
K.P. Fishkin et al. (Eds.): PERVASIVE 2006, LNCS 3968, pp. 254 – 271, 2006.
© Springer-Verlag Berlin Heidelberg 2006

iCAP: Interactive Prototyping of Context-Aware
Applications

Anind K. Dey1, Timothy Sohn2, Sara Streng3, and Justin Kodama4

1 Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA
anind@cs.cmu.edu

2 Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
tsohn@cs.ucsd.edu

3 Institute for Informatics, University of Munich, Munich, Germany
sara.streng@gmx.de

4 Palm, Inc., Sunnyvale, CA, USA
justin.kodama@palm.com

Abstract. Although numerous context-aware applications have been developed
and there have been technological advances for acquiring contextual informa-
tion, it is still difficult to develop and prototype interesting context-aware appli-
cations. This is largely due to the lack of programming support available to both
programmers and end-users. This lack of support closes off the context-aware
application design space to a larger group of users. We present iCAP, a system
that allows end-users to visually design a wide variety of context-aware applica-
tions, including those based on if-then rules, temporal and spatial relationships
and environment personalization. iCAP allows users to quickly prototype and
test their applications without writing any code. We describe the study we con-
ducted to understand end-users’ mental models of context-aware applications,
how this impacted the design of our system and several applications that dem-
onstrate iCAP’s richness and ease of use. We also describe a user study
performed with 20 end-users, who were able to use iCAP to specify every ap-
plication that they envisioned, illustrating iCAP’s expressiveness and usability.

1 Introduction

In the past several years, there has been an increased effort and interest in building
and deploying context-aware applications. Users’ environments contain context in-
formation that can be sensed by an application, including location, identity, activity,
and the state of nearby people. Context-aware computing involves sensing this con-
text to implicitly provide appropriate information and services. Many groups have
developed infrastructures and toolkits to support this next era of ubiquitous comput-
ing, however few have focused on empowering end-users in building context-aware
applications [5,7,11]. Currently, developing a context-aware application requires
developers and end-users alike to either build their application from scratch (involv-
ing laborious direct interaction with hardware sensors and devices), or to use an ena-
bling toolkit. While low-level toolkits provide much-needed support for acquiring
context [2,3,4,8], large amounts of code must still be written to develop simple sen-
sor-rich applications.

 iCAP: Interactive Prototyping of Context-Aware Applications 255

Fig. 1. The iCAP user interface has two main areas: a tabbed window on the left that acts as a
repository for user-defined objects, activities, locations, people, time and rules and the situation
area on the right where these components can be dragged to construct a rule. The rule shown
uses 2 situation sheets, where one (on the right) is split into 2 slots. The rule being prototyped
is: If the phone rings in the kitchen and music is on in an adjacent room or if Joe is outside and
the phone rings in the kitchen then turn up the phone volume in the kitchen.

This inhibits the design of interesting applications, especially for end-users, who
end up having little control over how these applications behave. End-users with little
technical expertise should be able to exercise control over context-aware systems and
rapidly prototype applications. They have more intimate knowledge about their activi-
ties and environments than a hired programmer and they need the ability to create and
modify applications as those activities and environments change. Without such abil-
ity, context-aware applications acting implicitly could significantly annoy users as
they fail to meet users’ needs.

To address these issues we built the interactive Context-aware Application Proto-
typer (iCAP), a system aimed at lowering barriers for end-users to build interesting
context-aware applications for their instrumented environment, without requiring
them to write any code. In particular, iCAP allows a user to describe a situation and
associate an action with it. It is a visual, rule-based system that supports prototyping
of 3 common types of context-aware behaviors: simple if-then rules, relationship-
based actions and environment personalization. In supporting prototyping without
writing code, iCAP allows end-users to exert control over sensing systems and dictate
application behavior.

The most common context-aware applications are described naturally as a collec-
tion of rule-based conditions. A museum tour guide is a common example [1]:“when

256 A.K. Dey et al.

a user stands in front of a particular exhibit, show them content related to that ex-
hibit.” Another canonical example is a smart home [15], with rules like “turn on the
lights whenever someone is in the room.” iCAP is built on this rule-based paradigm
with two separate parts: a visual rule building interface and an underlying rules en-
gine. The interface (Fig. 1) allows users to build, prototype, test and deploy applica-
tions. It also separates users from difficulties in dealing with low-level sensor inputs
or toolkit-level details. The engine is an event-driven database that evaluates and
executes a user’s rules (which specify an application). Context inputs to trigger rules
can come from a user-controlled Wizard-of-Oz interface, or from an instrumented
context-aware environment. Users of our system could successfully specify and test
rules using iCAP.

iCAP supports three common types of context-aware applications. The first type,
simple if-then rules, are rules where an action is triggered when a condition is satis-
fied. As discussed earlier (with the tour guide example), many basic applications can
be described in this way. The next type is relationship-based actions. Humans are
naturally relational, and think in terms of personal, spatial and temporal relationships.
For instance, I am aware that my roommate (personal) entered the living room five
minutes ago (temporal), and that my room and his bedroom are connected by a hall-
way (spatial). When the system recognizes that my roommate is in the next room, it
can prompt me to ask him about going grocery shopping. iCAP provides the neces-
sary support to develop rules that are built on these types of relationships. Lastly, it
supports environment personalization, where an environment satisfies the differing
preferences of its occupants. For instance, one user may enjoy bright lights and rock
music, while another prefers dim lights with classical music. To satisfy both users, the
environment must account for their preferences and adjust itself accordingly.

The next section describes a formative study we conducted with target end-users to
understand their conceptual models of context-aware applications. We then present
the iCAP interface through the building of an example context-aware behavior. We
then describe how the design of iCAP was guided by our findings. We show that
iCAP supports users’ conceptual models through a user study we conducted, where
every user successfully specified every application that they envisioned. We also
demonstrate that iCAP can cover an important design space in context-aware comput-
ing. We then survey previous research in the areas of context-aware computing and
rule-based systems, providing further motivation for our work. We conclude with a
discussion of the limitations of iCAP and future directions for this research.

2 User Conceptual Models of Context-Awareness

To guide the design of an end-user prototyping environment for context-aware appli-
cations, we conducted 90-minute interviews with 20 subjects (9 female, 11 male) with
ages ranging from 19 to 52. All participants were experienced with computers but had
no experience with programming. Our goal for this study was to gain an understand-
ing of users’ conceptual models of context-awareness: how they want to build con-
text-aware applications and the types of applications they want to create.

To provide some context for the interview, participants were provided with a de-
scription of a smart home, a concept that most were already familiar with. This

 iCAP: Interactive Prototyping of Context-Aware Applications 257

generic smart home had sensors that could sense a large variety of environment state
and user activities and could execute services on behalf of users. We intentionally
were vague about sample applications and did not discuss any means for specifying
them, so as not to bias our study results. Then participants were asked to create their
first context-aware application. Specifically, they were asked to describe how, when
and where they would want music to play in their smart home. This included both
how they listen to music now and hypothetical situations in their smart home. The
music scenario was chosen because it is easy to understand and is unconstrained,
allowing for creativity and flexibility in specifying application behavior. The last part
of the study was more freeform with subjects creating their own scenarios and
applications that they found useful and desirable in their home. Here our goal was to
collect a large set of user-specified scenarios to better understand users’ needs, and
descriptions of those scenarios to understand how they naturally conceptualize them.

2.1 Study Results

We collected a total of 371 application descriptions from our subjects, including those
from the music scenario. Scenario domains were widespread and included tempera-
ture and lighting control, cooking, bathing and watching television or controlling
entertainment devices. There was quite a bit of overlap among subjects. From these
scenarios and descriptions, we uncovered some interesting findings.

First, every subject described their applications in terms of if-then rules, using the
form ‘“if I …” or “when I …” am in a particular situation, perform this action’. Fewer
than 5% of the rules created used declarative statements instead, for example, “The
nightlight in the bathroom should dim at night” or “During parties, usually play hip
hop, going out music.” The uniformity of this result across users was surprising. Al-
most one-quarter (23.5%) of all rules involved explicit Boolean logic (e.g. use of
‘and’ or ‘or’ statements). An example is “If it is nighttime and my roommate’s door is
closed with the light off, turn the television off”.

Second, subjects specified a wide variety of rules, but most rules (78.7%) fell into
the simple if-then category. The remaining rules were divided among the temporal,
spatial and personal relationship rules evenly (7, 7, and 6.5% respectively). Less than
1% of rules focused on environmental personalization. However, environment per-
sonalization depends on knowing the preferences of the environment’s occupants and
14% of specified rules required knowing some user preference. For example, “When
my alarm clock goes off, turn the volume up louder than normal. But when I wake up,
turn it down to normal,” requires knowledge of what normal is for this person.

Third, the rules that subjects wanted to create were less complex than we expected.
We broke down each rule into a set of constituent elements, trying to determine the
kinds of language used in describing them. After analyzing all the rules, we came up
with six categories: Activity, object, location, time, person and state. The rules used
an average of 2.5 (SD=0.71) instances of these categories. While this varied across
users from a low of 2.0 to a high of 2.9, the results were fairly uniform. An example
rule is “When I’m cleaning, whether it’s the dishes, vacuuming, or other cleaning
activity, play music and have it follow me where I go,” and it consists of 3 activities
and 1 variable location. Another example is “When I open my pajama drawer, then

258 A.K. Dey et al.

turn on the hot water in the shower,” consisting of 2 objects. In general, the older the
subject, the more complex the rules were.

We found that 56.4% of all rules involved objects (e.g. radio) or the state of objects
(e.g. radio on/off or volume). In decreasing order of importance were activities
(19.1%), locations (12.8%), time (7.6%) and people other than the subject (4%). We
were surprised that subjects focused so much on objects, expecting that they would
describe rules more in terms of the activities they were performing or wanted to have
performed for them. Similar to other work, though, subjects did not mention sensors
or sensing [23], only the devices they would normally interact with in their home.

Finally, we learned how subjects naturally conceptualized context-aware applica-
tions, along three different dimensions (situation, action, and preference). First, all the
rules specified by our subjects had the system detecting a situation of interest. But,
there was variation on whether the system was detecting a subject’s state or the state
of the house. An example using subject’s state is “When I’m cleaning, … play music.”
An example using house state is “When the water [on the stove] starts to boil, turn off
the heat.” Rules that involved detecting the subject’s state were far more common
(70.9% vs. 29.1%). Second, on the action side, subjects viewed the smart home in two
different ways: as a piece of technology that they command to perform a context-
aware behavior; and, as something that can assist them in performing their own tasks.
An example of the former is “If I leave the house, turn off the lights”, while an exam-
ple of the latter is “When close friends are over, they know a lot of my music, so I’d
like to expose them to some new quirky stuff”. Similar to the results of Truong et al.
[23], viewing the house as something to command was far more common, covering
all but 7 of the 371 rules. Third, subjects greatly preferred (86% vs. 14%) to state
specific behaviors rather than to state preferences about what they would like their
home to do. A command example is, “When the water on the stove starts to boil, turn
off the heat.” A preference example is “It would be good if music was playing that
was based on what I was cooking. Like salsa music for Mexican food.”

Our findings from this study guided the design of iCAP, our end-user visual proto-
typing system for context-aware applications. Our interface was designed to support
the ways in which users overwhelmingly preferred to specify rules (describe a sub-
ject’s situation and command the house to act on that state, describing specific behav-
iors rather than preferences). In the next section, we describe the iCAP interface
through an example application.

3 iCAP Interface

One can imagine a buddy alert application where a user, John, wants to be notified
when his friends are in a location adjacent to his. His rule would be:

IF I am in location1 AND my friend is in an adjacent location (location2)
 THEN beep my cell phone

The user first creates the people and artifacts involved in the rule and adds them to
the repository (top left of Fig. 1). For each person, the user sketches an icon or select-
san image that will be associated with that person, and specifies that it is part of a
“friends” group (Fig.2a). He then creates a new output, the “cell phone” and specifies

 iCAP: Interactive Prototyping of Context-Aware Applications 259

Fig. 2. (a) Creation of person and his personal groups (b) Creation of “cell phone”

Fig. 3. Rule layout for the example rule

the category of the output (sound), the type of output (binary: ON/OFF, for simplic-
ity), and a sketch/image of the output (Fig. 2b). It is now ready to use in designing
rules by simply dragging the appropriate icon onto the rule sheets.

The user selects “New Rule” and the system creates one visual area, or sheet, on
top, in beige, for entering the situation (IF) and another sheet on bottom, in green, for
the action (THEN) (Fig. 3). The example situation has two conditions that are

260 A.K. Dey et al.

specified by laying out icons: “John is in location1” and “any friend of John’s is in
location2”. The user splits the single input sheet into two vertical “slots” that will be
related by a conjunction. In the first slot, he drags in the icon of John from our set of
inputs. In the second slot, he again drags in the object of John, but specifies that it
represents John’s friends. Since he does not specify locations for either slot, the sys-
tem automatically assigns them variable locations.

To specify the action, the user drags in the cell phone icon from our set of outputs
to the action sheet, he sets the action to be “turn on”. The location of this device
should be John’s location, so he drags in a Location object (map icon), and sets the
location value to be John’s location. Thus the action sheet has two icons that together
specify the action “turn on John’s phone”.

.

Fig. 4. Resolving the variable value relations

Fig. 5. Prototyping mode where users can simulate values and see event changes throughout the
system in the event log

Finally, the rule is saved and the user is shown a drop down menu to resolve any
relations between the variable location values (Fig. 4). He specifies an adjacency
relationship, indicating “John’s location should be adjacent to his friend’s location.”
iCAP uses information provided by the user or known by the underlying context in-
frastructure to determine what locations are adjacent to each other. The rule is saved

 iCAP: Interactive Prototyping of Context-Aware Applications 261

and appears in the rule panel on the left. He can test his buddy alert application by
selecting the prototype mode from a pie menu (see Fig. 1). This launches another
window where he can either control (simulate) the relevant context inputs or connect
to an existing context infrastructure, and see if his rule behaves as expected (Fig. 5).

4 The iCAP System

As almost all of the applications in our study were specified as rules (if <situation>
then <action>), iCAP supports the building and execution of context-aware rules and
has two main components: a visual rule-building interface and a rules engine that
stores the built rules and evaluates them when the rule is being run. The iCAP inter-
face (Fig. 1) provides a simple way for users to design and prototype context-aware
applications. The user only needs to deal with defining necessary elements (objects,
activities, location, people, time) and use them to visually create situations and asso-
ciated actions, or if-then rules. No coding is involved, which is a tremendous benefit
for non-programmers allowing them to easily explore context-aware computing.

We chose a visual prototyping system because visual programming languages have
proven effective in taking advantage of user’s spatial reasoning skills [22]. Our study
showed that the average user-specified rule has low complexity, so a visual environ-
ment seems quite appropriate, supporting both simplicity and familiarity. We iterated
on the design of the user interface multiple times, starting with paper prototypes
through to the final interface which we present here. At each stage, we obtained feed-
back from local experts and test subjects. The interface has one window with two
main areas (Fig. 1), a tabbed window on the left that is the repository for the user-
defined elements and rules, while on the right, a rules area where these components
can be dragged to construct a conditional rule. The rules area is split into two areas,
one (top) for situations (IF) and one (bottom) for actions (THEN). We built iCAP on
top of SATIN, a toolkit for building sketching-based applications [9].

After a number of rules have been defined, the entire rule set can be tested using
the iCAP rules engine. The engine can either be set to simulate the context-aware
environment, or be used in conjunction with a real context-aware environment via the
Context Toolkit [4], an open-source toolkit for enabling programmers to build con-
text-aware applications. Users can interact with the engine in simulation to change the
value of defined inputs and evaluate the behavior of the rules being tested. In simula-
tion mode, outputs are visually updated onscreen, whereas with a real environment,
real outputs in the physical environment are controlled. With the engine, users can
quickly design and test their applications, without having to create an entire infra-
structure for collecting or simulating context and without writing any code.

4.1 iCAP Interaction

Interaction with iCAP has three steps. First, users create elements relevant to their
rules (if they do not already exist in the repository). Second, these elements are
dragged and composed to create rules. Finally, the entire rule set can either be simu-
lated or connected to a live context sensing infrastructure in the prototyping mode.

262 A.K. Dey et al.

Creating Elements. There are five categories of elements in the repository: objects, ac-
tivities, locations, people and time. These categories (and their order in the repository)
come directly from the analysis of the rules from our study (the sixth category found
in our study, object state, was combined into the object category). iCAP contains a
repository of elements that is populated either automatically by the real sensor-
enhanced environment that iCAP is connected to, or manually by the user (or a com-
bination). When the user creates an element, it is associated with a user-sketched
graphical icon and added to the repository. Objects have, by default, a binary (on/off)
mode and, optionally, a gradient mode (range from 1-10) for objects with different
levels (e.g. volume, lighting). An example object is the phone in Fig. 1. In addition,
objects have a content field used to simulate output modalities. For example, with a
music player we could set the content field to “Beethoven Symphony”, which would
output that string when turned on, to simulate the playing of a classical music piece.
iCAP treats activities like objects. Activities either have a binary mode or a gradient
mode. Activity objects detect user or home activities and can only be dragged onto the
situation sheet.

People and location elements are created similarly to objects. These objects are es-
sential for relationship and personalization rules. By default, there always exists an
“I” people object, since users preferred to write rules about their own state and activ-
ity. People objects are created with a name and optional fields (Fig. 2a) for prefer-
ences as well as community groups. The system recognizes 3 predefined preferences
for a person: lighting, sound, temperature, and uses them to configure objects for
environment personalization. Custom preferences such as a music category can be
defined with preference being ‘classical music’. People objects can also be created
with community groups such as ‘friends’ or ‘family’, allowing the creation of general
rule structures such as “if a family member…” or “if a roommate….”

Location elements specify that a condition or action must take place in a particular
location. They simply require a name upon creation. Optionally, a user can indicate
what locations are connected together, allowing the creation of rules that take advan-
tage of these spatial adjacencies. In addition, the user can specify whether environ-
ment personalization should be turned on for this location, and, if so, the location will
attempt to satisfy the preferences of its occupants using the objects in its vicinity.

Time elements allow users to indicate that a situation or an action must occur at a
specific day/time. By default, elements correspond to the current time and day.

Constructing Rules: Simple if-then rules, Relationship-based Action and Envi-
ronment Personalization. Subjects in our study had strong tendencies to build rules
that were command-oriented and specific, making it much easier to support rule con-
struction. After users create necessary elements, they can use them to define rules.
iCAP supports the construction of simple if-then rules, spatial, temporal and personal
relationship-based actions and environment personalization. As simple if-then rules
were quite common in our study, iCAP focuses on making these easy to build. Users
build these rules by dragging and dropping elements onto the situation and action
sheets for each rule. After dragging each icon, the users specify conditions (e.g. <, <=,
>, >=, =, != and combinations for ranges) governing the behavior of the input.

Our study showed that rules that use simple Boolean logic were quite common so
to support these rules, we implemented Pane and Myers’ match form scheme [16].

 iCAP: Interactive Prototyping of Context-Aware Applications 263

Their matching layout uses the vertical dimension with a label “objects that match” to
represent the AND operator and the horizontal dimension for the OR operator. They
showed that this layout provides a simple, intuitive way to fully express Boolean
logic, for non-programmers, including both children and adults. By default, a rule
contains a vertical and a horizontal split to make Boolean logic rule creation more
efficient. Fig. 1 illustrates this, describing a rule that turns up the phone volume in the
kitchen if the phone rings in the kitchen (top left) AND music is on in an adjacent
room (bottom left) OR if Joe is outside (top right) AND the phone rings in the kitchen
(bottom right). Users can subdivide the situation sheet more complex logic is needed.

Rules that leverage spatial relationships or adjacencies (e.g. the next room) are
supported during location creation, when users are able to specify what locations are
adjacent to the newly created location. When two or more locations are placed on the
interface, users can specify the relationship between them (if any). Relative temporal
relationships such as “before” and “after” are also supported for creating rules. By
default, each situation sheet is labeled with “Inputs That Match”. A user can click on
this label and change it to “Time Ordering”, with the first column representing the
first event, the second representing an event happening after the first one, and so on.
The situation would then be satisfied if these events happened in the desired order.
Objects can be set to keep track of a certain time period of activity (e.g., 5 minutes
before) or a relative event ordering (e.g., after the next person who walks in). These
temporal relationships further exhibit the power of iCAP in building conditional rules.

Personal relationships and environment personalization are tightly integrated to-
gether. Personal relationships are supported through the use of community groups.
Examples of community groups include family, friends and co-workers, allowing
rules to be created about any of these groups or the individuals in these groups. We
support personalization by allowing individuals to set preferences and community
groups. By setting a flag for a location, a user can indicate whether the environment
should take these preferences into account and change itself when users are in that
location. When a person enters a room (with a set flag), the location analyzes the
preferences of each person present and tries to satisfy them. We support combinations
of personal relationships and personalization, for example, in combining the prefer-
ences of all my family members. Preference aggregation to a single result is per-
formed by following a set of heuristics. Because environment personalization was
rare in our study, we only support a few common heuristics (e.g., oldest person wins
and person who has been in the room the longest wins) and others can only be added
by writing code. In future versions, we will allow end-users to visually create these.

Ambiguity and Conflict Resolution. iCAP allows users to initially create rules that
are ambiguous or conflict with each other. A small fraction of the rules from our
study used terms like “anyone” and “anywhere”. When users do not specify the name
of a person or a location or provide a time, these values default to wildcards that will
match any value. If when the user saves her rule, there are multiple wildcards, the
system prompts the user to disambiguate them. For example, a spatial relationship
rule that performs an action when I am in an undefined location and my friend is in an
undefined location, could be disambiguated by setting the 2 undefined locations to be
equal or adjacent (or their complements). Also, when rules are saved, the rules engine
checks other saved rules for this user to determine whether any of the rules could

264 A.K. Dey et al.

potentially conflict and highlights these rules for the user to resolve the conflicts or
ignore them. If 2 rules conflict at runtime, iCAP, by default, executes the rule that was
most recently updated.

4.2 Rules Engine

The rules engine sits between the visual interface and a real or simulated context-
aware infrastructure. Rules are represented in the engine as a situation and an associ-
ated action, with each represented as a Boolean tree. Non-leaf nodes represent
Boolean operators (e.g., AND, OR) and leaf nodes contain comparisons (e.g., John is
in the bedroom or temperature > 15º) or actions (e.g., call Anne’s pager). The rules
engine supports all general comparison operations (e.g., =, >, <), as well as relative
temporal, spatial and personal relationships for evaluating rules, as described earlier.

Evaluating the Rules. Evaluation of rules is based on context input received from
either a Wizard-of-Oz interface (Fig. 5) and/or a real context environment. Since a
real context sensing environment may not be available, we provide three different
modes for rule evaluation. The first is a pure simulation interface giving the user con-
trol over all inputs through the Wizard-of-Oz interface. This mode allows users to use
inputs that may not exist in their environment. The second mode is a real environment
only mode. In this mode, all sensors and devices developed in the visual interface are
bound to real objects through the context-sensing environment. The sensors (and
interpretations of those sensors) and devices that are available in the physical envi-
ronment are made available for use in iCAP. If a sensor or device made by the visual
interface cannot be mapped to an appropriate object in the real environment it is dis-
carded along with any rules that depend upon it. The last mode is a combination of the
first two. We call it a “map all possible” mode, where the system maps all possible
objects to the real environment, and for those that cannot be mapped, they are allowed
to be simulated in the simulator.

Integration with the Context Toolkit. The engine provides an interface to the Con-
text Toolkit (CTK) [4], to support the automatic population of the iCAP repository,
passing of events from the real environment to the rules engine, and to support the
rules engine in executing actions in the real environment. Leaf nodes in our Boolean
trees act as queries to a discovery service in the CTK, enabling them to bind to real-
world sensors and actuators in a user’s smart environment.

If either of the two modes that rely on a real context environment are active, the
rules engine will attempt to bind sensors and devices to the Context Toolkit. For sen-
sors and actions, the engine will construct a description query using each element’s
location, name and type (Boolean/gradient). This description query is given to the
CTK’s discovery system to locate any components in the environment that can pro-
vide the requested information. If an appropriate component is found, it will be the
sole provider for the sensor (or service for the action) in the rules engine. iCAP is able
to send events to and receive events from a real context infrastructure, making it a real
tool ready for deployment.

There does need to be a common naming scheme between objects in iCAP and in
the Context Toolkit. We anticipate additional features in iCAP that would show all
available components and services in the CTK and allow the user to choose from

 iCAP: Interactive Prototyping of Context-Aware Applications 265

these when composing rules. Our main goal here is to demonstrate that iCAP can send
events to and receive events from a real context infrastructure, making it a real tool
ready for deployment.

5 Validation

In the preceding sections, we motivated and described the design of iCAP. Although
its iterative design was guided by our findings from our formative study, we still need
to determine how usable it is and whether it supports the conceptual models we dis-
covered. Here, we validate iCAP by answering the following questions:

• Can users use iCAP to easily and accurately build context-aware rules?
• Does iCAP support the conceptual models that we elicited in our formative study?
• Does iCAP support the construction of an appropriate range of rules?

We address the first two questions through an initial user study we conducted on
iCAP. We address the third question through an analysis of the set of rules provided
by our subjects in our formative study, by showing how iCAP covers an important
design space from the literature and by showing how iCAP enables end-users to build
canonical applications taken from the literature.

5.1 User Study

Although the design of iCAP was guided by our findings from our formative study
and we followed an iterative design process, we still need to determine how usable it
is and whether it supports the conceptual models we discovered. To do this, we con-
ducted a study of 20 non-programmers (age range from 23-67, 10 males, 10 females)
using iCAP to perform a set of open-ended tasks and fixed tasks. As with our forma-
tive study, we described the concept of a smart home, which all subjects were familiar
with. We asked each subject to write down succinct descriptions of 3 different appli-
cations they would find desirable and useful. Subjects were presented with iCAP and
a short tutorial and asked to create and test their 3 applications. We were most inter-
ested in seeing whether iCAP allowed users to specify rules in ways natural to them.
The applications our subjects came up with spanned a wide range of domains, over-
lapping the results from the previous study, but including new ones like reminders to
take medicine, notifying users when a baby woke up, and routing phone calls to a
user’s location (landline phone vs. cell phone). Users were asked to implement their
open-ended rules as close to their written specification as possible.

In the second part of our study, users created a set of 7 rules we specified to test
general usability. These rules were taken from the set of user-specified rules from our
formative study and included 3 straightforward if-then rules with varying complexity
(using 2, 3, and 4 elements respectively), 1 if-then rule that required users to resolve
ambiguity in a person’s identity, 1 spatial relationship rule that required users to re-
solve ambiguity in location, 1 personal and 1 temporal relationship rule.

In both study parts, users had no trouble creating rules, or the elements for each of
their rules. All users were able to complete all rules in a reasonable amount of time,
including the time to create the necessary elements for each rule and test the rule,

266 A.K. Dey et al.

using Wizard-of-Oz testing, verifying that the correct action was taken when they
manually set the appropriate contextual conditions. From our own experiences, the
time end-users took to complete each rule is less than it would take a programmer
using the Context Toolkit to create an application that supports it (Table 1). More
importantly, each rule was implemented by an end-user who, without iCAP, would
not have been able to do so.

Table 1. Average rule completion time (and standard deviation), in minutes

Type Rule Time
If-Then If I’m sleeping, turn the stereo off. (complexity level is 2) 3.05 (0.67)
If-Then If I’m in the living room after 10pm, dim the living room

lights. (complexity level is 3)
3.36 (0.74)

If-Then When I walk into the kitchen and turn on the stove, turn
on the television with the volume low. (complexity level
is 4)

3.58 (0.71)

If-Then If anyone is sleeping at noon, turn on his/her alarm clock
(person identity ambiguity)

3.17 (0.48)

Spatial If I am in a room next to Karen, page me. (spatial ambigu-
ity)

2.86 (0.54)

Personal If my roommates are not home, turn my favorite music on
high.

3.72 (0.83)

Temporal When I go from the kitchen to the bedroom, turn the lights
on in the bedroom.

3.54 (1.23)

Users were able to specify elements, specify preferences (e.g. my favorite music)

and create community groups (e.g. roommates), although the latter two were slightly
more time consuming. A few users objected to the amount of time element creation
took and suggested that this be done automatically. (Note that iCAP can populate the
element repository automatically using the Context Toolkit to collect components
from a smart space, however, we wanted to study how users created these elements on
their own.) Users did not have any difficulty creating rules that involved resolving
ambiguity (e.g. if anyone is sleeping, turn on his alarm clock). In each case, they
simply created their rules with ambiguity in them, and resolved that ambiguity when
iCAP prompted them to. All users were able to use the Pane and Myers matching
scheme [16] to correctly define ‘AND’ and ‘OR’ relationships. While spontaneously
thinking aloud, several users referred to the label on the sheet and said “it says inputs
that match, so that means everything on this sheet is an AND relationship”. Because
iCAP automatically divides the situation area into 4 quadrants for creating Boolean
relationships, actually specifying Boolean rules was quite simple for them. However,
some users had trouble with the overloaded column operator. In most cases, columns
support ANDing two expressions together, but when used in temporal rules, they
represent an ordering of events. This overloading confused a few users who had trou-
ble remembering where to click to achieve a temporal event ordering. Finally, users
were able to successfully test their rules using the Wizard-of-Oz prototyping inter-
face. For each rule, they verified that the correct action was executed when they
manually set the appropriate contextual conditions.

 iCAP: Interactive Prototyping of Context-Aware Applications 267

During the first phase of our study, iCAP readily supported users in implementing
every one of the applications they had described. There was always a simple and
direct mapping from the written rule to the visual specification in iCAP. We attribute
this to the fact that this group of users shared the same predominant mental models
with those in our formative study. The majority of the rules specified were simple if-
then with only a few relationship-based rules, and consisted of about 3 elements each.
In their descriptions, users focused on home objects and their own activities, and not
sensors. For example, one wrote “when I close the kitchen door, lock the door and
turn off the kitchen light,” readily specified visually with door, location (kitchen) and
people (I) objects for the situation and door, light, and location objects for the action.

During the second phase of the study, users were again able to specify every rule
asked of them using iCAP. Table 1 summarizes the types of rules and average times
(with standard deviation) required to specify them.

Summary. Our evaluation of iCAP showed that it was both usable and supported
users’ conceptual models. Users were successful in building rules specified by users
and by us. These rules spanned the range of simple if-then rules, environment person-
alization and personal, spatial and temporal relationship-based actions. In the first,
open-ended phase of the study, users often constructed rules quite different than those
envisioned by us, and were always successful in specifying them in iCAP. While
users had some issues with iCAP, all indicated that they would use it if hardware to
outfit a smart home were readily available. One user said iCAP was “exactly what I
imagined a visual programming interface would be like to develop these applica-
tions.” Another user described it as “easy to use” and “fun and exciting to be able to
easily build applications for my home.”

5.2 Context-Aware Design Space

As further validation for iCAP, we show that iCAP facilitates the building of a wide
variety of context-aware applications, supporting almost all the rules obtained in our
formative study, an important design space in context-aware computing and canonical
applications taken from the literature. We analyzed each of the 371 rules from our
formative study, and found that iCAP could support all but 12 of them. Three rules
involved actions to be repeated based on time intervals that we did not support (e.g.
“Remind me to feed my bird every 3 days”). Five rules involved too much ambiguity
to create them, either in the specification of what the action is (e.g. “When close
friends are over, they know a lot of my music, so I’d like to expose them to some new
quirky stuff”) or in which action to perform (e.g. “If not in my room with friends over,
then turn the music off or turn it down”). Four rules were limited by iCAP’s ability to
express complex concepts (e.g. “It would be good if music was playing that was based
on what I was cooking. Like salsa music for Mexican food.”). Overall, iCAP can sup-
port the vast majority of context-aware behaviors that users want to build, including
all the behaviors from the first part of the iCAP user study.

iCAP also supports the 4 application categories defined by Schilit in his seminal
work on context-awareness: Context-triggered actions, automatic contextual recon-
figuration, contextual information and commands, and proximate selection [21].

Allowing users to visually create applications with context-triggered actions (if-
then rules specifying how a context-aware system should adapt) has been the basis of

268 A.K. Dey et al.

our work in iCAP and we have described several examples. An example of automatic
contextual reconfiguration taken from [21] is reconfiguration to share an object/
resource among people. iCAP supports this through environment personalization
where, for example, a room’s lighting devices are adjusted to meet the preferences of
its occupants. An example of contextual information and commands is Schilit’s loca-
tion browser that presents information relevant to a user’s location. We support this in
an application that delivers a list of people in adjacent rooms to a user’s cell phone
and updates this when the user enters a new location. We built a proximate selection
(i.e. local objects are emphasized or made easier to choose) application that displays
available output devices in the user’s current location on fixed displays in the room.

Finally, we have used iCAP to build a variety of canonical context-aware applica-
tions taken from the literature including tour guides [1], reminder systems [12], and
environment controllers [15]. Tour guides can be built by creating a collection of
rules that present user-defined content when someone enters a particular location,
similar to Schilit’s contextual information and command category. Content delivery
can be customized based upon a user’s profile or preference, e.g., to display informa-
tion about the building information to a user interested in architecture. A reminder
system can be built in much the same way, by creating a number of rules that deliver
content, a reminder, when the user is in a particular situation. For example, “when I
am in a room adjacent to Katie, remind me to give her the book I borrowed from her”.
Finally, iCAP supports home automation systems or environment controllers applica-
tions through rules that control heating and lighting conditions and environment per-
sonalization when occupants of a space have differing preferences.

6 Related Work

Context-Aware Computing. Since Weiser’s vision of ubiquitous computing [24]
more than a decade ago, many groups have explored the domain of context-aware
applications. Architectures and applications such as stick-e notes [17] and GeoNotes
[6] focused on allowing end-users to contextually share data with each other by plac-
ing virtual objects in a context-aware environment. However, many of these types of
applications were being written from scratch with a high development cost [18]. One
must interface to an external sensing system, gather the appropriate sensor data, de-
velop a rule-based engine, and execute the desired actions. With these architectures,
there is little support for rapidly prototyping applications. While existing infrastruc-
tures that enable programmers to build context-aware applications, such as JCAF,
SOLAR, Context Toolkit and Context Fabric [2,3,4,8], support many of these steps,
they do not provide any interface for allowing end-users to use them.

Various commercial home automation products like X10 ActiveHome and Vantage
QLink, are readily available, however these mainly provide interfaces to directly
control the hardware in a home. QLink provides a text-based configuration interface
for end-users but it does not support the use of context and it requires in depth knowl-
edge of the hardware deployed which most end-users would not have. In essence,
existing systems do not provide support for context-aware application prototyping by
end-users, thus demonstrating a need for a system like iCAP.

 iCAP: Interactive Prototyping of Context-Aware Applications 269

Visual Rule-Based Systems. We chose to make iCAP a visual environment for users
to prototype context-aware applications for reasons of simplicity and intuitiveness.
Visual programming languages have proven effective in taking advantage of user’s
spatial reasoning skills [22]. This programming style is not only simple and effective
for many types of users, but is especially intuitive for end-users. When applied to a
new domain like context-aware computing, visual programming provides tools
needed to allow creative end-users to easily build novel applications. Although a text
environment could have been used, Pane and Myers [16] found that in rule generation
tasks, users generated more accurate Boolean rules using their graphical technique
than textual methods. We have applied this technique to the context-aware domain.
While text-based interfaces provide increased expressiveness, we focus on a graphical
interface here to increase end-users’ ease of use in creating applications. Our forma-
tive study showed that users think about context-aware applications in terms of rules,
and indeed most context-aware applications can be and are described this way, so we
chose to make iCAP a rule-based system despite well-known drawbacks of rules:
limited expressiveness, may be easily broken, hard to detect and deal with rules that
have conflicting actions. In addition to the work of Pane and Myers described above,
Mackay, et al. showed in the Information Lens project that people with little computer
experience could create and use rules effectively to filter email [14].

In earlier work, we presented a Cappella, a programming by demonstration inter-
face for end-users to build context-aware applications [5]. While it addresses a similar
problem space as iCAP, it is intended for building applications that are difficult for a
user to express directly. We were inspired by the CAMP system, a magnetic poetry
system for allowing end-users to construct capture-and-access applications. Similar to
iCAP, the CAMP interface was grounded in a study of users’ conceptual models
about the application domain. However the variety and complexity of rules we found
in our study does not match well to the restricted vocabulary used by CAMP. Agent-
sheets capitalizes on the idea of visual rule-based programming by allowing end-users
to establish relationships among different autonomous agents [19]. Although it could
be expanded to support context-aware applications, it still required a high level of
expertise to use [20], and supports limited sensing and actuation. In contrast, we aim
to provide even novices with the ability to build context-aware applications. The Al-
fred system uses recordable speech-based macros to support users in building applica-
tions for a smart environment [7]. However, Alfred focuses on rules based on explicit
user interaction (pressing a button, speaking a phrase), and unlike iCAP, does not
support conditions based on contextual cues. The Jigsaw Editor addresses novice
users by supporting end-user reconfiguration of home devices using a novel jigsaw
puzzle metaphor [11]. However, the creators recognize the limits of a constrained
metaphor and state that they “do not seek the richness of programming expression
allowed by iCAP” [11]. Our goal is to support the building of expressive applications
by novice users, trading off some learnability for this expressiveness. Mobile Bristol
and Topiary demonstrate the value of supporting designers in building location-aware
systems [10,13], however they do not provide support for applications or rules with-
out interfaces.

270 A.K. Dey et al.

Summary. There is a need for a context-aware prototyping environment that enables
end-users to build rule-based context-aware applications. By building upon work in
visual rule-based systems, we address this by providing an effective prototyping tool,
empowering end-users to build interesting context-aware applications that cover an
important design space in context-aware computing.

7 Conclusions and Future Work

In this paper, we presented iCAP, a visual prototyping system for context-aware ap-
plications. iCAP is a visual rule-based environment that supports end-users in proto-
typing context-aware applications without writing any code. iCAP provides two main
benefits: opening up the design space of context-aware application design to a larger
group of users than just programmers, and giving control of what should happen in a
context-aware environment to the people it most affects, the end-users.

iCAP supports users in designing and implementing a context-aware application,
testing it under simulated and real conditions and revising it, as needed. In particular,
it supports the creation of if-then (or situation-action) rules that are triggered by con-
textual cues, the building of spatial, temporal and personal relationship-based rules,
and the building of environment personalization systems.

iCAP’s design was based on a formative study of 20 end-users that demonstrated
the appropriateness of rules as a mental model for end-user construction of context-
aware applications. After constructing and iterating on iCAP, we validated its useful-
ness in two ways. First we ran a user study with 20 end-users who successfully used
iCAP to create every application they envisioned or were asked to create by us, in less
time than it would take to program them. Our subjects told us that iCAP was a power-
ful system they would like to use in the future. We then showed that it could be used
to build almost all the applications from the formative study, canonical context-aware
applications and ones that covered Schilit’s design space.

Most systems designed for end-users have more constrained functionality than sys-
tems designed for programmers. While we have used iCAP to build a wide variety of
context-aware applications, it is not as expressive as existing programming systems
for building applications [2,3,4,8]. To make it more expressive, we need to support
more sophisticated Boolean logic, the ability to activate and deactivate rules based on
contextual cues and support for ambiguous context. In addition, we would like to
extend iCAP to support context-based retrieval systems that tag captured information
with contextual cues to aid future retrieval [12]. iCAP can already capture contextual
cues, so we would need to add the ability to store those cues persistently and attach
them to user-provided content and provide a mechanism for querying the cues and
content. We would like to increase the expressiveness of iCAP while, at the same
time, maintaining its ease of use and increasing its learnability to improve users’ per-
formance in creating rules. One approach we will explore is to provide support for
both visual and textual specification of rules. Finally, we will deploy iCAP in a real
environment to understand how users will use it in practice, dealing with rules that
evolve over time, conflicting rules and more complex rules.

 iCAP: Interactive Prototyping of Context-Aware Applications 271

References

1. Abowd, G.D. et al. Cyberguide: A mobile context-aware tour guide. ACM Wireless Networks
3(5). pp. 421-433, 1997.

2. Bardram, J.. The Java Context-Awareness Framework (JCAF) – A service infrastructure and
programming framework for context-aware applications. Pervasive 2004, 98–115.

3. Chen, G. and Kotz, D. Solar: An open platform for context-aware mobile applications. Perva-
sive 2002. 41-47.

4. Dey, A.K., Salber, D. and Abowd, G.D.. A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Human-Computer Interaction Journal,
16(2-4), 97-166, 2001.

5. Dey, A.K. et al. a Cappella: Programming by demonstration of context-aware applications. CHI
2004. 33-40.

6. Espinoza, F. et al. Geonotes: Social and navigational aspects of location-based information sys-
tems. UBICOMP 2001. 2-17.

7. Gajos, K., Fox, H. and Shrobe, H. End user empowerment in human centered pervasive com-
puting. Pervasive 2002. 134-140.

8. Hong, J.I. and Landay, J.A. An infrastructure approach to context-aware computing. Human-
Computer Interaction Journal, 16(2-4). 287-303, 2001.

9. Hong, J.I. and Landay, J.A. SATIN: A toolkit for informal ink-based applications. CHI 2000,
63-71.

10. Hull, R., Clayton, B. and Melamed, T. Rapid authoring of mediascapes. Ubicomp 2004, 125-
142.

11. Humble, J. et al. ‘Playing with your bits’: user composition of ubiquitous domestic environ-
ments. UBICOMP 2003, 256-263.

12. Lamming, M. and Flynn, M. Forget-me-not: Intimate computing in support of human memory.
International Symposium on Next Generation Human Interfaces 1994. 125-128.

13. Li, Y., Hong, J.I. and Landay, J.A. Topiary: Tool for prototyping location-enhanced applica-
tions. UIST 2004, 217-226.

14. Mackay, W.E. et al. How do experienced Information Lens users use rules? CHI ‘89. 211-216.
15. Mozer, M.C. The neural network house: An environment that adapts to its inhabitants. AAAI

Spring Symposium on Intelligent Environments. 110-114, 1998.
16. Pane, J.F. and Myers, B.A. Tabular and textual methods for selecting objects from a group.

IEEE International Symposium on Visual Languages 2000. 157-164.
17. Pascoe, J. The Stick-e Note Architecture: Extending the interface beyond the user. Intelligent

User Interfaces 1997, 261-264.
18. Pascoe, J., Ryan, N. and Morse, D. Issues in developing context-aware computing. HUC 1999.

208-221.
19. Repenning, A. and Citrin, W. Agentsheets: Applying grid-based spatial reasoning to human-

computer interaction. IEEE Symposium on Visual Languages 1983. 77-82.
20. Scerri, P. and Reed, N. The EASE actor development environment. Swedish AI Society 2000.
21. Schilit, B., Adams, N. and Want, R. Context-aware computing applications. Workshop on Mo-

bile Computing Systems and Applications, 1994.
22. Shu, N.C. Visual Programming: Perspectives and Approaches. IBM Systems Journal, Vol. 28.

525-547, 1989.
23. Truong, K.N., Huang, E.M. and Abowd, G.D.. CAMP: A magnetic poetry interface for end-

user programming of capture applications for the home. Ubicomp 2004, 143-160.
24. Weiser, M. Computer for the 21st century. Scientific American, 265(3). 94-104, 1991.

	Introduction
	User Conceptual Models of Context-Awareness
	Study Results

	iCAP Interface
	The iCAP System
	iCAP Interaction
	Rules Engine

	Validation
	User Study
	Context-Aware Design Space

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

