracting an old value and adding a new value.
Hence, the algorithm’s run time depends on the data window size.

To avoid false positives, for a positive detection the threshold
condition should not only be true for one sample but for a certain
number of subsequent samples. We refer to this as minimum sig-
nal duration. This idea was already suggested by previous work
[15, 34]. Reducing false positives is also possible by increasing the
data window size. However, a small data window and a minimum
signal duration are more efficient than a large data window with
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Table 1: Parameters for correlation/slope detectionmethods

Parameter Correlation Method Slope Method

Window size 30 samples 30 samples
Smoothing 0 samples 20 samples
Minimum duration 20 samples 15 samples
Threshold 0.8 0.77 – 1.3
Skipped samples 30 samples 30 samples

the size of both, small data window and minimal signal duration.
Furthermore, the gaze signal is smoothed by calculating the average
over k samples. While testing our implementation, we observed
that after a successful detection of a target, a false positive detection
of the same target occurs sometimes. The reason is the reaction
time of the user who is often still following the target after success-
ful detection. To address this problem, we skip some samples after
positive detection.

4 STUDY I: EVALUATING THE SLOPE
METHOD

The purpose of the first study was to find out the maximum of
distinguishable targets on a circle. To understand the strengths and
weaknesses of the slope method we deliberately compared it to
the classical correlation method as this method has been research
intensively and well-working thresholds as well as the maximum
number of distinguishable targets are known. However, we com-
ment on other approaches, such as the rotated correlation method
[30], in the theory section.

4.1 Comparing both Methods
Both detection methods depend on several parameters – the thresh-
old, the data window size, the minimum signal duration, and the
smoothing window size. A systematic approach with five different
values for each parameter would have led to 625 combinations for
each detection method. Note, that additionally, the target speed
as well as the radius of the circle on which the targets are mov-
ing might influence the results. A systematic approach that tests
all possible combinations is not feasible. Simulations do not work
either as there is a feedback loop with the user’s eye.

As a solution, we decided to optimize parameters for eachmethod
individually. We use the same correlation value of 0.8 and a data
window size of 30 samples as Vidal et al. [32]. However, smoothing
the gaze signal improves the detection with the slope method but
strongly increased the false positive rate for the correlation method.
The same is true for setting the minimum signal detection. Table 1
shows the parameters for both detection methods as used for the
user study. We used an eye tracker which delivered 60 samples per
second. All numbers in the table are samples except the thresholds
which are real numbers.

4.2 Apparatus
To evaluate our Pursuits detection approach, we developed a sample
application (Figure 4) in which users can enter digits (0 to 9) and
letters (A to N) via Pursuits.

Figure 4: User interface for our study: participants had to
enter a four-digit number via selection fromup to 24 targets.

The application runs on an gaming laptop with integrated Tobii
IS4 Base AC eye tracker (60 Hz). The display has a resolution of 1920
times 1080 pixels on 38.4 cm times 21.7 cm, which results in 0.2mm
for one pixel or 50 px per centimeter. The average distance between
the participants’ eyes to the display is around 50 cm +/- 5 cm, which
corresponds to 0.02◦ per pixel or around 50 px per degree. The
targets move clockwise on a circle with a radius of 130 px (2.6◦),
except for the ‘cancel’-target which moves counter-clockwise on
a circle with a radius of 80 px (1.6◦). The radius of each target is
20 px (0.4◦) and they move at 6.5◦/s (2.5 seconds per rotation).

The interface provides visual and acoustic feedback for detection.
Every target that matches the threshold condition is filled with color,
whose intensity increases the longer the threshold condition stays
true, and reaches its maximum once the minimum signal duration
is reached. Different beeps represent correct and wrong entries.

4.3 Procedure
We invited 16 participants (3 females) with normal (7) or corrected
to normal vision (9) aged between 24 and 58. After arriving at the
lab, participants filled out a form with the demographic data and
received a short introduction to the system (Figure 4). To test how
well the methods work for spontaneous gaze interaction, we did
not calibrate the eye tracker for each participant. Instead, it was
calibrated only once by one of the authors. The participants’ task,
inspired by a PIN entry task [7], was to enter a four-digit number
by following the clockwise rotating number targets using gaze. In
case of entering a wrong digit, the participants had to delete it
by selecting the counter-clockwise rotating ‘cancel’-target. Each
canceled entry was counted as an error.

Participants first completed a training task with six targets in
which they entered four symbols (digits and letters), and tried to
cancel an entry. These entries were excluded from the analysis. We
started the study with six targets and the participants had to enter
4 symbols using each Pursuits detection method. We randomized
the method with which they started. After a successful round we
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increased the number of targets by two and randomized again with
which method to start. Every selection task had a timeout of 90
seconds. If a participant was not able to fulfill the task in time or
wished to abort, the study continued with the other method until
the maximum target number of 24 was reached or the participant
failed. We concluded with a semi-structured interview.

4.4 Results
Apart from the qualitative feedback and observations, we logged
the maximum number of targets shown simultaneously from which
participants could still perform successful selections. We further
logged the errors, which correspond to the number of times users
canceled their input. We also logged the task completion time, which
denotes the time taken to enter all 4 symbols correctly. Finally we
logged the average entry time for entering each symbol.

4.4.1 Interviews and Observations. All participants understood im-
mediately how to operate the system and how to enter the digits,
but it seemed that they were at the beginning of a steep learning
curve. Many saw the user study like a computer game and were
highly ambitious to reach a high score. All participants reported
that the task required a lot of focusing. All participants reported
that they found the slope-based method more accurate and easier.
Some of them even mentioned their preference before being asked.

4.4.2 Maximum Number of Targets. We counted the maximum
number of displayed targets from which participants were able to
enter the four symbols (Figure 5). The slope detection approach out-
performed the correlation detection method. Only one participant
could select more targets with the latter.

AWilcoxcon signed ranked test revealed that the slope detection
method results in a significant increase in the number of displayed
targets from which participants successfully made selections (Z =
3.168, p < 0.01). Using the correlation method, the maximum target
number for which participants accomplished the task was between
10 and 24 (M = 15.0, SD = 3.7). Using the slope method, the
maximum target number was between 8 and 24 (M = 21.6, SD =
4.6). Note, that in our implementation, the correlation method
performs even better than in previous work [32].

4.4.3 Errors. Whenever participants entered a wrong digit, they
had to cancel the entry by selecting the ‘cancel’ target. Every entry
of the ‘cancel’ target was counted as error. The average number
of errors increases in the presence of more targets (Figure 6). The
increase in errors is higher for the correlation method. For example,
while both methods yielded almost no errors at 6 targets across all
participants, the mean number of errors at 8 targets was 1.25 and
0.13 for the correlation and slope methods respectively. Similarly,
at 24 targets, participants made 22 errors on average in case of
correlation, but only 3 errors on average in case of the slope method.
Note, that Figure 6 displays an average over the participants who
were successful in the respective conditions.

4.4.4 Task Completion Time. We measured the completion time
for successfully entering 4 symbols, starting from the moment
displaying the symbols, until the moment the fourth symbol was
entered. This also includes cancellations. The average completion
time is similar for both methods for up to 8 targets (Figure 5).
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Figure 5: Completion time over number of targets. The slope
methodwas consistently faster than the correlationmethod.
The bars in the background indicate the number of partici-
pants who successfully completed the task.Errors
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Figure 6: Errors over number of targets. User made consis-
tently less errors with the slope method.

Figure 7: Time per Entry. Participants performed slightly
faster on a single entry with the correlation method. It
seems the correlation method is more sensitive but also de-
tects more false positives.

For more targets, it increases strongly for the correlation method
compared to the slope method. Similar to the errors, successful
completion times exclude cases where participants failed to enter
the 4 symbols. Completion times are longer for the correlation
method. This is mainly due to the many cancellations participants
had to perform.
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4.4.5 Symbol Entry Time. Figure 7 shows the average time for
selecting a single entry. The slight decrease in selection times is
likely the results of a learning effect. Furthermore, only successful
participants contributed to the entry times for larger target numbers.
They can be assumed to be performing better overall.

One interesting observation is that the time per entry does not
increase with the number of targets. The other interesting obser-
vation is that the times for the slope method are higher than the
times for the correlation method. This is remarkable as the slope
detection uses a shorter minimum signal duration. However, a
Wilcoxon signed rank test showed no evidence of significant effects
of detection method on entry time.

4.4.6 Robustness of the Methods. Robustness refers to less detected
false positives. False positive can occur in two situations. First,
the user wants to select a certain target but the detection reports
another target (i.e. an error). The data show that the slope method
performs better than the correlation method if there are more than
6 targets. For 8 targets, the correlation method leads to 15% false
positives (cf. 12% in [32]), but only 1.6% with the slope method.

Second, a user does not intend to enter any target but the eye
movements trigger a detection (i.e. an unintended selection). This
can be avoided by turning off detection when no entries are ex-
pected (e.g., when another window is active on a desktop). We
tested how both algorithms respond to cases, in which this is not
possible. To do so, we recorded gaze activity for about 3 minutes
from other tasks such as reading, surfing the internet, watching a
video. Feeding the data to the detection algorithms, we found false
positive rates from 0.05 to 0.42 per second. We did not find any
pattern, suggesting that the issue of unintended selection should
be investigated as future work.

5 TOWARDS MAXIMIZING TARGET
NUMBERS

In the following section we provide the theoretical foundations for
why the introduced method allows to build interfaces with a large
numbers of targets.

5.1 Theoretical Foundations
The study yielded significant differences in both detection methods.
Beside the experimental validation these findings can be explained
theoretically. The explanation applies to all smooth pursuit inter-
faces with targets moving on circles. The coordinates of targets on
a circle can be expressed by

xi = Aicos(ωi t + ϕi ) and yi = Aisin(ωi t + ϕi ) (3)

Assuming a perfectly calibrated and accurate eye tracker, and a
user whose gaze follows exactly a target, the gaze coordinates will
be exactly these target coordinates. In the following we use this
idealized assumption to understand why the slope method has the
capability to distinguish between more targets than the correlation
method does.

If there are n targets on the circle and the gaze follows a target
exactly, the coordinates of the previous and next target are phase
shifted by ±2π /n against the gaze coordinates. The situation for
n = 20 is depicted in Figure 8. The gray area in the figure indicates

Figure 8: The right picture shows the pursuit targets. The
previous (red) and the next (green) targets are phase shifted
by ±2π /20 against the gaze (black). The left side shows the x-
any y-coordinate over time for the red, black and green tar-
get. The gray area is the current data window for detection.

Figure 9: We assume that the eye perfectly follows the black
target. We compare the gaze coordinates with the previous
and next target by regression analysis. The figure shows the
plot for the x-coordinate (left) and the y-coordinate (right).
The red data points lie on a nearly perfect line for both co-
ordinates and produce a positive detection signal for the red
target. The green data points for the y-coordinates are not
on a line and therefore do not signal a detection.

the current data window. Figure 9 shows the regression analysis
for the data window in Figure 8.

All points lie on Lissajous curves, which were studied in the
early 19th century. Psychology research on smooth pursuits used
Lissajous curves already 20 years ago [8]2.

As all targets move with the same speed on the same circle, Ai
and ωi have the same value for each i and the Lissajous curve has
the shape of an ellipsis. The phase shift affects the eccentricity; the
smaller the phase shift the closer the shape is to a diagonal line. The
data window size determines the fraction of the ellipsis on which
the data points lie. If the data window covers a full cycle, the data
points cover the ellipsis completely. In this case, the slope of the
regression line and the correlation will be constant over time.

With a smaller data window (as in Figure 8), which is desirable
for a short detection time, the data points fill only a part of the
ellipsis (Figure 9), moving over time. At the time shown here for
the x-values, the data points are on an almost straight line and
the correlation and the slope are close to 1.0. At the same time,
the y-values for the green target fill the ellipsis’ tip and the slope
and correlation are far from 1.0. As the threshold condition has
2This should not be confused with target movements on Lissajous curves, as used in
[24].
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Figure 10: Correlation values for the example in Figure 8.
The bars indicate a true threshold condition for x (up), y
(middle) and both (down). The light color in the bars indi-
cate theminimumsignal duration. The data for the previous
target are red and for the next target are green.

Figure 11: Slope values for the example in Figure 8. The bars
have the same meaning as explained in Figure 10.

to be true for the x- and y-coordinate, this means that there is no
positive detection for the green target at that moment. However,
the y-values of the red target are still on a straight line and the
detection algorithm reports a positive detection for the red target.

Figure 10 shows the correlation values for the given example and
Figure 11 shows the values for the slope from the linear regression.
The dash-dotted line indicates the thresholds and the bars indicate
whether the threshold condition is true. The bars have light color
before the minimum signal duration is reached. The lowest bars
indicate whether both threshold conditions are true.

The correlation is close to 1.0 most of the time and satisfies the
threshold condition (Figure 10). This is a reason why the strategy
of choosing the target with the highest correlation does not work

reliably. The correlation value drops, when the data window covers
the ellipsis’ tip. As the threshold condition has to be true for the
x and the y coordinate, the correlation method signals detection
between both drops.

If using the rotated correlation (cf. [30]), the correlation signal
does not drop but stays constantly on a value close to 1. The rotated
correlation needs a threshold of 0.97 to distinguish 20 targets on a
circle with the synthetic perfect gaze signal. However, such a high
value will not work reliably on a real gaze signal with noise.

The slope values pass the threshold interval quickly and satisfies
the threshold condition for a shorter time (the bars are shorter in
Figure 11). The overlap of both signals for the x- and y-coordinate is
shorter. Together with the concept of minimum signal duration, the
slope method does not report false positives for this example while
the correlation method does. The shorter time fulfilling the thresh-
old condition is the reason why the slope method can distinguish
more targets on a circle. This also means also that the correlation
method detects more easily and more quickly (but at the expense
of more false positives). This could explain, why the entry time for
the correlation method is slightly shorter (Figure 7).

The theoretical considerations given here provide hints for fur-
ther improvements of the slope detection method. When the data
window passes the the ellipse’s tip the calculated slope traverses
the threshold interval and there is also a moment where it may be
infinite, i. e. vertical. The passing of the threshold interval happens
very quickly and, therefore, this false positive detection is filtered
by the minimum signal duration. However, it is possible to improve
the detection by demanding that the correlation has to be above a
threshold before calculating the slope. The correlation value drops
when the data window passes the ellipsis’ tip.

5.2 Target Detection on Circles of Different
Size

The advantage of the introduced slope method is that it works with-
out calibration but in contrast to the correlation method it allows
to distinguish between targets moving on circles with different
radius. Figure 12 shows a regression line analysis for three different
targets on circles with different radii (50 px, 100 px. 150 px). Targets
move with the same angular velocity and phase. As the eyes follow
each target, the slope varies (0.5 for 50 px, 1.0 for 100 px, and 1.5
for 150 px). While the correlation detects all targets, it cannot dis-
tinguish them. In contrast, the slope method can do so, as the slope
for each target is inside a certain threshold interval.

5.3 The Maximum Target Number
The correlation method can distinguish targets moving clockwise
and counter-clockwise but not between circles with different radius.
Literature reports 8–9 distinguishable targets [2, 11], limiting the
correlation method to 16–18 targets.

As shown above, one advantage of the slope method is that it can
distinguish around 20 different targets on one circle. This number
can be further increased by using different radii.

Distinguishing targets on circles with different radii, means dif-
ferent values for AI . The slope method works well as long as the
targets move with the same angular velocity, i.e. all ωi have the
same value. In this case the corresponding Lissajous curves are
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Figure 12: Regression line analysis for targets on three cir-
cles with diameter 100 px (red), 200 px (green), 300 px (blue).
The plot shows recorded data from a calibrated eye tracker.
The eye followed the green target and consequently the
green dots lie on line with slope 1. The slopemethod detects
the green target. As all targets create dots on a line the corre-
lationmethod detects them all and is not able to distinguish.

ellipses. As targets have the same angular velocity, targets on large
circles move faster than on small circles. While the angular velocity
of targets on a large circle could be decreased, this creates Lissajous
curves with lobes, making detection more complex.

Figure 13: Lissajous curves for a target which moves on a
circle with half radius and double angular velocity than the
target followed by the eyes. The targets have a phase shift of
0◦, 90◦, and 120◦ (from left to right). The dots represent sam-
ples and the filled dots the samples in a data window which
fulfills the threshold condition for both detection methods.

Arbitrarily selecting radius and angular velocity may lead to
similar correlation and slope values, hence producing false positives.
One case is depicted in Figure 13, where targets move on a circle
with half radius, double angular velocity, and a phase shift of 0◦, 90◦,
and 120◦ against the target followed by the eyes. Here, correlation
and slope are both close to 1.0. The challenge is to find combinations
of ratio of angular velocities, ratio of radii, threshold data window
size, and signal duration which allow targets on different circles
with different angular velocity to be reliably detected.

From previous work [11, 13, 34] and our own experience, we
learn that the speed of smooth pursuits targets should be in a range
from 5◦/s to 20◦/s. To ensure that targets move at the same angular
speed, this means the maximum ratio between the smallest and
largest radius can be 4. The slope threshold value ts determines
the minimum ratio of two different radii. For reliable detection, the
ratio of the radii has to be larger than ts * ts . With ts = 1.2 (a slope
value that worked well according to our experience), the ratio of
to radii should be larger than 1.44. As 1.444 = 4.3, this means that
four circles with targets for each direction should be possible. In
total, the slope method should be able to distinguish between 8 *
20 = 160 targets (cf. our implementation in Figure 1).

Note, that this is no hard value as target speed range, threshold
value, and number of targets on a circle could still be varied. Increas-
ing the number of targets leads to more false positives and a higher
percentage of people who are not able to select correct targets. A
lower number of targets increases robustness by decreasing the
false positive rate.

6 STUDY II: EXPLORING MULTI-TARGET UIS
In the followingwe report on an exploration of interfaces employing
large numbers of targets. In particular, we are interested in people’s
ability to use these interfaces.

6.1 Prototypes
We implemented two types of interfaces. Firstly, we implemented a
72-target and a 160-target interface to investigate selection speed
and errors. Secondly, as a proof-of-concept, we built a pursuits-
based keyboard. Suitable radii and target speeds for both interfaces
were determined in pre-tests.

6.1.1 72/160-Target Interface. The prototype is depicted in Figure 1.
The radius of the largest target circle was 424 px (8.5◦ visual angle)
and the smallest 110 px (2.2◦) at a distance of 50 cm from eyes to
screen. The target speed was 14◦/s on the largest and 3.7◦/s on the
smallest circle. The speed of the targets was between 9◦/s – 2.3◦/s.
6.1.2 PursuitKeyboard. As an application, we implemented a key-
board based on pursuits (Figure 2). Our layout is based on a standard
keyboard using 102 letters. To avoid using caps-locks (which would
require multiple selections), we assigned each key to a distinct tar-
get. As for the layout, we show characters in alphabetical order.
We both show small and capital letters. To allow for more easily
distinguishing between keys and special characters, we show cap-
ital letters in green color, small letters in blue, digits in red, and
special characters in black. All targets have a round shape except
for the four navigation keys which are square-shaped. We chose a
geometry with 108 targets consisting of six circles with 18 targets
each. The outer circle had a radius of 300 px and 90 px for the inner
circle. The speed on the outer circle was 10◦/s and 3◦/s for the inner
circle. Note, that future work could optimize the layout to maximize
input times as well as on improving the visual appearance.

6.2 Study Design & Tasks
The study followed a within subject design. The independent vari-
ables were three interface layouts (72-targets, 160-targets, Pur-
suitsKeyboard) and two interface sizes:

72-target interface Targets were arranged on 6 circles with
12 targets each (ratio of circle radii: 1.3).

160-target interface (large) Targets were arranged on 8 cir-
cles with 20 targets each (ratio of circle radii: 1.2).

160-target interface (small) We used the same layout for
this condition, but the geometry was scaled by 0.5. Both
160-target UIs used the same angular speed.

For these condition, users had to select 6 targets. Note, that find-
ing the correct target was not part of this task. We measured input
speed and errors. Participants were not asked to make corrections.

PursuitKeyboard We used the keyboard depicted in Figure 2
with 108 targets.
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Participants had to enter the phrase ‘50% Chance!’. This phrase
was chosen as it has at least one character on each ring. Note that
participants had to locate the correct character. Wrong entries had
to be corrected by using the backspace target.

6.3 Procedure
We used the same setup as in the first study. After the partici-
pants signed the consent form they were introduced to the system
and completed a sample task. Then, participants completed the
aforementioned tasks in counterbalanced order. After the study, we
conducted interviews with participants and asked them about their
experience while using the interface.

6.4 Evaluation
Eleven users (22–39 years, 3 female) participated in our study. Five
of them wore glasses. All participants were able to complete task 1
and 2There were three participants who were not able to complete
task three and four but it was only one person who could not
complete both. However, all participants who failed to complete a
task did not abort but completed the task for more than 80%.

Table 2 summarizes the descriptive results of the study. Selec-
tions require between 6 and 8 seconds. Interestingly, both time and
number of errors seem to increase for larger interfaces. Locating the
correct character in the PursuitKeyboard increases both selection
time (10 s) and errors. The rather high standard deviation suggests
that for some people it is easier to operate interfaces with high
target numbers instantly while others require more training.

Most participants stated that the task was challenging, some
reported ‘tired eyes’, and some complained about the target speed.
Participants felt that in particular in situation where movement of
arms and fingers is restricted, this is a useful approach (e.g., being
disabled, holding something in the hands).

7 DISCUSSION & FUTUREWORK
In the following we summarize and discuss findings, that open
interesting directions for future research.

One vs. multiple screens. Our approach is applicable both in
settings where all targets are shown on one screen and in settings
where targets are assigned to different screens (e.g. on home appli-
ances). In the former case, locating the correct target from many
small, co-located targets may be challenging (for example a smart
watch to control several home appliances). In contrast, if targets are
attached to specific devices it becomes both easier to select them as
well as to relate them to a certain devices or function. Future work
could investigate the learning effect for such interfaces.

Midas touch. Another challenge arises as users are required to
read labels. While doing so, users may accidentally select an object
(cf. the Midas touch). Visual hints, such as target color and shape,
may help mitigating this challenge. This should be investigated
more closely in future work.

Eye Typing. Future work could further investigate eye typing.
The Pursuit keyboard is useful for disabled people who depend on
gaze-only text-entry. There are existing solutions, such as ‘dasher’
[35]. Yet, this approach requires calibration of the eye tracker. Future
work could compare ‘dasher’ and ‘SMOOVS’ [22] with our approach
in terms of input speed, error rates and user acceptance.

Table 2: Avg. completion time per target and std. dev., theme-
dian of errors, and the percentage of successful participants
for the four tasks.

Av. Time Std. Med. % successful
per Target Dev. errors participants

72-targets 5.8 s 4.2 s 1 100%
160-targets (large) 7.8 s 4.8 s 1 100%
160-targets (small) 6.1 s 3.5 s 2.5 73%
PursuitKeyboard 10.0 s 3.8 s 4.5 73%

Robustness. The robustness of Pursuits against false positives
is still an open question for all pursuits detection methods. Our
experimental data and theoretical considerations explain the oc-
currence of false positives during target selection. However, false
positives triggered by other gaze activities are not yet fully under-
stood. Our data suggests that the detection robustness depends on
the type of other gaze activities. Velloso et al. [30] recently reported
on increased robustness in the context of another detection method.

Speed vs. angular speed. It is yet unclear, whether speed or
angular speed is more important on how humans perceive target
speed on circular trajectories. This, as well as an answer to how
users’ ability to recognize target labels is affected by different target
speeds, need further investigation.

Interplay of number of targets, input speed, error rate,
and user acceptance. The interplay of targets and their proper-
ties needs further investigation. For example, it is unclear, whether
a lower number of targets on more circles leads to a better user
experience, compared to fewer circles with more targets. Also it
is unclear how the variation of parameters such as the threshold
interval or the minimum signal duration affect false positives or
the ease of use.

Scenarioswithmobile eye trackers.When using our approach
with a mobile eye tracker, coordinates from the mobile eye tracker
need to be transformed to the coordinates of the display presenting
the pursuit targets. For this the corners of the display have to be
detected in the mobile eye tracker’s world view. For a sufficient
accuracy in the transformation the mobile eye tracker should be
not to far from the display.

Further Application Areas. Directions for future work also
include testing the the slope method in specific application sce-
narios and with other eye trackers. Researchers could investigate,
how quickly users adapt to such interfaces and whether the need
to strongly focus on the target decreases over time. Furthermore,
researchers and practitioners could apply and evaluate the slope
method beyond gaze, e.g. motion matching for body movements
[4–6] and mid-air gestures [2].

8 CONCLUSION
We introduced a new pursuits detection approach – the slope method
–which, although sensitive to scaling, workswithout calibration and
can distinguish targets on circles of different size. We demonstrated
that it can distinguish up to 160 simultaneously moving targets
in a desktop setting. We provided theory and a proof-of-concept,
showing that selection from a high number of targets is feasible.
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