
Automatic Form Filling on Mobile Devices

Enrico Rukzio1, Chie Noda2, Alexander De Luca3, John Hamard4, Fatih Coskun3

1
Computing Department, Lancaster University, InfoLab21, LA1 4WA Lancaster, UK

Tel.: +44 1524 510358 / Fax.: +44 1524 510492
rukzio@comp.lancs.ac.uk

2
NTT DoCoMo, Inc., 3-5 Hikarinooka, Yokosuka, Kanagawa, 239-8536, Japan

Tel.: +81 46 840 3842 / Fax.: +81 46 840 3725
noda@nttdocomo.co.jp

3
 Media Informatics Group, University of Munich, Amalienstrasse 17, 80333 Munich, Germany

Tel.: +49 89 2180 4688 / Fax.: +49 89 2180 4652
{alexander.de.luca, coskun}@ifi.lmu.de

4
NTT DoCoMo Euro-Labs, Landsbergerstrasse 312, 80796 Munich, Germany

Tel.: +49 89 56824 216 / Fax.: +49 89 56824 300
hamard@docomolab-euro.com

Abstract

Filling out forms of web based services on mobile devices is a very time consuming and

frustrating task for users because of the limited text input capabilities. This is a critical

point to get a wide acceptance of such services, especially mobile commerce that often

requires filling user data. We developed an architecture based on a local proxy on a mobile

device and a lightweight algorithm for a comprehensive analysis of forms, which leads to

the highest probable user data to be filled in, driven by an initial rule set [1]. We further

discuss our implementation and the evaluation results of the algorithm as well as the

usability of the prototype.

1. Introduction

The convergence of mobile communications and web-based services has emerged in the

last decade. Most of current mobile devices support internet browsers (e.g. Opera mobile

[2]) which are often preinstalled. However, mobile commerce services (e.g. hotel

reservation) requiring user data to be filled in are still not as widely used as download

services (e.g. ring tones, games). In fact, the main issues regarding mobile commerce usage

are the complexity of user interactions and mobile payment systems. To solve this last issue,

NTT DoCoMo introduced in 2004 the Mobile Wallet service [3], based on the Sony’s

FeliCa IC chip [4], in order to support electronic payments with mobile phones.

The lack of simplicity is one of the most important issues for users who face more and more

functionalities, applications, services and networks when using mobile devices. One

approach to overcome this issue is to provide context aware mobile services. This is

achieved by considering user context information (e.g. user location or history of selected

services) to adapt applications and services accordingly.

In this paper we present an approach to support the automatic form filling on mobile

devices. Indeed, filling forms manually on mobile devices through limited user interfaces is

a time consuming and stressful task. At the beginning of our research we analysed which

mobile services are currently offered and which are the most popular ones. One result was

that mobile entertainment applications which consist in downloading ring tones, games or

logos are widely used [5]. We found most of mobile services are accessible through simply

navigating hyperlinks. However mobile commerce services (e.g. hotel reservation, auctions)

which often require filling personal data, have not been yet widely used. Hence, by

improving the user experience with mobile services, automatic form filling could then also

support mobile commerce markets growing.

Our approach is based on the knowledge about existing web pages in form of rules and user

data. We analysed the most required user data when using mobile commerce services. More

precisely, we identified their types, their sequence of appearance on web pages, as well as

the surrounding form elements (e.g. labels or input fields) of the input field in which they

are filled. Based on this analysis, we developed a local proxy architecture and a lightweight

algorithm for dynamic rules generation based on a set of initial rules. The proxy acts as a

mediator between the browser on the mobile phone and the web server hosting the

requested page. It fills input fields with user data stored on the mobile device by analyzing

the input fields, the nearby from elements and checking initial rules, and generates dynamic

rules, which leads to the highest probable user data. The proposed architecture has the

following advantages:

- Support for existing mobile services and devices based on a proxy architecture,

- Optimization for the memory and processing constraints of mobile devices based on a

initial rules set and dynamic rules generation,

- Privacy protection by only storing user data locally on the mobile device

- Support for user control by enabling the editing of filled data before sending the form.

The paper is organized as follows. The next section analyses text input capabilities and

presents popular mobile services. Furthermore we show the results of an initial user

evaluation of the potential and acceptance of such a form filling functionality on mobile

devices. In addition to that an analysis of existing forms is discussed. Section 3 discusses in

details our architecture and algorithm for automatic form filling on mobile devices.

Afterwards an implementation of our system is presented. In section 5 we present the

performance evaluation of our algorithm and the results of further user studies. Section 6

relates our work to existing approaches. Finally we summarize our research and discuss

further steps.

2. Analysis

In this section which is based on [5] we analyze first text input capabilities on mobile

devices. Afterwards we present an initial user test which goal was to evaluate the concept of

automatic form filling on mobile devices. Next we present a compact analysis of existing

forms.

2.1 Text Inputs Capabilities

There are significant differences in text input speed on a personal computer and a mobile

device. We can distinguish three different text entry techniques for mobile devices: key-

based, stylus-based and predictive input techniques [6]. The text entry speed is usually

expressed in words per minute (wpm). A skilled touch typist using a conventional keyboard

can enter an average of 72 wpm [7]. As shown in Table 1, text entry on mobile devices is

much slower.

Table 1. Text entry speed on mobile devices

Three to four alphabetical letters are assigned to one button on mobile phones. When using

the traditional multi-press method the user has to select the intended letter through pressing

a key multiple times until reaching the desired one. The T9 system is based on a predictive

algorithm which takes into account the occurrence frequency of words stored in a database.

Thus once the user selects buttons, which represent the intended letters to write a word,

probable words are shown up. The T9 system is the fastest input mean for expert users.

However it does not often support data such as first name required for form filling.

2.2 Initial User Test and Definition of User Requirements

Furthermore we studied the experience of users using mobile commerce services on a PDA.

A HTML-based mock-up of a hotel reservation service was built on a Sony Ericsson P800

Smartphone. The mock-up included a form with 10 input fields1 whereas the Smartphone

provided a virtual keyboard, a stylus and integrated the Opera browser. Two test cases were

considered:

- The users fill out forms manually,

- The users need to identify and correct pre-filled forms including two errors.

1 First name, last name, address, city, ZIP, phone number, e-mail address, payment method, credit card number,

and expiration date.

Device type Input technique Input type WPM User skills Ref.

Graffiti stylus-based 21,5 average user [7] PDA

QWERTY keyboard Key-based 20,2 novice user [7]

Multi-press method Key-based 25-27 expert user [8] Mobile phone

T9 predictive 41-46 expert user [8]

Table 2 shows the results of average time comparison between the two configurations for

three runs.

 (i) Empty forms (ii) Pre-filled forms

1. run 240 seconds 60 seconds

2. run 170 seconds 37 seconds

3. run 115 seconds 33 seconds

Table 2. Average input times over all users

The most noteworthy result is that it takes four times longer for users to fill empty forms

manually compared to pre-filled forms. Another interesting point is that users learn quite

fast to use a virtual keyboard or a stylus. Beside these quantitative results we recognize that

most users are frustrated when using the stylus of the Smartphone for inserting texts. We

conclude that automatic form filling on mobile devices is extremely usable since it just

requires limited user input.

With regards to privacy issues, we learnt from this user study that many users would not

give their personal information away (e.g. as in the Microsoft .NET Passport). Furthermore

this study underlined that users need to keep control, e.g. by seeing which data are filled in

and by possibly deleting or modifying automatically inserted data. We thus defined the

requirements to only store user data on the mobile phone and to enable users to edit these

automatically inserted data.

2.3 Analysis of Existing Forms of Web Based Services

Afterwards 20 mobile commerce services were analyzed in order to find out which user

data are required (e.g. for ordering or reserving a product). Similar data were usually

required so that a basic data set was clarified. Furthermore, we noticed that labels were

mostly fixed groups and that input fields could be named differently in the source code.

From this analysis we concluded that web forms were rather similar and therefore, an

automatic form filling feature could be implemented. Table 3 shows specific sets of

variable names for input fields. It shows some of the concept names used in our algorithm

(first column) in relation to the variable names used in three arbitrary selected web based

services. In the context of this paper, a concept name stands for the internal naming of

personal information in our algorithm. Specific naming variations must be handled since,

for example, each variable name on Amazon Anywhere is prefixed with the word

shippingAddress. A system for automatic form filling must therefore also support sub-string

analysis of variable names.

Table 3. Variable names in three different forms

Furthermore, the form elements (e.g. labels and input fields) before and after an input field

are also an important parameter. We noticed many correlations between requested concept

names and the placement/labelling of input fields in the forms. For example, the probability

is extremely high that an input field labelled First Name should be filled with the first name

of the user.

3. Architecture and Algorithm

We developed a local proxy architecture and applied a lightweight algorithm for dynamic

rules generation based on a set of initial rules. This section presents details on the

architecture, the form filling rules, and the algorithm.

3.1 Architecture

Figure 1 shows the architecture of our approach for automatic form filling on mobile

devices. The proxy of the mobile device acts as a mediator between the web browser and

the web server hosting a requested web page. The form filler in the proxy fills input fields

of forms with user data locally stored by analyzing the the nearby form elements (e.g. labels

and input fields) of the input fields. Hereby initial rules (locally stored or downloaded) are

used to generate dynamic rules. This leads to the highest probable user data to be filled in a

form. The rule server is an external component, which stores and provides the form filling

rules. The rule repository of the rule server enables updating the rules, for example

monitoring users’ behaviours and adding new concept names. The proxy of the mobile

device uses it to keep the local rule set up-to-date.

Variable names Concept names

mobile.quelle.de Amazon Anywhere Hilton.com

FirstName FirstName shippingAddress.name firstName

LastName LastName shippingAddress.name lastName

AddressStreet1 Street shippingAddress.address1 adress1

AddressStreet2 Street2 shippingAddress.address2 adress2

Email Email

AddressTown City shippingAddress.city City

AddressCode PostalCode shippingAddress.zip postalCode

AddressCountry shippingAddress.countryCode Country

TelephoneHome MobilePhone1 shippingAddress.voice phoneNumber

Mobile Device

Web Server

(Web pages)

Web

Browser

Proxy

Form Filler

User Data

Form

Filling

Rules

Rule Server with

Rule Repository

Figure 1. Architecture for automatic form filling on mobile devices

Figure 2 shows internal components of the form filler. The parser parses a received web

page (e.g. HTML, XHTML, cHTML (i-Mode), WML/WAP) and creates an object structure

containing objects for each input field as well as the surrounding form elements. The rules

inspector retrieves rules available locally or from the rule server, which match to a given

object structure, and creates dynamic rules. Finally the user data filler fills out input fields

with user data corresponding to a concept name with the highest probability.

Figure 2. Elements of the form filler

The proxy can be pre-installed on the mobile device or downloaded as a 3rd party

application. User data can be specified by the user through the user interface of the mobile

device, retrieved from the user profile on the device or on the SIM/USIM card, or stored by

monitoring and gathering which data are input on forms by the user.

3.2 Form Filling Rules

3.2.1 Rules Format

This subsection describes the syntax of the form filling rules which were developed based

on the results of the analysis of existing forms as discussed in the subsection 2.3. Rules

present which information of the web document (e.g. HTML, XHTML, cHTML (i-Mode),

WML/WAP) is used to find the right input data and additionally provides a certain

probability. There are 6 different values, so called positions that can be used to assume a

required data for the input field in the web document as shown in Figure 3. Not only the

current input field but also the upper and the lower input fields are analyzed. There is for

instance a specific probability that the last name is requested after the first name. The

mentioned positions are:

• Upper LABEL: the last text before of the upper input field

• Upper NAME_ATTRIBUTE_VALUE: the value of the name attribute of the upper

input field

• Current LABEL: the last text before of the current input field

• Current NAME_ATTRIBUTE_VALUE: the value of the name attribute of the current

input field

• Lower LABEL: the last text before of the lower input field

• Lower NAME_ATTRIBUTE_VALUE: the value of the name attribute of the lower

input field

<label for="firstname">First Name:</label>

<input id="firstname" name="firstname" type="text"/>

<label for="lastname">Last Name:</label>

<input id="lastname" name="lastname" type="text"/>

<label for="address1">Address:</label>

<input id="address1" name="address1" type="text"/>

Figure 3. Example of a user data form and its HTML representation

Figure 3 shows some input fields on a form and presents the corresponding HTML code

(e.g. for reserving a hotel room). The arrows indicate the 6 positions: the label and the name

attribute value (e.g. name=” firstname”) of each field (current, upper, and lower). The 6

different values respective positions of the example shown in Figure 3 are:

Upper LABEL: First Name

Upper NAME_ATTRIBUTE_VALUE: firstname

Current LABEL: Last Name

Current NAME_ATTRIBUTE_VALUE: lastname

Lower LABEL: Address

Lower NAME_ATTRIBUTE_VALUE: address1

Based on these positions we defined the following syntax for our form filling rules:

Position | Condition | Value | Concept Name | Probability, whereby

• Position = {UPPER_LABEL, UPPER_NAME_ATTRIBUTE_VALUE,

CURRENT_LABEL, CURRENT__NAME_ATTRIBUTE_VALUE, LOWER_LABEL,

LOWER__NAME_ATTRIBUTE_VALUE}

• Condition = {CONTAINS, EQUALS}

• Value= arbitrary string of labels and name attributes, e.g. a label tag, the string just

before the form, the name attribute of the form

• Concept Name = element of the user data (i.e. be used to fill in the form), e.g.

FirstName

• Probability = number between 0 and 100

Every rule can be interpreted in the following way:

If the position has the condition of the value, then the probability is x% that the concept

name y has to be filled in.

Examples for rules are:

• CURRENT_NAME_ATTRIBUTE_VALUE |CONTAINS|firstname|FirstName|100

If the name attribute (CONCEPT_VALUE) of the input field CONTAINS firstname

then the probability is 100% that the input field should be filled out with the first

name (FirstName) of the user.

• UPPER_ NAME_ATTRIBUTE_VALUE |CONTAINS|firstname|LastName|81

If the name attribute (UPPER_CONCEPT_VALUE) of the input field which is above

the current input field CONTAINS firstname then the probability is 81% that the input

field should be filled out with the last name (LastName) of the user.

• CURRENT_LABEL|CONTAINS|address|AddressStreet1|46

If the string left to the input field (LEFT) CONTAINS address then the probability is

46% that the input field should be filled out with the address street 1 (AddressStreet1)

of the user.

3.2.2 Creation of the Basic Rules Set

In a first step of this work, we needed to define a rules set that could be used for the

automatic form filling. We semi-automatically analyzed about 200 arbitrary selected web

pages including forms. In a first manual step, the correct concept name was applied to all to

the input fields of these websites. The rest could be done almost completely automatically.

Rules are generated and added to a rule repository by applying conditions of labels and

name attributes. That is, if an input field is found, its concept name is used to create the

rules based on all the labels that belong to this field. If the same rule is found, the number

of appearance is increased. Otherwise a new rule is added in the rule repository. The

resulting rules set contained a huge amount of rules. We set a threshold to eliminate

meaningless rules caused by the following reasons:

• Rules appearing only once are considered meaningless since the probability of their

appearance is very low.

• Some website authors use meaningless HTML name attributes like “field1”,

“field2” and so on. These names cannot be used to find out the meaning of an input

field.

• Due to bad web design, some rules may contain information that is not near the

input field. This may be the case, if some table layouts as well as positioning in CSS

are used.

At the end, the probability of rules is added by calculating the ratio of the same labels and

name attributes, but different concept name. More generally speaking, for the definition of

the probability of a specific rule to be the right choice for the input field, all occurrences of

a specific label (in a unified form as explained below) are compared and used for the

calculation of the probability. For instance, if the label “firstname” appears in 3 different

rules, whereas the first rule has 5 occurrences, the second has 3 and the last has 2

occurrences, the probabilities for these three rules are 50%, 30% and 20%.

This way, we were able to define 142 rules as an initial rules set for our prototype.

It is important to mention that the analysis as well as the automatic form filling algorithm

contains a step to unify labels. That is, unnecessary information as well as captions is

removed to create more general rules. For example the label “First Name” and “FirstName”

will both be changed to “firstname” and thus, the appearance of that rule will be two instead

of creating two single rules.

3.3 Form Filling Algorithm

The form filler uses the initial rules set and the locally stored user data to fill in the

requested webpage. Hereby the following algorithm is used:

(1) The user data and the form filling rules are loaded from the storage of the mobile phone

and on demand from the rule server.

(2) The browser requests a web page through the proxy.

(3) The parser of the proxy extracts the downloaded webpage and creates an object structure

while checking each input field. This process is depicted in Figure 4. The created object

structure contains an object for every form and every input field. For example, if the

following input field is included in a parsed form First Name <input type="text"

name="firstname" value=""/>, the generated object includes the attributes label, type (the

type of the input field), name, and value. It also keeps information on locations of input

fields.

In the end of the parsing process, there is an object for every form which knows every input

field that belongs to it. The input fields are also objects, which are augmented with, for

example their name attribute values and their neighbours.

Figure 4. Parsing of a web page

(4) For every input field of a form the proxy selects rules and generates a dynamic rule as

follows:

The rules inspector retrieves all rules that fit to the field. There is mostly more than one rule

which fits to the input field. This means that for one input field there can be rules for some

or all 6 positions around it. Every rule includes a probability that describes how often a

value for a specific concept name is found in a specific position. An example is, that left

contains address fits to different concept names like AddressStreet or EmailAddress but

with different probabilities.

When a rule is found for an input field, this rule’s probability is converted to what we call

concept points. The conversion takes some aspects into account, i.e. the probability value

and the type of the rule such as normal or superior rule.

During checking the input field, all concept points found for a specific concept name, like

this field fits to the concept name AddressStreet, are summed up. At the end of the checking,

our algorithm compares the concept points between the different concept names found. The

concept name with the highest amount of concept points is selected.

There are two special cases, so called superior rules, which are used to increase the speed

of the algorithm and to utilize the limited capability of mobile devices, especially memory

space:

1. Rules for CURRENT_LABEL or CURRENT_NAME_ATTRIBUTE that have a

probability of 100% are instantly chosen if they are found for the current input field.

2. Rules for CURRENT_LABEL or CURRENT_NAME_ATTRIBUTE that have a

probability of less than 100% are rated higher than the other rules found. This means,

we rate higher concept points compared to the other rules.

Figure 5 illustrates that every input field is analyzed by the form filling algorithm. For each

input field found, the procedures depicted in Figure 6 are applied, to check corresponding

rules, and sum up concept points.

Figure 5. Checking the input fields

Figure 6. Checking an input field on rules

Superior rules are to increase the speed of the process. If a fitting rule for concept name X

has been found, there are two possibilities:

1. It is a superior rule with a probability of 100%, then the rule for the concept name X

is instantly chosen for the field.

2. Else go on proceeding the rule.

The Administration of Concept Points checks if ‘X’ is an existing or a new concept

name:

(i) when the concept name exists, the concept points are summed up, or

(ii) when the concept name is new, the concept points are stored for the new concept

name X.

If all rules are checked or no superior rule with a 100% probability has been found,

then the concept name with the highest concept points is chosen.

Of course, superior rules are seldom and may lead to wrong filled fields but their advantage

lies in the increased speed, especially for mobile phones. Nevertheless, in our tests, no

wrong filled fields due to superior rules occurred. Additionally, the automatic update of

rules as explained in more detail in the rules server section, will remove superior rules that

have proven to be not 100% sure. For example, if a superior rule for the label “firstname”

exists but a user of the system has a wrong filled form (e.g. for the label “ChildFirstName”),

then the probability of the rule will be decreased and thus the problem solves itself.

(5) The user data filler fills user data according to selected concept names with the highest

concept points.

(6) The proxy delivers the filled out web page to the browser.

As mentioned before, one of our goals was to develop an algorithm that can not only

compete with existing commercial products but also works on resource scarce mobile

devices. When taking a deeper look at the algorithm, it becomes clear that the memory

usage will grow linear with the number of rules. Fortunately, we managed to create an

algorithm that works very well with a small amount of rules. In our prototype, 142 were

enough to fill out all required Concept Names. Furthermore, when looking at usage

statistics of the rules, we believe that with an improved rules generation algorithm, we can

minimize the amount even more. Since the rules format has been chosen really small (e.g.

no XML has been used), this is an amount that can be easily handled by most mobile

phones.

Regarding the execution speed, we tested our algorithm (with the 142 rules) on standard

mobile phones with web sites including up to 10 forms to see whether the users recognize a

waiting time for the algorithm execution. There was no recognizable delay at all. Even if

the rules set would be increased, the time will only go up slightly, mostly due to the

superior rules that are the most common rules used.

Another important point regarding performance is that the algorithm can be performed in an

automatically distributed manner. Even if the number of web forms in a web page is

increased, the algorithm can perform in the order of the web forms. Once the forms fits to

the size of the mobile phone’s display are filled, the rest can be performed in the

background. We may further assume that the algorithm performs and fills user data only

when the user interface focuses on an input field on the display.

3.4 Rules Server

The rules server stores a basic set of rules generated by analyzing existing web pages. The

proxy of the mobile device downloads rules from it and stores them locally. The rules

server can further support keeping up-to-date rules, for example adding new concept names,

or keeping track of different users’ actions.

If users change values of input fields filled by the automatic form filling function, these

changes can be send to the server which creates rules for new concept names or change

existing rules depending on the submitted data. It enables optimization of rules by users’

actual usage. Rules optimization processes are followings:

1. The proxy of the mobile device monitors if the user change user data filled out

automatically.

2. It translates every changed field, and extracts a concept name and its location.

3. It sends these data to the rules server.

4. The rule server either changes the probability of existing rules or creates a new rule

if it is for a new concept name.

The advantage of such a server is that all users optimize the rules to archive higher probable

results of automatic form filling.

4. Implementation

To prove our concept we implemented a prototype which architecture is depicted by Figure

7. For that purpose, we used the Java Micro Edition (Java ME), MIDP 2.0 and CLDC 1.1

that is supported by most current mobile phones. Furthermore we used the “Opera for

Mobile“ Browser since it could easily be connected to our proxy. We configured the proxy

settings of the browser as depicted by Figure 8a. Hence, each page request from the browser

is sent via the port 8110 to the proxy which forwards the request to the corresponding web

server. The proxy is realized as a Java ME Midlet running in parallel to the web browser.

The user data as well as the form filling rules are stored in a Java ME record store. We

found out that our prototype worked successfully on a Nokia 6600, Nokia 6630 and on a

Nokia 6680.

Mobile Device (e.g. Nokia 6630)

Web Server

(Web pages)

Web

Browser

Opera for

Mobile

Proxy (Java ME)

Form Filler (Java ME Midlet)

User Data

(Java ME

Record

Store)

Form Filling

Rules

(Java ME

Record Store)

proxy=localhost

port=8110

Rule Server with

Rule Repository

Figure 7. Architecture of the prototype

For the implementation of the prototype we used the following user data: FullName,

FirstName, MiddleName, LastName, AddressStreet1, AddressStreet2, AddressTown,

AddressCode, AddressShire, AddressCountry, Email, TelephoneHome, TelephoneFax,

TelephoneMobile, TelephoneWork, CardOwner, CardNumber, CardType,

CardExpirationMonth, CardExpirationYear, CardExpirationComplete, Homepage and

Email which are based on the tags defined in [9] and are stored in a Java ME record store.

We implemented a corresponding user interface which is depicted by Figure 8b for the

management of these data by the user. As previously mentioned we analyzed about 200 web

pages and generated 142 rules. Figure 8c shows the proxy Midlet after loading the user data

and the form filling rules.

a b c

Figure 8. Screenshots of the prototype

5. Evaluation

In this section we discuss several evaluations. The first one is the accuracy evaluation of the

form filling algorithm and the second one is the usability evaluation of our prototype

through a user test.

5.1 Evaluation of the algorithm accuracy

First we evaluated how important the consideration of the surrounding form elements (e.g.

labels and input fields) of an input field for its correctly filling is and in our second test we

compared our algorithm with existing tools.

In the first test we evaluated the accuracy of our automatic form filling algorithm and

compared it with a simplified algorithm only considering the name attribute of an input

field; without considering the co-located from elements and without considering rules

relationships between different rules.

We tested 37 arbitrary selected web sites which were different from the ones we used for

rules creation. We checked whether the following 7 concept names: FirstName, LastName,

AddressStreet1, TelephoneHome, AddressTown, AddressCode, and Email were correctly

filled in. We counted how many input fields were filled out correctly and how many were

filled out wrong by both algorithms. Some of the forms in the selected web pages did not

include all of theses concepts names. Therefore we had to check just 242 fields instead of

259 (37*7). Other fields than the above-mentioned 7 concept names, like organization or

country, which were sometimes filled in, were ignored during this evaluation. As shown in

Table 4, considering the co-located form elements and the combination of the knowledge

represented by several rules increases the recognition rate.

 Presented algorithm Simplified algorithm

Correct filled fields 224 (92,6%) 207 (85,5%)

Wrong filled fields 18 (7,4%) 35 (14,5%)

Table 4. Comparison of the algorithms

Afterwards we evaluated the accuracy of our automatic form filling algorithm in

comparison to the AutoFill function of the Google Toolbar [10] for Firefox 1.0 and the

Form Fill function of the MSN Search Toolbar [11]. We used again the 37 arbitrary

selected web pages as well as the same test protocol. As shown in Table 5, our algorithm

provides similar accuracy as solutions primary designed for Laptops or Desktop PCs.

 Presented

algorithm

MSN Search

Toolbar

Google Toolbar for

Firefox 1.0

Right fields 224 (92,6 %) 219 (90,5 %) 211 (87,2 %)

Wrong fields 18 (7,4 %) 23 (9,5 %) 31 (12,8 %)

Table 5. Comparison of the algorithms accuracy

The following figure 9 shows which algorithm filled how many of the 37 forms with a

given number of wrongly filled fields. For instance filled the presented algorithm 27 of the

37 forms correctly (0 wrongly or not filled fields). The corresponding results show that

most forms are filled in correctly or with just 1 to 2 errors. Furthermore can be seen, that

every of the three algorithms had a serious problem with at least one form. The presented

algorithm was for instance not able to fill any field of one form at all because of a conflict

between the rules which occurred when they were applied for this form.

27

7

2 1

25

5 6

1

19

8 8

1 1

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

Number of wrongly or not filled fields

N
u

m
b

e
r

o
f

fo
rm

s

Presented algorithm MSN Search Toolbar Google Toolbar

Figure 9. Comparison of number of wrongly filled in forms

The following figure 10 shows how often a given field was wrongly filled in by which

algorithm. For instance was FirstName only two time wrongly or not filled in by the

presented algorithm. The results show that the algorithm of the Google Toolbar had

especially problems with filling in the FirstName, Last Name and AdressCode. The MSN

Search Toolbar algorithm had problems with the filed Last Name and AdressCode.

Furthermore can again be seen that the presented algorithm performs better than the other

two.

0
2
4
6
8

10
12

Firs
tN

am
e

La
st
N
am

e

A
dd

re
ss

Stre
et

1

Tel
ep

ho
ne

H
om

e

A
dd

re
ss

Tow
n

A
dd

re
ss

Cod
e

E
m

ai
l N

u
m

b
e

r
o

f
e

rr
o

rs

Presented algorithm MSN Search Toolbar Google Toolbar

Figure 10. Comparison of the wrongly filled in fields

5.2 User Test

The goal of this user study based on the prototype described in section 4 was to figure out

whether the automatic form filling feature would be usable for end users [12].

We had 18 volunteers that participated in our study, 9 women and 9 men, aged from 20 to

26. They were all students in computer science, communication science, politics, ethnology,

linguistic or literature.

At the beginning we explained to each participant the concept of automatic form filling on

mobile devices. We discussed that filling out forms, e.g. for ordering a product or making a

reservation, takes a long time when using a mobile device such as a mobile phone. Then we

briefly explained how such a feature as the auto form filling could support the mobile user.

We said that the forms were automatically filled and the user could check and reedit them

before submitted the form. Furthermore we insisted on the fact that personal data are only

stored on the mobile device and thus, are not transmitted to any other party.

As the next step, users were asked to provide their first name, last name, address, postal

code, city, phone number and email-address. Later on this information was used by the form

filling feature as content for the form filling. Each test user was asked to check 20 forms

with 0, 1 or 2 wrong automatically filled fields.

Each test run was executed according to the following scheme: After selecting the current

setting, we waited until the form was completely loaded and put the mobile phone onto the

table in front of the user with its display faced down. As shown in Figure 11, the user task

was to turn the mobile phone around, check the pre-filled form, find errors and turn the

mobile phone around again when ready. Please note there was no need for scrolling since

the whole form fitted on the screen.

Figure 11. Method used to measure the time.

We used these gestures to exactly measure the time between the first look on the display

and the moment when the user turned the display up. Afterwards the test user was asked to

tell if the form was correctly filled out or if there were any error. Through this experiment

we tried to prevent measuring the time users need for explaining errors. In fact, we

measured the time the user needed to only recognize the errors only. In the cases where the

user found errors we asked in which field a wrong content was filled in.

As already mentioned each of the 18 participants was asked to do 20 test runs. Thus we

measured 360 runs altogether. The results of the user study are depicted in table 6. In

general there were no significant differences in the time the participants needed for the

different combinations. One result is obviously that the more errors were included the more

time the participants needed for completing a run. One reason for that is that the

participants had to mention after every run how many errors they found and where they

errors have been. The participants needed 23% more time when 2 errors were included

when compared to the test cases without any errors. Furthermore, not surprisingly, the

frequency of non recognized errors and false positives was higher than 0% when 1 or 2

errors were included in the pre-filled form. A false positive is when the user wrongly

mentioned that a field was filled with the incorrect content.

Errors 0 1 2

Runs 90 108 162

Average time needed in seconds 5,34 5,75 6,55

Frequency of errors and false positives: percent

(sum of all errors)
0% 2% (2) 12% (19)

Table 6. Needed time and frequency of errors related to the included errors

Afterward the runs we asked the participants about their opining about the prototype. 83%

(15 of 18) of the tester would use such an automatic form filling function if available. More

detailed information about this study, the test setting and the results can be found in [12].

6. Related Work

This section relates our work to existing solutions. Chusho et al. [13] presented a system

where an agent supports the automatic filling of forms in web applications. For this a

corresponding architecture - similar to modern architectures in the field of artificial

intelligence - was developed. This architecture includes an inference engine, a learning

facility and a knowledge-base. Barton et al. presented their XForms approach [14] that

supports adaptive services through clients that fill forms with sensor data. Furthermore

existing commercial applications like Google Toolbar [10], MSN Search Toolbar [11],

RoboForm [15] or iOpus Internet Macros [16] also provide automatic form filling. In

contrast to these solutions we decided to focus on mobile phones and mobile services. This

is a challenge due to the very limited working memory and processing speed of mobile

phones. All these publications and products address the same problem that each

programmer can define her or his own forms using arbitrary labels, different data types and

variable names. Theoretically it would be better if each form would follow a standard

ontology that would make automatic form filling a much easier task. The W3C working

draft Client Side Automated Form Entry [9] is an example for this and includes an ontology

for the description of identity, contact, postal, billing and organisational information. But

this is not a practical approach because it assumes that everybody has to use a standardized

and well-accepted ontology. Another and certainly more practical solution is the usage of

semantic web technology to described ontologies and the relationship between them [17].

Through this it would be possible that an ontology A is used to describe the elements in a

form, that an ontology B is used to describe the user data and that the form filling would be

a straight-forward reasoning task.

The investigation and development of context-aware services is currently considered by

many researchers and within several scientific projects. This context information2 is used to

initiate services and contents adaptation. In the application area of this paper particularly

personalized web applications for mobile devices have to be concerned that adapt web

applications according the user and according the used device [18-21].

The usage of rule- or policy-based systems based on artificial intelligence concepts are one

standard approach when designing systems for context-aware services. Suryanarayana and

Hjelm presented an architecture [22] that takes different profiles such as user profile,

application profile and transport profile into account. Regarding the processing of this data

they discuss possibilities that are based on rules languages such as RuleML and policies.

They also considered the usage of XSL Transformations (XSLT) to adapt services

according to context information. Platforms supporting coordinated adaptation in mobile

systems that are based on policies are presented in [23] and [24]. They strictly distinguish

monitored context information, policies and adaptation mechanisms. It is possible to use

policies for different adaptations and the adaptation mechanisms are independent from the

policies. Through this the mobile services can be adapted in a system-wide manner. Rei, a

policy language for pervasive computing application was presented by Kagal et al. [25].

This language enables expressing rules for rights, obligations, dispensations, and

prohibitions. We restrict our approach to the domain of form filling for mobile devices.

One other problem when using services on mobile phones is that the most web based

services are developed for desktop PCs or laptops. A popular solution for that is the usage

of proxies which are located either on the mobile phone or on a server to adapt existing

services. Examples for this is are the Opera Mini and the Opera Mobile Accelerator which

use a remote proxy that eliminates unnecessary content and compresses web pages for

sending them to the mobile phone. Our system can be seen as a proxy as well because our

form filling application is located between the web browser and the web server.

2 User data, device, location, surrounding devices, profiles, time, activity etc.

7. Conclusion and Future Work

We discussed that form filling on mobile devices is a time consuming and error prone task

because of the limited input capabilities of mobile devices. We underlined through our

initial user test that filling in forms automatically reduces the input time by the factor 3.

In this paper we presented a solution for automatic form filling on mobile devices. The

basic idea is that a proxy running on the mobile phone uses the locally available user data to

fill out forms on mobile services. This proxy acts as a mediator between the browser on the

mobile phone and the mobile service on the network. Through this approach our solution

can be used with already existing mobile phones, mobile browsers and mobile services.

Another advantage is the optimization of the algorithm memory and processing constraints

of mobile devices based on an initial rules set and dynamic rules generation. Furthermore

we showed through our prototype that it is feasible to implement and use such a feature

with currently available mobile phones.

From the results of our initial user study we intensively considered privacy aspects during

the development of our architecture. Therefore the user data is just stored on the mobile

device and is not distributed to any server. Furthermore the user can keep control over the

automatically filled data by viewing and reediting them before submitting the form. In

addition to that, we showed through the accuracy evaluation of the algorithm that

considering the co-location of form elements (e.g. labels and input fields) is necessary for

improving the correctness of the automatic form filling. In addition we noticed that the

accuracy of our form filling algorithm was similar to corresponding solutions such like the

Google Toolbar and the MSN Search Toolbar which are not primary designed for use on

mobile devices. Through a user test we found out that people understood and well-

perceived the concept of automatic form filling on mobile devices. Furthermore we

presented in our related work section similar approaches but also underlined that no

comparable concept or tools for automatic form filling on mobile devices was available.

To show the efficiency of our system from a different perspective, we plan to compare it

with some of input prediction engines such as T9 that have been implemented on mobile

devices. In a further user study we will count the time and the number of keystrokes which

are needed to delete or reedit user data filled by the automatic form filling tool. Furthermore

we will analyse how more complex forms which require some scrolling interactions

influence our current results. Furthermore we plan to introduce and evaluate a technique to

delete all data filled in a form field at once.

The present research focuses on user data that is usually managed by typical personal

information management applications, in particular the address book. But novel and future

mobile services may provide form elements that ask for location or activity information.

The previously discussed algorithm can probably be used for filling in trivial location

information (e.g. current location) but is certainly not the ideal solution for more

sophisticated services. As discussed in the related work section would the usage of semantic

web technologies be the most obvious solution for this problem. The question here is

whether and when this will be used by most of the developers when creating new forms.

8. Acknowledgements

This work was performed in the context of the framework of IST Project Simple Mobile

Services (SMS) funded by the EU. The authors wish to express their gratitude to the other

members of the SMS Consortium [26] for valuable discussions.

9. REFERENCES

[1] Chie Noda, John Hamard, Enrico Rukzio, Alexander De Luca. Method and

Apparatus for Automatic Form Filling on Mobile Devices. Patent. Publication number

EP1777629, Publication date 2007-04-25.

[2] Opera Mobile, http://www.opera.com/products/mobile/

[3] NTT DoCoMo Osaifu-Keitai, http://www.nttdocomo.co.jp/english/service/osaifu/

[4] FeliCa, Sony, http://www.sony.net/Products/felica/

[5] E. Rukzio, A. Schmidt, H. Hussmann. Privacy-enhanced Intelligent Automatic Form

Filling for Context-aware Services on Mobile Devices. Workshop Artificial Intelligence in

Mobile Systems 2004 (AIMS 2004) in conjunction with UbiComp 2004, Nottingham, UK,

September 7 2004.

[6] I. MacKenzie and R. Soukoreff, „Text entry for mobile computing: Models and

methods, theory and practice”, Human-Computer Interaction, 17, 147-198. 2002.

[7] J. Pierce and H. Mahaney, “Opportunistic Annexing for Handheld Devices:

Opportunities and Challenges”, Human-Computer Interface Consortium, 2004.

[8] M. Silfverberg, I. MacKenzie and P. Korhonen, „Predicting Text Entry Speed on

Mobile Phones”, Proceedings of the SIGCHI conference on Human factors in computing

systems, The Hague, The Netherlands, ISBN 1-58113-216-6, pp. 9-16, 2000.

[9] P. Hallam-Baker, “Client Side Automated Form Entry”, W3C Working Draft WD-

form-filling-960416, http://www.w3.org/TR/WD-form-filling.html

[10] Google Toolbar, http://toolbar.google.com

[11] MSN Search Toolbar, http://toolbar.msn.com/

[12] Enrico Rukzio, John Hamard, Chie Noda, Alexander De Luca. Visualization of

Uncertainty in Context Aware Mobile Applications. 8th International Conference on

Human Computer Interaction with Mobile Devices and Services (MobileHCI 2006). Espoo,

Finland, 12.-15.09.2006.

[13] T. Chusho, K. Fujiwara and K. Minamitani, “Automatic Filling in a Form by an

Agent for Web Applications”, Asia-Pacific Software Engineering Conference 2002, IEEE

Computer Society, pp.239-247, 2002.

[14] J. Barton, T. Kindberg, H. Dai, N. Priyantha and F. Al-bin-ali, „Sensor-enhanced

Mobile Web Clients: an XForms Approach”, Proceedings of the twelfth international

conference on World Wide Web, ISBN 1-58113-680-3, Budapest, Hungary, pp. 80-89,

2003.

[15] RoboForm, http://www.roboform.com/

[16] iOpus Internet Macros, http://www.iopus.com

[17] S. McIlraith, T. Son and H. Zeng, “Semantic Web Services”, IEEE Intelligent

Systems, 16(2):46-53. 2001.

[18] G. Abowd and A. Dey, “Towards a Better Understanding of Context and Context-

Awareness”, in: Technical Report GIT-GVU-99-22, College of Computing, Georgia

Institute of Technology, pp. 12, 1999.

[19] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen and E-J Malm, “Managing context

information in mobile devices”, IEEE Pervasive Computing 2(3):42-51. 2003.

[20] G. Rossi, D. Schwabe and R. Guimar, “Designing Personalized Web Applications”,

Proceedings of the tenth international conference on World Wide Web, Hong Kong, ISBN

1-58113-348-0, pp. 275-284, 2001.

[21] D. Billsus, C. Brunk, C. Evans, B. Gladish and M. Pazzani, “Adaptive interfaces for

ubiquitous web access”, Communications of the ACM 45/5, pp. 34-38, 2002.

[22] L. Suryanarayana and J. Hjelm, “Profiles for the situated web”, Proceedings of the

eleventh international conference on World Wide Web, Honolulu, Hawaii, USA ISBN 1-

58113-449-5, pp. 200-209, 2002.

[23] C. Efstratiou, A. Friday, N. Davies and K. Cheverst, “A Platform Supporting

Coordinated Adaptation in Mobile Systems”, Proceedings of the 4th {IEEE} Workshop on

Mobile Computing Systems and Applications (WMCSA) 2002, pp 128-137, 2002.

[24] C. Efstratiou, A. Friday, N. Davies and K. Cheverst, “Utilising the Event Calculus

for Policy Driven Adaptation in Mobile Systems”, Proceedings of the 3rd International

Workshop on Policies for Distributed Systems and Networks (POLICY 2002), 2002.

[25] L. Kagal, T. Finin and A. Joshi, “A Policy Language for a Pervasive Computing

Environment”, IEEE 4th International Workshop on Policies for Distributed Systems and

Networks, Lake Como, Italy, pp. 63. 2003.

[26] Simple Mobile Services (SMS) project, http://www.ist-sms.org/

