
Bettina Conradi, Doris Hausen, Fabian Hennecke,
Max-Emanuel Maurer, Hendrik Richter,
Alexander Wiethoff, Heinrich Hussmann (Editors)

Prototyping
Hauptseminar Medieninformatik WS 2009/2010

Technical Report
LMU-MI-2010-1, Feb. 2010
ISSN 1862-5207

University of Munich
Department of Computer Science

Media Informatics Group

Bettina Conradi, Doris Hausen, Fabian Hennecke, Max-Emanuel Maurer,
 Hendrik Richter, Alexander Wiethoff, Heinrich Hussmann (Editors)

Prototyping

An overview of current trends, developments, and research
in Prototyping

Preface

This report provides an overview of current applications and research trends in the field
of prototyping. There are application domains where prototyping plays a vital role. They
range from traditional graphical user interfaces (GUIs) to ubiquitous computing
applications, like tangible or haptic user interfaces and interactive surfaces.

During the winter term 2009/2010, students from the Computer Science Department at
the Ludwig-Maximilians-University in Munich did research on specific topics related to
prototyping and analyzed various publications. This report comprises a selection of
papers that resulted from the seminar.

Each chapter presents a survey of current trends, developments, and research with regard
to a specific topic. Although the students’ background is computer science, their work
includes interdisciplinary viewpoints such as theories, methods, and findings from
interaction design, ergonomics, hardware design and many more. Therefore, the report is
targeted at anyone who is interested in the various facets of prototyping.

In addition to this report, there are slides from the students’ talks available at
http://www.medien.ifi.lmu.de/lehre/ws0910/hs/ .

Munich, February 2010

The Editors

 Bettina Conradi, Doris Hausen, Fabian Hennecke, Max-Emanuel Maurer,
 Hendrik Richter, Alexander Wiethoff, Heinrich Hussmann

Contents

Eduard Held
From paper prototyping to sketching with hardware………………………………….. 1

Melanie Kunz
From paper prototyping to sketching with hardware………………………………….. 7

Gerald Beck
Prototyping for web interfaces………………………………………………………… 13

Markus Zimmermann
Usage of the web for various prototyping scenarios…………………………………... 19

Felix Heller
Patchwork prototyping for web applications………………………………………….. 25

Korbinian Huff
Evaluating prototypes for web applications…………………………………………… 33

Thomas Creutzenberg
Evaluating prototypes for web applications…………………………………………… 40

Dario Soller
Haptic icon prototyping……………………………………………………………….. 49

Martin Hommer
Prototyping for interactive surfaces…………………………………………………… 60

Anna Tuchina
Prototyping for interactive surfaces…………………………………………………… 68

Maximilian Schenk
Prototyping for the development of ergonomic interactive surfaces………………….. 74

Eduard Vodicka
Prototyping for the development of ergonomic interactive surfaces………………….. 80

Robert Kowalski
Prototyping in physical computing - Sketching in Hardware…………………………. 87

Thomas Bauer
Prototyping in physical computing - Sketching in Hardware…………………………. 96

Adalie Hemme
Prototyping in physical computing - Sketching in Software…………………………. 102

From Paper Prototyping to Sketching with Hardware

Eduard Held

Abstract— In this paper, two prototyping techniques, paper prototyping and experience prototyping, are described and compared
to each other in order to give a potential lookout of future prototyping. Paper prototypes are mostly hand-drawn prototypes of an
user interface which enable quick usability testing and improving with users before the actual programming starts. In experience
prototyping, developers, users and clients actively collect experiences with products that have to be developed or changed, by
interacting with prototypes. These experiences help understanding existing situations, exploring ideas and communicating the product
vision. While paper prototypes have been used for decades for pure screen based human-computer interaction, new technologies
allow more hybrid ways of interaction, which demand for more versatile usability engineering methods, like experience prototyping.

Index Terms—prototyping, paper prototyping, experience prototyping, discount usability engineering, guerrilla hci

1 INTRODUCTION

Developers of user interfaces use prototyping, especially low-fidelity
prototyping, to realize and evaluate basic design ideas in early stages
of the development. At this point, where changes are made quickly
and frequently, prototypes need to be cheap, easy to make and may
be limited in function, since they are only used to evaluate specific
components and communicate basic concepts [9].

One of the most popular low-fidelity prototyping techniques is pa-
per prototyping: Using only common office supplies like pencils, pa-
per and scissors, user interface mockups can be created within hours.
These paper prototypes can easily be adopted to the rapid changes and
provide a very efficient tool for the classical user interface design [15].
But as technology evolves, new ways of human-computer interaction
(hci) emerge and quickly move away from pure screen based interac-
tions. To prototype those hybrid and often more complex interactions,
developers require prototyping techniques that allow them to sketch
with the hardware they are developing and provide tools for a more
versatile product evaluation. One of those techniques is experience
prototyping [1]: developers and users actively interact with prototypes
and collect subjective experiences, which provide a better understand-
ing of the product that has to be designed or improved.

The goal of this paper is to give a detailed overview of paper proto-
typing and experience prototyping, look at the pros and cons of each
technique and compare them to each other. Based on the comparison
I will also try to find out how prototyping will look like in the future.
Another subsection will include an overview of guerilla hci [6], which
describes discount usability engineering as a method to get developers
started with prototyping in case they haven’t been using it yet.

In section 2 detailed descriptions of paper prototyping, experience
prototyping and guerilla hci are presented. Section 3 contains the dis-
cussion, which features the comparison and open questions. In the
conclusions in section 4 I will then summarize the paper, include my
own opinion on the topic and finally give a lookout of future prototyp-
ing.

2 FROM PAPER PROTOTYPING TO SKETCHING WITH HARD-
WARE

This section includes individual descriptions and analysis of paper pro-
totyping and experience prototyping based on the most important arti-
cles on this topic. Another subsection is guerrilla hci, which describes
a technique to convince those developers, who haven’t been using pro-
totyping yet.

• Eduard Held is studying Media Informatics at the University of Munich,
Germany, E-mail: helde@cip.ifi.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009

2.1 Paper Prototyping

In the development of user interfaces for human-computer interac-
tions, one will always find some problems, which have to be solved.
The earlier those problems are found, the easier they can be corrected.
Paper prototyping (see figure 2) allows to find and eliminate basic
problems with the help of end-users at a very early stage of the de-
velopment cycle, often before any code has been written.

2.1.1 History

People started using paper prototypes in the mid 1980s [20], although
not many developers have heard of its benefits at this time and it was
only used by some of the pioneers of usability engineering. But when
big companies, like IBM or Microsoft, started using paper prototyp-
ing in their product development process, paper prototyping started to
become more popular [15]. Today, paper prototyping is a well known
and accepted prototyping technique [16], [10], [15], [8].

2.1.2 Use

The typical paper prototyping process can be divided into three major
steps: determining appropriate tasks, creating the paper prototype and
usability testing.

In the first step, before actually creating the prototype, developers
have to determine the tasks, which the users have to perform during
testing. To support the improvement of the interface, these tasks have
to come up to several requirements [15]: At first, the tasks should be
realistic and pursue a goal which the user would also try to reach when
using the final product in its actual environment. This helps simulating
a real work situation and ensures that the test-user takes his/her job
seriously. The next important requirement to a task is that the user
should deal with the most critical components of the interface, those
components which decide if the product is successful or not. The goal
is to answer all questions of the developers regarding those parts of
the product during testing. The scope of a task should be appropriate,
meaning that the user has enough time to achieve a certain goal, but
still provides enough feedback regarding the critical questions. It is
also advised to keep the set of solutions for a certain task at a finite
and predictable level, to limit the amount of work required for creating
the paper prototype. Another recommendation is to create tasks with
a clear end point, this ensures that the user, and no one else, decides,
when a task is completed. This also contributes to a more realistic
working situation. When creating tasks, it is also important to keep
in mind, that most of the critical questions are answered by observing
the user when he/she is interacting with the prototype, and not when
he/she tells his/her opinion about the interface.

The next step is creating the prototype: Using common office sup-
plies like paper, pencils, scissors and glue, a sketch of the interface
can be created within a few hours. It is important to sketch each com-
ponent onto a separate piece of paper, so that the components can be
added and removed exactly as in the final product. Keeping the proto-

1

type colorless helps the user concentrating on the critical parts of the
interface.

Opinions are divided when talking about what degree of detail
should be implemented in the prototype. On the one hand, a highly
detailed paper prototype contributes to a more realistic working sce-
nario and prevents the user from guessing what to do according to the
available buttons or menus. On the other hand, a too detailed prototype
might distract the user from his actual task and lead him/her to focus
too much on less important components. Lastly, since sketching on
paper can be done by anyone, all people involved in the development
of the product can and should take part in creating the prototype. This
leads to a shared understanding of the product and allows everyone in
the team to focus on the same issues. After the prototype is created, a
final walkthrough is performed by the developers. This walkthrough,
where the developers step into the role of users, is like a rehearsal of
the usability test and helps finding and eliminating first problems.

Fig. 1. A paper prototyping testing session. Image from Rettig [8].

In the third step the actual usability test is conducted (see figure 1).
There are several roles that have to be assigned to the team members,
such as a computer, a facilitator and usually a few observers. The
computer’s task is to move the components of the paper prototype ac-
cording to the actions of the user to simulate how the final product
would behave when running on a real computer. The computer does
not explain how the prototype works, but only reacts to the user’s ac-
tions performed with the interface. The facilitator is the only person
of the development team who may speak freely to the user during the
usability test. According to Rettig [8], a facilitator has to perform the
following three actions: giving the user instructions, motivating the
user to express his/her thoughts during the test and ensuring that the
test is done on time. This is an important role, because many things
depend on the facilitators work, like how comfortable the user feels
during testing, how well the user understands his/her task and how
well the observers understand the user’s problems. Hence the facilita-
tor is usually someone who is trained in usability [14]. The observers
are those people of the team who follow the actions of the user and
make notes about the interaction of user and computer. They do not
interfere in the testing process. Another important role in the usability
testing is the user himself/herself, although this role is not filled by
members of the development team. Test-users have to be chosen care-
fully to represent the set of users who will actually work with the final
product. It is optional to use a camera pointed at the paper prototype
to support later evaluation.

After testing, the team discusses the collected data and immediately
changes the paper prototype accordingly. Since this process does not
require any technical skills, every member of the development team,
from programmer to management, can actively take part in changing
the prototype. Testing and improving are performed until the develop-
ment team has eliminated the most critical flaws and is ready to move
on to the next step of development, which is redesigning the interface
based on the collected data [15].

2.1.3 Advantages

The reason why paper prototyping is one of the most popular low-
fidelity prototyping techniques today [16], [10], [15], [8] is that it has a

lot of advantages to developers of user interfaces for human-computer
interactions:

Using paper prototyping is an efficient way of including users into
early product development: The resources needed for creating and
changing paper prototypes are common office supplies like paper, pen-
cils and scissors and every developer of user interfaces has access to
those materials. The time required for creating, testing and changing a
paper prototype is comparatively short [13]. Also, developers don’t re-
quire any special skills to make use of paper prototyping, which makes
it quite easy to use [8]. Although it is easy and fast, comparisons show
that paper prototyping can disclose a similar number of critical prob-
lems as prototyping techniques with higher leves of fidelity [3], [18].

Paper prototyping allows developers to improve the usability of an
user interface before programming it [14]: by sketching the interface
on paper and testing it with end-users, real problems can be found
very early. This way the programmers can be more confident that they
are implementing the right product. This is also very helpful to val-
idate, if the instructions from the internal marketing department are
implemented correctly. Another benefit of finding problems before
programming is that designers show a greater willingness to change
a product they have put minimal time in rather than one they spent
weeks developing [2]. And since testing and changing the paper pro-
totype does not require much time, many tests are possible in a short
period of time, which also contributes to improving the usability in
this early stage of development.

Another advantage is that users are more likely to criticize the func-
tionality rather than the design when working with paper prototypes
[14]. It has also been found that users feel more comfortable when
criticizing an interface that is still in development rather than a fin-
ished product [2].

When users are included from the beginning in the development of
a product, the developers have a greater chance of finding out what the
users really want and what they need. This increases the probability
that the user will accept and use the product.

Paper prototyping can also be used as a tool to explore tasks[16]
and to communicate the interface[10]: when developers try to find
out how the users want the tasks to be like, paper prototyping can be
used, instead of the more expensive field researches or interviews, in a
way that developers and users create the tasks together by modifying
the prototype. Those prototypes can then be used, instead of reading
specs, to demonstrate to other members of the development team, how
the interface should work.

Since paper prototypes don’t require extra skills to be created and
changed, the whole development team can take part in the paper pro-
totyping process. This strengthens the team spirit and establishes a
common understanding of the product. Everyone involved in the de-
velopment process can actively contribute to improving the usability.

2.1.4 Disadvantages

The first major problem with paper prototypes is that, when compared
to a high-fidelity prototype, the total number of flaws found during
testing can be significant lower [5]: Although many of the critical
problems can be found by using a paper prototype, some critical and
many less critical properties of the interface can’t usually be identified.
Also, when compared to a high-fidelity prototype, a paper prototype
leaves out many details which makes it more difficult to use it as a tem-
plate for later programming. Many decisions, which were considered
less important in the beginning, have to be made by the programmer
himself/herself, although those decisions could later have a big impact
on the acceptance of the product.

Since paper prototypes are only a very rough representation of the
final product, questions regarding details have to be answered by later
prototypes with a higher level of fidelity.

Another problem with paper prototyping is the authenticity of the
interaction. Several members of the development team are required to
simulate a working product and evaluate the usability testing session.
When interacting with a paper prototype, the user might have prob-
lems with several people watching him/her and waiting for actions to

2

perform [11]. Another issue regarding the interaction are the unrealis-
tic answering times of the system.

When actions of the user would mean only little changes on the
computer screen, paper prototyping is not appropriate to test whether
the user noticed those changes or not since in testing the user sees
that the computer lays additional things onto the table. Simulating
scrolling is another weakness of paper prototyping: folding the paper
or using cutouts are more noticeable and can lead the user to try those
functions only because they are implemented. The ”feel” of scrolling
in a paper prototype also differs greatly from scrolling in computer
programs.

Also, when developing content-rich products, paper prototyping is
not appropriate, because implementing all the content would mean too
much work. One possibility is to replace the real content by fake con-
tent that can be created or printed quickly, but that reduces the authen-
ticity of the interface[16], which forces the user to imagine the real
product. This makes it harder for the user to concentrate on his/her
original task and decreases the chance of finding critical flaws.

Fig. 2. Paper prototype. Image from Snyder [14].

2.2 Experience Prototyping
Paper prototyping is a very popular prototyping technique to improve
the traditional, pure screen based interactions. But as technology
evolves, more hybrid ways of interaction emerge and demand for
new prototyping techniques. One of these techniques is experience
prototyping[1]: to explore and understand, what future products will
behave like, developers and users actively collect experiences by in-
teracting with prototypes and sketching with the hardware they are
developing.

2.2.1 History
Experience prototyping was introduced by Buchenau et al [1] in the
year 2000: where prototyping techniques always deliver some kind
of experience, the difference of experience prototyping is that it is all
about gaining subjective experience by active interaction. While com-
mon prototyping methods are often used with a mainly passive audi-
ence [1], experience prototyping involves developers as well as clients
and future users actively in the development process.

2.2.2 Use
Buchenau et al [1] have identified three different kinds of activities
that can be supported by experience prototyping: (1) understanding
existing user experiences and context, (2) exploring and evaluating
design ideas and (3) communicating ideas to an audience.

When trying to understand existing user experiences, experience
prototyping can be used to simulate the contextual factors that influ-
ence the use of the product and help finding problems and opportuni-
ties. Buchenau et al [1] provide three examples for this area of appli-
cation that are summarized in the following in order to demonstrate
the use of experience prototyping. The task in the first example was

to create a product to support patients with chest-implanted automatic
defibrillators. Since the developers did not have any experiences with
this kind of situation, every team member was given a pager for a few
days. To simulate a defibrillating shock, pager signals were sent at
random times. The results were first hand experiences gained by the
team members, who had a better understanding of the users’ situation
afterwards. This example shows that some final products don’t allow
the developers to use them (unless they get a chest implanted defibril-
lator), but experience prototyping still can provide a better understand-
ing through subjective experiences. The second example was about a
development team having to create an interface for an underwater re-
motely operated vehicle. By creating a situation similar to the one
a pilot would be in, the team collected personal experiences, which
enhanced the developers’ understanding of the pilot’s problems and
provided a common reference point for further development and com-
munication with real users. In the third example, a team had to find
out the needs of passengers to create a new rail service. The methods
used to get an understanding of those needs included role playing and
bodystorming. Role playing is a technique where developers and users
act like they were in a certain situation to get a shared understanding
of problems, just like the prior examples show. Simsarian [12] con-
firms the advantages of role playing: (1) maintaining group focus, (2)
creating a shared understanding, (3) building a deeper understanding
grounded in context and (4) ”the ability to viscerally explore [new]
possibilities”. Svanaes et al [17] also recommend using role playing
and present a detailed workshop structure in their paper. Bodystorm-
ing is often a part of roleplaying and describes the process of brain-
storming and discussing solutions in a real or similar environment of
the final product [7]. Oulasvirta et al [7] described it as ”best suitable
for designing [...] activities that are accessible and unfamiliar to the re-
searchers”. The use of these two techniques allowed the developers of
the third example to make discoveries of personal significance which
helped understanding and discussing them in the team and with users.
The personal experiences created lasting memories which helped the
designers during further development.

Developers also use experience prototyping to explore and evaluate
design ideas [1]: personal experiences simplify the discovery of ap-
propriate solutions to a problem and also help evaluating them with
team members, users and clients. Two examples help understanding
the concept: The first example is about developing a control device
for a video game, where the team discovered three different directions
for their development. Simple objects representing the different user
interfaces were used to gain a first understanding of the user experi-
ence. This way the designers could quickly disclose some basic prob-
lems and benefits of the different solutions without creating the real
products. In the second example, a team had to come up with ideas
for the interior layout and components for an airplane. Bodystorming
was used in a full-scale foam-core environment, which simulated the
interior of the plane. With the help of chairs and other office com-
ponents, various social situations were simulated in different arrange-
ments. The result was a better and common understanding of users’
experiences, which was achieved quickly and at low cost.

Experience prototyping can also be used as a tool to communicate
design ideas [1]: by experiencing it, team members, users and clients
are more likely to properly understand an idea. Another two examples
shall help the reader’s understanding. The first example is about the
development of an early device for digital photography (see figure 3).
After noticing that the clients did not fully understand the intended
user experience and product behavior using traditional communication
methods, which created passive experiences, they decided to create
a ”look and feel” prototype. The new prototype enabled the clients
to actively interact with the product and understand the intentions of
the developers. This was a crucial part in convincing the clients and
led to the success of the product. The second example shows how
passive communication methods, in this case video, and experience
prototyping can collaborate: The ”Kiss Communicator” is a product
to exchange emotional content between people separated by physical
distance. To communicate the concept, the developers decided to use
a video, rather than a ”look and feel” prototype, which showed how a

3

dreamy couple, who are working apart, used the device. This way a
more appropriate atmosphere was created to communicate the product
experience to the clients.

Fig. 3. Digital camera interaction architecture prototype. Image from
Buchenau et al. [1].

2.2.3 Advantages
The first benefit from experience prototyping can be illustrated by
quoting the chinese philosopher Lao Tse: ”What I hear I forget. What
I see, I remember. What I do, I understand!” By active interaction,
subjective experiences are gained. One the one hand, those experi-
ences help developers to understand users and the problems they have.
One the other hand, users and clients get a better understanding of the
developer’s ideas [1].

Experience prototyping can simulate important parts of relation-
ships between people, places and objects. Hence it is a good tool for
developers to understand situations and products that they are unfamil-
iar with [1].

Developers can get inspiration, confirmation or rejection of ideas,
according to the quality of experience they cause [1]: Users may like
or dislike what a certain prototype looks and feels like. They can also
inspire the developer by the way they interact with the prototype.

Using experience prototyping leads to a shared experience [9]. This
does not only help the members of a development team to build a com-
mon vision, but also provides a shared point of view for developers,
users and clients. This way, the work of a development team can be
effectively lead into one direction. This direction can be determined
collectively by developers, users and clients, which are able to speak
in a ”common language” [9] because of the shared experiences.

When using low-fidelity prototypes in experience prototyping, mul-
tiple prototypes can be created and evaluated in a short time and at a
very early stage of the development [17]. This increases the chance of
finding core problems and their solutions.

2.2.4 Disadvantages
The first problem is that we cannot actually be other people and can’t
experience what they experience [1]. Experiences are very subjective
and have often been created over a long period of time. It is obvious,
that no one can make the exact same experiences by simulating the
environment for a few days. Still, experience prototyping can be help-
ful to provide a basic understanding of other people’s situations with
relatively small time effort.

Another problem is that experiences can not be predicted [1]. The
creation of experiences involves many personal and contextual factors,
where only the least ones can really be controlled. As a result, expe-
rience prototyping can be used to give a certain direction to the users’
experiences, but one can’t expect too much.

When conducting a roleplaying session, it could be problematic that
everyone is actively involved. Active involvement means concentrat-
ing on personal experiences, rather than having an overview of the

whole situation. Things, that affect the interaction of several people,
like organizational components, might be overlooked. Involving one
or more observers and a facilitator for each roleplaying group is highly
recommended by Svanaes et al. [17].

Using experience prototyping as a tool to communicate design ideas
can also have its problems. Developers have to carefully choose the
degree of fidelity for a certain prototype: a level too low might require
too much supervision to cause realistic experiences, whereas a high-
fidelity prototype bears the chance that clients may become unshak-
ably attached to early ideas as soon as they experience a convincing
moment with the prototype [1]. To give a demonstration: the clients
in the digital camera example, which is shown above, were so excited
about the first hands-on experience with the prototype, that some de-
tails, which have been compromised by the designers due to lack of
time, have simply been ignored and the design phase was announced
as completed after the testing session, although nobody knew what
impact those details had on the end-users’ experiences.

As a conclusion, when applied with care, experience prototyping
can be very helpful for designing interfaces for human-computer in-
teractions.

2.3 Guerilla HCI

There are still developers, who don’t have any experiences with proto-
typing [19] and are not using it in their development process. A pos-
sible explanation as well as a solution to this phenomenon is given by
Nielsen [6]: By introducing ”Guerilla HCI”, he presents a method to
facilitate the entry into usability engineering for software developers
by using discount usability engineering.

Nielsen [6] calls the reason, why developers don’t use usability en-
gineering methods (not even the most basic ones like early focus on
the user, empirical measurement or iterative design) ”Intimidation Bar-
rier”. One big part of this barrier is that the costs of the recommended
methods are perceived too high. The reason for this perception is that
there are methods that are really expensive [4] and time consuming,
but it is often forgotten to point out that there are cheaper methods
as well. Another point is that the methods for testing the usability
in hci are often intimidating in their complexity. Discount usability
engineering addresses these two problems by providing methods that
are (1) less expensive and time consuming and (2) less intimidating in
their complexity, but still deliver valuable information for improving
the usability of a product.

Discount usability engineering uses three techniques: (1) scenar-
ios, (2) simplified thinking aloud and (3) heuristic evaluation. These
techniques are not considered to be the best on the market, but rather
are methods with comparatively low cost and complexity that still pro-
vide useful information. This makes them more likely to be used by
usability engineering novices.

Fig. 4. ”The concept of a scenario compared to vertical and horizontal
prototypes as ways to make rapid prototyping simpler”. Text and Image
from Nielsen [6].

4

Scenarios (see figure 4) are a combination of horizontal and verti-
cal prototypes [6]: Horizontal prototypes provide an overview of the
functions of a product, but the single functions are not fully imple-
mented and therefore not working. Vertical prototypes include only
a few functions of the final product, but those are fully implemented.
Scenarios combine these properties and result in a prototype that is
drastically reduced in the total number of functions as well as in the
depth of the specific functions. This provides a tool to cheaply, eas-
ily and quickly test a very specific part of the product to get fast and
frequent feedback from users.

Simplified thinking aloud is a method where users are asked to think
out loud while they perform specific tasks with a prototype. In con-
trast to the traditional think aloud method, no psychologist or user
interface experts, who make detailed analysis using videotapes of the
testing session, are involved. Another difference, which makes sim-
plified thinking aloud more affordable, is that the number of test-users
can be reduced, where a number of three to five test-users achieves the
maximum benefit-cost ratio, according to Nielsen [6].

Heuristic evaluation is recommended instead of referring to current
user interface standards and collections of usability guidelines, which
have about one thousand rules to follow. By providing a small set
of basic usability principles, developers can quickly get a first under-
standing. Yet, it is advised to acquire an outside usability expert to
make sure that the principles are applied correctly and provide a max-
imum of valuable information [6].

Nielsen [6] conducted studies which confirmed that the discount
usability engineering methods caused measurable improvements in us-
ability and helped identifying the best design when several possibili-
ties are given. Another study was made to determine the cost-benefit
ratio of heuristic evaluation in a concrete example. Two things were re-
quired: (1) estimating the costs in terms of time spend performing the
evaluation and (2) estimating the benefits in terms of increased usabil-
ity. The result was a benefit/cost ratio of 48, which, although involving
significant uncertainties, is a good reason for recommending the use of
heuristic evaluation in the development process. The cost-benefit ra-
tio of user testing was also estimated and showed a comparable value,
hence user testing can also be of additional value for the designers.

3 DISCUSSION

After seeing several reasons for using prototyping, there is still the
question, which techniques is better for which situation. This section
will present a comparison of paper prototyping and experience proto-
typing.

3.1 Paper Prototyping vs. Experience Prototyping

The main goal of paper prototyping, as well as of experience proto-
typing, is to improve the usability of an interface for human computer
interactions. Although the methods used by the two techniques are
largely different (testing a paper prototype vs. roleplaying and bodys-
torming), there are still some parallels noticeable: the first thing both
techniques have in common is the early focus on the user. Paper pro-
totyping involves the user to test basic ideas, sometimes even before
a single line of code has been written. In experience prototyping, the
users help understanding existing experiences and evaluating the de-
signers’ ideas early in the development process. Another parallel is
the involvement of the whole team while using the techniques. Each
member of the development team can actively participate in creat-
ing and changing a paper prototype. When conducting roleplaying-
and bodystorming-sessions to explore ideas in experience prototyp-
ing, also the whole team is actively part of that process. In both cases,
a ”common language” [9] is provided, which helps concentrating on
the same issues and therefore increases the chance of a better product.
As described in [16], paper prototypes are used successfully as a kind
of ”working interview”, instead of field research or interviews, to un-
derstand existing experiences. This is also one of the main activities
that experience prototyping is used for. Both techniques also share the
ability to operate as a tool to communicate ideas and concepts to team
members, users and clients.

Besides the parallels, there are also some differences between pa-
per prototyping and experience prototyping. The main one would be
that paper prototyping is a single technique which is restricted to the
medium ”paper”, whereas experience prototyping uses several tech-
niques. Still, ”Experience Prototyping is less a set of techniques, than
it is an attitude, allowing the designer to think of the design problem in
terms of designing an integrated experience, rather than one or more
specific artifacts” [1]. This means, that experience prototyping primar-
ily aims at creating a certain experience, where the different resulting
artifacts are only a tool to provide this experience.

In paper prototyping, this final artifact is always a screen-based in-
terface. As a result, experience prototyping may be able to create more
and more versatile products and therefore experiences. The process of
paper prototyping, with facilitators, observers and computers, also dif-
fers quite much from role playing, one of the core methods of experi-
ence prototyping: although both methods simulate certain conditions,
paper prototyping focuses on the simulation the computer whereas
roleplaying, partially conducted in the real environment, focuses on
simulating experiences.

Considering the above, experience prototyping might be the more
appropriate prototyping technique for a lot of today’s and upcoming
problems. Yet, there are a few things that could be improved by using
some paper prototyping components and their benefits. At first, paper
prototypes are created to be tested by real end-users. When develop-
ers in experience prototyping try to understand existing experiences
by roleplaying with team members, there might not be a single end-
user involved. Although the developers collect very subjective experi-
ences at minimum time effort, this may not be the best way to get the
best understanding of the end-users’ situation [17]. Hence, involving
end-users more and earlier is advisable. Another critical component
of paper prototyping is observing, whereas in experience prototyping,
the main focus lies on ”doing”. A problem of experience prototyping
might be that by actively experiencing, the team members may lose
the overview of the whole situation and concentrate too much on sub-
jective perception. Things that are observed by others may differ from
the things someone experiences himself/herself, so additional, passive
observers might have advantages.

3.2 Open Questions
How big are the benefits from using paper prototyping and experience
prototyping and how big are they compared to other techniques? This
question can only be answered by using several prototyping techniques
for one product and comparing the results. This has been done before
and it is reported in several papers, yet each product is different and
results from one research may not be appropriate to another one and
there will always remain a certain degree of uncertainty.

Which technique is best for which kind of interaction? This ques-
tion can not be answered in detail, since each interaction is different
and requires a prototyping technique that is modified accordingly for
the best results. Yet, it can be answered in a more general way: paper
prototyping has proven itself to be a very efficient prototyping tech-
nique for the traditional, screen-based interactions, especially in very
early stages of development. Because of the limitations of the medium
”paper”, more hybrid interactions (like a game-controller or the ”kiss
communicator”), whose focus lies more on ”feel” aspects of the in-
teraction, than on the navigational part, require other techniques. Ex-
perience prototyping focuses on the users’ experiences generated by
products, which makes it a technique more appropriate for more hy-
brid interfaces. Still, this should not be seen as restriction, rather as
recommendation.

4 CONCLUSIONS

In this paper, two important prototyping techniques, paper prototyp-
ing and experience prototyping, have been introduced, evaluated and
compared to each other. The result was, that each technique has its
place in development and that both have its benefits. Further, guerilla
hci has been introduced as a method to convince those developers,
who haven’t been using usability engineering and prototyping in their
development process, yet, to give it a try.

5

Lastly, I will try to give a lookout of what prototyping might be like
in the future. Seeing that today’s human computer interactions steadily
move away from the classical, screen based interactions, paper proto-
typing might lose some of its importance in developing processes in
the future. But the techniques that are more appropriate for the more
hybrid forms of interaction still can learn a lot from it. What partially
is, and will be an important fact is that using many techniques comple-
mentary increases the number of solved problems. When interactions
get more hybrid, specific techniques have to be combined to a hybrid
technique itself to adapt to the situation in the best possible way. The
early focus on the user is already a big part in today’s techniques and
will also be in the future, as well as the participation of the whole de-
velopment team. Creating a shared understanding of the problems is
and will be crucial for solving them.

REFERENCES

[1] M. Buchenau and J. F. Suri. Experience prototyping. In DIS ’00: Pro-
ceedings of the 3rd conference on Designing interactive systems, pages
424–433, New York, NY, USA, 2000. ACM.

[2] H. M. Grady. Web site design: a case study in usability testing using pa-
per prototypes. In IPCC/SIGDOC ’00: Proceedings of IEEE professional
communication society international professional communication confer-
ence and Proceedings of the 18th annual ACM international conference
on Computer documentation, pages 39–45, Piscataway, NJ, USA, 2000.
IEEE Educational Activities Department.

[3] L. Liu and P. Khooshabeh. Paper or interactive?: a study of prototyping
techniques for ubiquitous computing environments. In CHI ’03: CHI ’03
extended abstracts on Human factors in computing systems, pages 1030–
1031, New York, NY, USA, 2003. ACM.

[4] M. M. Mantei and T. J. Teorey. Cost/benefit analysis for incorporating
human factors in the software lifecycle. Commun. ACM, 31(4):428–439,
1988.

[5] J. Nielsen. Paper versus computer implementations as mockup scenarios
for heuristic evaluation. In INTERACT ’90: Proceedings of the IFIP
TC13 Third Interational Conference on Human-Computer Interaction,
pages 315–320, Amsterdam, The Netherlands, The Netherlands, 1990.
North-Holland Publishing Co.

[6] J. Nielsen. Guerrilla hci: using discount usability engineering to penetrate
the intimidation barrier. Cost-justifying usability, pages 245–272, 1994.

[7] A. Oulasvirta, E. Kurvinen, and T. Kankainen. Understanding contexts
by being there: case studies in bodystorming. Personal and Ubiquitous
Computing, 7(2):125–134, 2003.

[8] M. Rettig. Prototyping for tiny fingers. Commun. ACM, 37(4):21–27,
1994.

[9] J. Rudd, K. Stern, and S. Isensee. Low vs. high-fidelity prototyping de-
bate. interactions, 3(1):76–85, 1996.

[10] T. Scanlon. Paper prototypes: Still our favorite. http://www.
uie.com/articles/paper_prototyping/, 1998. visited on
10.12.2009.

[11] R. Sefelin, M. Tscheligi, and V. Giller. Paper prototyping - what is it
good for?: a comparison of paper- and computer-based low-fidelity pro-
totyping. In CHI ’03: CHI ’03 extended abstracts on Human factors in
computing systems, pages 778–779, New York, NY, USA, 2003. ACM.

[12] K. T. Simsarian. Take it to the next stage: the roles of role playing in
the design process. In CHI ’03: CHI ’03 extended abstracts on Human
factors in computing systems, pages 1012–1013, New York, NY, USA,
2003. ACM.

[13] C. Snyder. Using paper prototypes to manage risk. http://www.
uie.com/articles/prototyping_risk/, 1996. visited on
10.12.2009.

[14] C. Snyder. Paper prototyping. http://www.cim.mcgill.
ca/˜jer/courses/hci/ref/snyder.pdf, 2001. visited on
10.12.2009.

[15] C. Snyder. Paper prototyping: the fast and easy way to design and refine
user interfaces. Morgan Kaufmann, 2003.

[16] J. M. Spool. Looking back on 16 years of paper prototyp-
ing. http://www.uie.com/articles/looking_back_on_
paper_prototyping/, 2005. visited on 10.12.2009.

[17] D. Svanaes and G. Seland. Putting the users center stage: role playing
and low-fi prototyping enable end users to design mobile systems. In
CHI ’04: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 479–486, New York, NY, USA, 2004. ACM.

[18] R. A. Virzi, J. L. Sokolov, and D. Karis. Usability problem identification
using both low- and high-fidelity prototypes. In CHI ’96: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
236–243, New York, NY, USA, 1996. ACM.

[19] T. Z. Warfel. First prototyping survey results. http:
//www.rosenfeldmedia.com/books/prototyping/blog/
first_prototyping_survey_resul/, 2008.

[20] wikipedia.com. Paper prototyping. http://en.wikipedia.org/
wiki/Paper_prototyping, 2002. visited on 10.12.2009.

6

From paper prototyping to sketching with hardware

Melanie Kunz

Abstract— In this paper, I describe the common paper prototyping with their pros and cons and compare them with future prototyping
techniques. To make a work process more efficient and enjoyable, the job of experience prototyping is to find user needs, given from
experience and help to generate new ideas. It is designed to understand existing user experience, explore and evaluate design ideas
or communicate what be like to engage with. With paper prototyping you can visualize the interface, which is manipulated by person,
very fast.

Index Terms—paper prototyping, experience prototyping, prototyping, design, methods

1 INTRODUCTION

A bordered representation of a design where users can interact is a
prototyp. So prototyping is a method of software engineering, which
show you first results and early feedback. To get this, you design a
view executable paradigm of the final product with growing functions
and present it the client. A prototype is also the first full-size model
to be manufactured and has the essential features.
But why do we need prototypes? You can check the usability and
the producibility very early in the process. Also you can validate the
customer requirement with a prototype.
You can split prototyping in Low- and High-Fidelity Prototyping.
Low-Fidelity prototyping is the visualization of design ideas at very
early stages of the design process. The development is very simple
and does not need very much time [7]. In contrast, high-fidelity
prototypes are fully interactive. Users can enter data in entry fields,
respond to messages, select icons to open windows and interact with
the user interface as though it were a real product [6]. To certify the
idea and the usability of the product it is better to use the Low-Fidelity
prototype because the short time to make it. To build and change
a High-Fidelity Prototype takes a long time (see figure 1) and is
more expensive. This is more to check details like visualization and
functions.

Fig. 1. The life of a Prototype: Low- and High-Fidelity Prototyping [1]

To cut down on the complexity of implementation by eliminating
parts of the full system you can split prototyping vertical and
horizontal (see figure 2). Horizontal prototypes reduce the level of
functionality and result in a user interface surface layer[4]. This
means, that the prototype has all features, but not with the whole
functionality. In contrast vertical prototypes reduce the number of

• Melanie Kunz is studying Media Informatics at the University of Munich,
Germany, E-mail: Melanie.Kunz@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009

features and implement the full functionality of those chosen [4].
You can see the differences on an example. Think about a simple
mobil phone with the three features: calling, messaging, photograph-
ing. With a horizontal prototype we could call, send messages and
photograph. But we cannot use all functions. Maybe we can only
call one person or we can only make colored pictures. The function
to make black-and-white pictures isn’t implemented. A vertical
prototype could have only the feature of messaging. But now we can
use all functions of messaging and send everybody a message. It can
be a person of the contact list or only a phone number. We can send
sms and mms.

Fig. 2. The concept of a scenario compared to vertical and horizontal
prototypes as ways to make rapid prototyping simpler [4]

2 FROM PAPER PROTOTYPING TO SKETCHING WITH HARD-
WARE

This section will describe paper prototyping and experience prototyp-
ing, one part of sketching with hardware. At the end of this part I will
compare this methods.

2.1 Paper prototyping
In this capture I will show you the history and definition of paper pro-
totyping. After this introduction you can see how it works and what
pros and cons we can find.

2.1.1 History

Paper prototyping started in the mid 1980s. In the early 1990s it
was a fringe technique, used by a few pockets of usability pioneers
but unknown to the fast majority of product development teams. But
by the mid-1990s, paper prototyping was catching on and became
popular when companies such as IBM, Honeywell, Microsoft, and
others started using the technique in developing their products. These
companies experimented with the technique and found it useful and
started using it as an integral part of their development process. The

7

concept of ”low-fidelity” prototyping popping up about 1990 from
authors like Jakob Nielsen, Bob Virzi and Tom Tillis. Today paper
prototyping is at many companies a mainstream practice, but there are
although many people who’ve never heard about it. [10].

2.1.2 Definition
• What is paper prototyping

Paper Prototyping is a widely used method for designing,
testing and refining user interfaces. It is a variation of usability
testing where representative users perform realistic tasks by
interacting with a paper version (see figure 3) of the interface
that is manipulated by a person ”playing computer”, who doesn’t
explain how the interface is intended to work [10]. It is useful for
Web sites, Web applications and conventional software. Paper
prototyping is low-tech, so you can get maximum feedback for
minimum effort.

Fig. 3. A paper prototype of a File Setup dialog from Microsoft
Word [9]

• How it works

First you have to decide with other members of your product
team the type of the representative user and on the tasks
that you’d like this user to accomplish. If you know your
target audience and the tasks, you make screen shots and/or
hand-sketched drafts of all the windows, menus, dialog boxes,
pages, popup messages and so on that are needed to perform
those tasks. Figure 3 shows an example of a paper prototype of
a file dialog from Microsoft Word.

Fig. 4. A low fidelity testing session [5]

To create the prototype, it isn’t necessary to have a working
version of the interface. Your product team has to know which
features wish to be checked. You only need to create all features
you need for this task. After creating the prototype, you have
to conduct a usability test with a person who is representative
of the audience. The user has to interact with the prototype

directly and he has to think aloud. So you can see where
missunderstandings are and which parts of the interface are
selfexplanary or confusing. One team member has to play
the role of ’computer’ while the user ’click’ by touching the
prototype buttons or links and ’type’ by writing their data in
the prototype’s edit fields. This ’computer’ has to simulate how
the interface behaves and doesn’t explain how it is supported to
work. A faciliator conducts the session while other members of
the development team observe and take notes [9] (see figure 4).

• How good should the prototype be

For your prototype you can chose screen shots and/or
hand-sketched drafts. Because the prototype is all on paper, you
can easily change some parts of the interface during the usability
test. So it is not necessary to have a very nice prototype. The
prototype only needs to be good enough for you to get answers
to the questions you’re most concerned about. You don’t need
straight lines or typed text. You want to find out whether your
prototype is selfexplanary and not if it’s nice to look. You are
allowed to tell the user what a word is, if he can’t read it. But
it isn’t allowed to explain him a word or sentence if he can not
understand it. The look of the paper prototype has not to be
lovely, so it is enough to use words instead of images or icons
and don’t use colors. The goal of low-fidelity prototyping is
to get a prototype very fast. Very often, the first usability test
will show you problems you’d never anticipated and then you’ll
want wo make changes. So don’t spend to much time making
the prototype look neat. If it’s legible, it’s good enough. [9].

2.1.3 Pros and cons

Some development teams use paper prototypes in the early stages of
designing. It is on the one hand especially useful for gathering data
about some problems, but on the other hand it isn’t ideal for bigger
questions. Carolyn Snyder conducted in July 2002 an online survey
of some usability professionals about their use of paper prototyping
and their attitudes toward it. 172 people - most of them usability
specialists - attended to this survey. To the question ’What is the
importance of paper prototyping to your work’ 86% answered either
’essential’ or ’useful’ (see figure 5) [10].

Fig. 5. Answers the quesion, ’What is the importance of paper proto-
typing to your work?’ from a July 2002 survey of usability professionals
[10]

Their are a lot of pros of paper prototyping, but also there are some
combatants. In this section I will show you the assets and drawbacks.

8

• Validity - Does paper prototyping find real problems? Does it
find the same problems as testing the real interface?

Validity is probably the biggest concern people have -
they’re afraid of that because a paper prototype doesn’t look
realistic, the results from usability testing aren’t realistic either.
In a study of Reinhard Sefelin, Manfred Tscheligi and Verena
Giller, four prototypes of two systems were developed [7]. One
system was a calendar system, which enabled users to enter
meetings, classes, birthdays and anniversaries. Its user could
request his entries in a daily and in a weekly overview. The
second system was a touch screen ticket machine, which enabled
users to buy tickets and to request information concerning their
journey and concerning discount packages. For both systems a
computer-based and a paper prototype were built.

Fig. 6. Total number of critiques and suggesions [7]

Figure 6 shows that the number of critiques and suggestions is
not affected by the kind of prototype. The table shows also the
results of t-tests for two independent samples, which also did
not show significant differences. Paper- and computer-based
low-fidelity prototypes lead to almost the same quantity and
quality of critical user statements.

In a study from Virzi, Sokolov and Karis (1996) two ex-
periments are made. In the first experiment the probant used a
CD-ROM based electronic book and in the second he used an
interactive voice response system. One group performed the
tasks with a paper-based low-fidelity prototype, while another
did the same with a high-fidelity prototype or the actual product.
Both experiments showed that users were able to do the same
tasks, in about the same number of steps, regardless of the kind
of prototype. These results imply that if something is hard to do
with the paper prototype, it’s probably hard to do with the real
interface as well.
The study from Novick (2000) don’t prove that a paper pro-
totype will find the same set of problems as a more realistic
one. Rather, they indicate that the sets of problems overlap to
a considerable degree and there don’t appear to be important
differences in the problems that a found with one method versus
another [10].

• Bias - Does paper prototyping introduce false problems? Does it
change users’ behavior or feedback in such a way that we can’t
trust the results?

The study with the calender system and the ticket ma-
chine of Reinhard Sefelin, Manfred Tscheligi and Verena Giller
showed also that subjects confronted with paper prototypes
show a greater willingness to draw their suggestions [7].
Sometimes a seemingly free-floating anxiety about the results
from paper prototype test is valid but caused by something other
than the prototype. It is not cogitable that the user find different
problems [10].

• Professionalism - What will other think of this technique (and
us for using it)? Will the prototype be perceived as sloppy or
amateurish?

The study of Kitchen-Net supports the task of working in
an industrial kitchen by responding to spoken queries for items.
Kitchen-Net uses a set of screens placed around the kitchen.
The screens nearest the user shows directions to his or her
requested items. For the paper version they used paper sketches
and post-its, for the interactive prototype they replaced the
paper screens with Vadem Clio Handheld PCs, so the prototype
automatically responded the events. The results of this study
is, that the designers give more flexibility in the early phases,
but paper prototypes are insufficient for formal user studies
because of their validity issues and need for more staff to support
interaction over long periods of time and large locations [3].
The study of Reinhard Sefelin, Manfred Tscheligi and Verena
Giller showed that subjects prefer computer prototypes. Since
the comfort of subjects is one of the major factors of a successful
usability test [7].
It is natural for developers to be concerned that others will
perceive their work as unprofessional if all they see is a sloppy
and incomplete paper prototype. Eyeryone has his own opinion.

• Resources - Do we have time for this? Is there a payoff here, or
is this just extra work? Why not just wait until the real thing is
ready?

For this question you have to decide by yourself. A paper
prototype is very easy and fast to build. You need about one day
to create a paper prototype, in contrast you need some weeks
to implement it. If most of your questions can be answered by
a paper prototype, it isn’t extra work. You can see what the
problems and missundertandings are.

2.2 Experience prototyping
In this section I will describe experience prototyping. It will start with
the history and the definition. After this I will show you experience
prototyping in practice and pros and cons.

2.2.1 History
The earliest recorded use of role playing and low-fidelity prototyping
in the design of computer systems dates back to the UTOPIA project
in the 1980s [11].The term interaction design was first proposed by
Bill Moggridge and Bill Verplank in the late 1980s. To Verplank,
it was an adaptation of the computer science term user interface
design to the industrial design profession. To Moggridge, it was
an improvement over soft-face, which he had coined in 1984 to
refer to the application of industrial design to products containing
software. In 1989, Gillian Crampton-Smith established an interaction
design MA at the Royal College of Art in London (originally entitled
”computer-related design” and now known as ”design interactions”)
[12]. Experience Prototyping is very new. It comes more and more
famous.

2.2.2 Definition
• What experience prototyping is

’Prototypes’ are representations of a design made before
final artifacts exist (see Introduction). Experience depends
upon the perception of multiple sensory qualities of a design,
interpreted through filters relating to contextual factors. An
Experience Prototype is any kind of representation, in any
medium, that is designed to understand, explore or communicate
what it might be like to engage with the product, space or

9

system we are designing. You can find user needs, given from
experience and help to generate new ideas [2].In addition Brandt
and Grunnet describe the use of role playing as a way for
designer and users to have a dialogue about design ideas [11].
With experience prototyping you can get an idea from first hand
with an active contact to the prototype.

• Why experience prototyping is important

Experience prototyping is a good way to explore, com-
municate and interact with the designers we develop like
experiencing cycling on the ice, although the mood, snow
conditions, bicycles type and many other factors really matter
and tend to change time [13].
It becomes more and more important to design complex and
dynamic interactions with converging hardware and software,
spaces and services - products like a digital camera (see figure
7) [2].

Fig. 7. Digital camera interaction architecture prototype [2]

For this the designer needs to focus an ’exploring by doing’
and actively experiencing the sometimes subtle differences
between design solutions. Therefore, it is a powerful asset to
have tools and techniques which create a shared experience,
providing a founding for a common point of view. Experience
prototyping allows us to angage with new problems in new ways.

2.2.3 Experience prototyping in practice
We have identified three different kinds of activities within the design
and development process where Experience Prototyping is valuable:

• Unterstanding existing user experiences and context

The first step is to understand user experiences and con-
text. You have to share understandings from the field, recreate
observed situations or create extrapolations based on an un-
derstanding of the observations [8]. Experience Prototyping is
applied to demonstrate context and identify issues and design
opportunities.

One opportunity is the patient Experience. You can create
essential experience elements with the imaginations of the
people. The participants translated their own experiences into
patients’ needs. For example they appreciated the importance of
warning information to help patients anticipate and prepare for a
shock. They also saw the need to provide information to indicate
the patient’s condition to bystanders, and a broader base of
remote support for this next generation of products and services.
This is necessary that you can simulate important aspects of the

real user experience [2].
Another example is the ROV Pilot Experience. It used a
proxy device to provide the team with specific insight into an
experience that was not readily available to them [2].

Another opportunity to understand existing experiences
you can see by workshop of Dag Svanaes and Gry Seland. It
was to explore potentials for new mobile devices for teenagers,
looking 5-10 years ahead. The first session of this workhop was
the scenario development through a drama. The teenager all
were able to use drama as a technique to stage scenarios from
their own lives [11].

• Exploring and evaluating design ideas

In this step the development team has to find a solution
how to create an experience prototype. Normally you build your
prototype with easy things you can find and convert them.

Fig. 8. Control in an immersive video environment [2]

An example for Controller for an immersive environment are
a tactile immersive experience represented by a palm-sized
pebble. If you want to controll with both handy and split the
control functions, you can take two different-sized joysticks
mounted on suction pads. To move the controller with your
full-body, you can let your probant sit down on a skateboard [2].
Using everyday items makes it very easy to test few opportuni-
ties for a scenario and the subject can valuate (see figure 8).

Another example is Experiencing an Airplain Interior. This is
completly different to design becuase this user experience was
designed in public environment.

Fig. 9. Bodystorming layouts for an airplane interior [2]
10

Figure 9 shows a variety of bodystorming explorations within an
environment simulating inside of an airplane. The team enacted
for example with chairs various social situations. Many ideas
of physical configuration could be tested in a time and money
efficient manner. Ideas were generated and evaluated rapidly the
team as they directly experienced physical and social issues in
this full-scale environment [2].

• Communicating ideas to an audience

The practice of creating physical performances to commu-
nicate developed ideas, issues and scenarios to an audience, is
the last step. Informances might also be used in any design
phase to convey current ideas and issues in a rich way [8]. Here
you can see wheter your idea is intuitionally. The last step is
very important to get more arguments.

2.2.4 Pros and cons
It is known that people rarely use the recommended usability engineer-
ing methods. You can find three basic techniques. These are an early
focus on the user, an empirical measurement and an interactive design.

What should we do when developing and evaluating a new
computer system for end users? It is very sad that only 6% of the
people used all principles - as a study of Gould and Lewis proved
1985. But why is it so little-known? One possible reason are the costs
of using the techniques. The most people think it’s not lucrative to
spend money in it. Another reason is, Human-computer interaction
(HCI) methods are seen as too time consuming and because the
techniques are often intimidating in their complexity [4].

But their are still many benefits. One great advantage of Expe-
rience Prototyping is that it requires hybrid and overlapping skill-sets
such that it is not exclusive to any single design discipline. As such,
it offers an opportunity for all types of designers to supplement their
traditional discipline skills in an effective and broadening way [2].
Experience prototyping also simulates important aspects of the whole
or parts of the relationships between people, places and objects unfold
over time.
You can provide inspiration, conformation or rejection of ideas based
upon the quality of experience they engender. By enabling others to
engage directly in a proposed new experience it provides common
ground for establishing a shared point of view [2].

Experience prototyping is not about the creation of a formal-
ized toolkit or set of techniques, but is about developing an attitude
and language to solve design problems.

2.3 Comparison of paper and experience prototyping
In this section I will compare paper and experience prototyping and
skow how to improve prototyping.

• Compare the paper prototyping with the new method experience
prototyping

Prototyping provides always user feedback early in the
process. This has the benefit, that you can change your modell
before you have invested effort in implementation. Also you can
experiment with many ideas wather than betting the farm on just
one. Between the development team and the customer you can
communicate and attach their ideas contemporary. Paper and
experience prototyping share a lot of benefits [10].

Whether paper prototyping is good for questions about

concepts, terminology, navigation, content and functionality, it
isn’t not ideal for technical feasibility. Experience Prototyping
is a newer technique and comprise more complex software or
hardware.
Paper prototyping comes to the fore the functionality, on the
other hand for experience prototyping the design is interesting.
But both techniques want to be self-explanatory.

• Show, how to improve prototyping

The disadvantages about prototyping are basically that
you cannot find all and mainly the right problems. These
problems have to be reduce more and more, to get a fast
designed prototype with same findings like the real world. To
improve prototyping and enlarge the options, newer techniques
like experience prototyping are a good way. They allow more
options in experience. What the future will bring we don’t know,
but the main goal of prototyping will still be maximum feedback
for minimum effort.

3 DISCUSSION

In my opinion prototyping is a very good idea. It makes it possible for
less technic dedicated persons to help by the development. They can
be creative with new ideas without the know-how about programming.
Also you can design very fast a prototype. So if you find out, that your
idea is maybe no user need, you didn’t lose too much time. Anyway
I think, that it isn’t indispensable to make a usability test with your
implemented version. You cannot find always all problems with a
prototype, so you can only be on the sure side, if you integrate the
customer often in the development process.

The main pro of prototyping is the big flexibility. The pro-
grammer has not to make a static structur. So you can change parts of
your prototype during the usability testing. This makes prototyping
very interesting. But there are a lot of prototype iterations needed and
this makes the control more different.

Furthermore it is a bad idea to make always a prototype. Sometimes
it is very easy to implement an easy version of the scenario. Then you
spent time in a prototype for nothing. Therefore the main thing is, to
prove first. You have to know what you want and how to do it.

4 CONCLUSION AND FUTURE WORK

Prototyping, especially the new techniques like Experience prototyp-
ing are at the moment almost unexplored and contentious. There are
some disputants, but also more and more follower. Disputants think
that a prototype is only a waste of time and the results aren’t the same
as the results in the real world. For follower it is a very easy and cheep
opportunity to find real user needs before the implementation.

In future the technique will grow up more and more. I think
paper prototyping will stay a good opportunity to get maximum
feedback for minimum effort. But for more complexer hardware
or software other techniques will be needed. Maybe experience
prototyping will become more famous when popular concerns show
how it works. But therefore more studies will be needed.

REFERENCES

[1] Sustainable ui prototyping. http://linowski.ca/thoughts/category/sketches/,
2009. accessed 04-December-2009.

[2] M. Buchenau and J. Suri. Experience prototyping. In Proceedings of the
3rd conference on Designing interactive systems: processes, practices,
methods, and techniques, pages 424–433. ACM, 2000.

11

[3] L. Liu and P. Khooshabeh. Paper or interactive?: A study of prototyp-
ing techniques for ubiquitous computing environments. In CHI’03 ex-
tended abstracts on Human factors in computing systems, page 1031.
ACM, 2003.

[4] J. Nielsen. Guerrilla HCI: Using discount usability engineering to pen-
etrate the intimidation barrier. Cost-justifying usability, pages 245–272,
1994.

[5] M. Rettig. Prototyping for tiny fingers. Communications of the ACM,
37(4):21–27, 1994.

[6] J. Rudd, K. Stern, and S. Isensee. Low vs. high-fidelity prototyping de-
bate. interactions, 3(1):85, 1996.

[7] R. Sefelin, M. Tscheligi, and V. Giller. Paper prototyping-what is it good
for?: a comparison of paper-and computer-based low-fidelity prototyp-
ing. In Conference on Human Factors in Computing Systems, pages 778–
779. ACM New York, NY, USA, 2003.

[8] K. Simsarian. Take it to the next stage: the roles of role playing in the
design process. In Conference on Human Factors in Computing Systems,
pages 1012–1013. ACM New York, NY, USA, 2003.

[9] C. Snyder. Paper prototyping. Morgan Kaufmann, 2003.
[10] C. Snyder. Paper prototyping: The fast and easy way to design and refine

user interfaces. Morgan Kaufmann Pub, 2003.
[11] D. Svanaes and G. Seland. Putting the users center stage: role playing

and low-fi prototyping enable end users to design mobile systems. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 479–486. ACM New York, NY, USA, 2004.

[12] Wikipedia. Interaction design. http://en.wikipedia.org/wiki/Interaction
accessed 04-December-2009.

[13] A. Yasar. Enhancing experience prototyping by the help of mixed-fidelity
prototypes. In Proceedings of the 4th international conference on mobile
technology, applications, and systems and the 1st international sympo-
sium on Computer human interaction in mobile technology, pages 468–
473. ACM, 2007.

12

Prototyping for Web Interfaces

Gerald Beck

Abstract— Prototyping for web interfaces is a task that brings together various actors. There is a wide range of tools for prototyping
but not all of them meet the needs of the involved actors. This paper presents four tools for prototyping: paper prototyping, PowerPoint,
DENIM and WARP. It shows the advantages and limits of the tools and of prototyping for web interfaces. To support the use of
prototyping, the paper suggests that with the help of classifications and catalogues of prototyping tools, prototyping might become
more relevant for web interface design practice because designers will have it easier to find tools that fit their needs.

Index Terms—Prototyping, Web Interface, Design Process, Graphic Design, Classification

1 INTRODUCTION

Software projects for the WWW involve a number of actors with het-
erogenous skills, roles, backgrounds and expectations. Depending on
the complexity of the project, software developers, database experts,
graphic designers, content providers, clients and potential users con-
tribute to the development of well designed web interfaces. These
actors need to be involved in different stages of the design process.
The visual designers for example have to be involved at an early stage
to contribute their idea of the interface [2]. As graphic designers are
not necessarily trained as computer scientists, they need tools for pro-
totyping that meet their way of working and need less programming
skills. This paper focusses on the role of graphic designers and analy-
ses tools for prototyping from their perspective. At the same time it is
clear that the other actors named above have specialized requirements
to prototyping tools as well. They are important as well but cannot be
covered in this paper as prominent as graphic designers.

Tools for prototyping are usually classified due to the fidelity of the
prototypes they produce. Taking the example of the special needs for
graphic designers as an point of departure, alternative ways of classi-
fications might be more useful. This becomes obvious when we ask
for the practical use of classifications. When designers choose from
the vast amount of tools available, a practical classification can help to
narrow the choice and save evaluation resources.

Against this background, this paper will ask about the role of pro-
totyping tools in the design process of web interfaces and the use of
classification schemes. The second section will locate prototyping in
the design process of web interfaces and will have a look at the benefits
of prototyping for web interfaces. The third section will describe four
different tools for prototyping of web interfaces. In the fourth section
we will discuss alternative ways to categorize prototyping tools.

2 PROTOTYPING FOR WEB INTERFACES - WHY AND WHEN?
This section will explain why prototyping for web interfaces is impor-
tant, why special tools are required and who will use the tools in which
phase of the design process. To define what is meant by prototypes we
will follow the practical definition of Bochicchio et al. who see pro-
totyping as ”fast, cheap and reliable development of a mockup of the
final application” [2].

2.1 Prototyping Will Improve The Design Process
Why should designers of web interfaces use prototyping in their work?
Prototyping means to invest valuable resources in something that will
not be the final result of a project. This can only be justified if projects
that invest in prototyping are likely to produce better (and faster) re-
sults than projects that have a straight forward strategy and invest only

• Gerald Beck is studying Media Informatics at the University of Munich,
Germany, E-mail: @campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009

in the final system from the very first day. Empirical proofs are hard
to find here but a lot of scholars advocate for prototyping with good
reasons.

As introduced above, prototyping can be valuable in the design of
web interfaces because of the possibility to get feedback from the
project participants and users in a very early stage of the design pro-
cess. The prototypes for this purpose do not have to be high fidelity.
Low fidelity prototypes proved to deliver as good results as Virzi et.
al. showed for the identification of usability problems [13].

Usability testing with prototypes can make web development a lot
cheaper than testing with final versions of web interfaces. Because
these tests will always show difficulties that have to be corrected. If a
test shows these problems before the actual development of a system,
the search space for solutions will be a lot larger, because the design
is not already locked in a certain way of development. Thus less work
will be lost during the project and the solutions can be more innovative.

Lim et al. [4] mention an other strength of prototyping. Not only
is prototyping a good way to identify usability problems of web inter-
faces, it is a ”means by which designers organically and evolutionarily
learn, discover, generate, and refine designs”. This means, they do not
only help to avoid mistakes and wrong design decisions but they en-
able designers to generate better ideas and to find alternatives to given
paths of development. Thus the strength of prototypes goes beyond
the task of securing requirements of web interfaces. They can become
a medium of communication for discussing various design solutions
without really developing the discussed versions [2].

Prototypes for web interfaces can work as a translation medium in
heterogeneous projects. Clients will read their text based requirements
for the system to be developed in an other way than software engineers
or visual designers will. Prototypes visualize their ideas and are a
chance for early interventions from all group members.

Prototyping should support the early stage of the design process
where design ideas have to be evaluated, tested and discussed in a
reflexive and iterative way. Another striking reason is the variety of
content options that cannot be implemented by automatic tools. Thus
automatic implementation is in danger of favoring some forms of con-
tent over others just for technical reasons that are not based on design
decisions [2].

Some prototyping tools offer export functions that make them use-
ful for supporting the implementation of web interfaces rather than for
the mere design process. The question is, whether such tools are still
flexible enough to support the discussions on design that is the central
task of prototyping tools. Bochicchio et. al. are critical about this
question and name several reasons why tools should focus on support-
ing design and prototyping and not on implementation.

2.2 Who will be involved in prototyping?
During the design process of a web interface two groups of actors
are most likely to actually do the prototyping and thus use tools for
prototyping: the graphic designers and the software developers. As
web interfaces become more and more visual, the graphic designers
might have a special need for prototyping. Their ideas are the basis

13

for further development by the other actors. Graphic designers are
not necessarily trained in programming and will have problems with
tools for prototyping that require a lot of formal scripting. They would
rather use tools that fit to their intuitive and iterative way of designing
for web interfaces.

Prototypes can be a bridge between graphic designers and software
developers. The process of prototyping makes them see the project in
a common way and will render visible possible problems concerning
the usability of the designed interface. A refined prototype on the other
hand can be a very valuable model on which software designers can
base their programming and graphic designers can base their visual
work.

There can be more groups involved in the design process of web
interfaces. Often enough users are a forgotten group as it is not easy
to define target groups for web projects upfront. Nevertheless users
are an important group and should be integrated in the design process.
User integration can be more than usability testing. Studies show that
discussions with users do not only show usability problems but can
generate new and creative solutions [12].

3 TOOLS FOR PROTOTYPING

Prototyping for web interfaces can improve the design process as we
have seen in section two. There is a wide range of tools to support
prototyping of web interfaces and it is not always easy to find and
choose the right tool for the right task. To give examples of tools and
methods that support the prototyping process of web interfaces, four
different approaches will be presented:

• Paper prototyping (section 3.1) as a classic and easy to apply
method that can produce rapid prototypes that are suitable in
the early stage of a project when it is not necessary to have fine
graphics on screens [10].

• A ”mid fideltiy” prototyping framework that relies on Power-
point as a tool that can be easily used without programming skills
[3] (section 3.2).

• The DENIM system as an example of a sketch based visual lan-
guage that can be used in the early stages of design and supports
HTML export of generated web interface prototypes [6] (section
3.3).

• As a fourth example the WARP environment (Web Applications
Rapid Prototyping) will be presented in section 3.4. It has been
chosen as an example for online software tools for prototyping
web interfaces [1].

The tools are chosen in order to cover the range of available tools
in respect to the effort to concentrate on tools that focus on design
prototyping rather than implementation. Nevertheless a lot of more or
less sophisticated approaches are available that cannot be presented in
this short paper. For a overview of alternative tools see for example
the work of Bochiocchio and Fiore 2004 [1]. There are also tools
that cover the entire design process from requirement definition to the
coding of html pages. The environment for rapid prototyping of web
applications of HyperDe, introduced by Nunes and Schwabe is one
example [?].

3.1 Paper Prototyping
Paper prototyping is a very rapid way to create prototypes for web in-
terfaces. ”Paper prototyping is a variation of usability testing where
representative users perform realistic tasks by interacting with a paper
version of the interface that is manipulated by a person playing com-
puter, who doesnt explain how the interface is intended to work.” [11].
This definition of paper prototyping focuses on its potential in user in-
terface testing. Studies showed, that paper prototypes are as good for
testing user interfaces as computer based prototypes [10].

Their study also showed, that subjects give the same quality and
quantity of suggestions, no matter if the prototype is paper based or

Fig. 1. Paper Prototyping [9].

computer based. But subjects prefer computer based prototypes. Nev-
ertheless they find good reasons for paper prototyping. First, paper
prototypes are more flexible and will support any idea of a user inter-
face whereas computer based tools might limit the creative space of
designers.

Second, paper prototypes do not ”exclude members of the design
team without sufficient software skills” [10]. These actors might be
for example the graphic designers as mentioned above. This brings
us to the third reason mentioned in the study. Paper prototypes have
a strength if the user interfaces are dominated by visual elements be-
cause they can be drawn and redrawn very quickly during discussions
of the design team.

3.1.1 Usability Testing with Paper Prototyping
How will a usability test supported by paper prototyping work? Snyder
[11] describes the praxis of paper prototyping as a workshop setting
with multiple people. The design team prepares screenshots or draw-
ings of all relevant parts of the interface, including pop-up windows,
mouseover events, etc. This method is very cheap, because nothing
else than paper, pens and scissors are needed (see figure 1).

In the workshop setting described by Snyder, she identifies four
groups of participants: user, faciliator, computer and observer. Usually
the members of the team take the role of the computer or the observer.
The computer has to act according to the actions of the user without
explaining why it performs like it does. The faciliator can be a user
interface expert. The users are asked to interact with the prototype.
Any difficulties that appear during the test will be documented by the
observers and have to be subject of discussion about improvements of
the prototype in the next phase of the development.

3.1.2 Why Paper Prototyping?
We have seen that paper prototyping can be very useful in the early
stages of the design of web interfaces. It can be used for usability tests
and for improving the (visual) design process. Paper prototyping has
the advantage that no programming skills are necessary for designing
the prototypes. The design can be very flexible and is not limited to the
capability of a software tool. Thus paper prototyping is a very cheap,
flexible and fast way to design, improve and test user interfaces for
web applications.

There are certainly limits of paper prototyping. Changes in the in-
terface design will produce a lot of effort in paper prototyping. More
than in most computer based tools that give the opportunity to change,
for example the navigation structure of a web interface for the hole
system in one design step. A second limit is the poor visual fidelity
of paper prototyping. The result is far away from what users will see
as an end product. This requires a high grade of imagination which

14

cannot always be assumed, especially in commercial projects with de-
manding customers.

3.2 PowerPoint as a Tool for Prototyping Web Interfaces

Before we will introduce the DENIM framework, that has some simi-
larities with paper prototyping, we will have a look at a software that
has been designed for presentation but can be very useful for proto-
typing web interfaces. Web sites are generally made from little boxes.
These boxes can contain text, graphics, hyperlinks, froms, etc. [7].
For rapid prototyping after the very early steps of the design process,
Engelberg and Seffah propose a ”mid fidelity” framework that is based
on MS-PowerPoint [3]. The methods proposed by the authors for MS-
PowerPoint can be performed with any other presentation software like
Apple Keynote or OpenOffice as well.

The intention of this rapid prototyping approach is to ”prototype
the interactive and navigational aspects of user interfaces as quickly as
possible, with a minimum amount of investment of learning time and
with no programming skills” [3].

The authors are critic towards the simple distinction between low
and high fidelity tools. Their critique is based on the fact that the
definitions of the two extremes are weak and that there can be very
different outputs from two tools that are both classified as ”low fi-
delity”. This critique on the classification scheme will be elaborated
in the fourth section. Now it is only mentioned because it lead the au-
thors to call their approach ”mid fidelity”. The characteristics of mid
fidelity tools can be summarized as follows [3]:

• used after early design

• used for detailed design and usability evaluation

• detailed information about navigation, functionality, content and
layout in approximate form

The basis of the prototyping process according to Engelberg and
Seffah is a textual outline of the content in tree format and the defini-
tion of the visual pattern for the overall design. In their method, they
distinguish six steps in the process of mid fidelity prototyping.

3.2.1 Define Screen Capabilities and Font Size

One of the first decisions in the design process of web interfaces is the
definition of the screen size. Usually a 800x600 pixels or a 1024x768
pixels resolution is chosen. With growing sizes of monitors, this res-
olution might shift to larger sizes in the future. The font size depends
on a) the amount of textual content that should be shown, b) the length
of the items in the menues and c) the estimated user group.

PowerPoint will not natively support this step because the full-
screen modus is still optimized for 800x600 pixel. So the font size
has to be altered. For 800x600 pixel the authors suggest 12-14 pt and
for 1020x768 they suggest 10-12pt fonts [3].

3.2.2 Define Main Areas and Navigation

The main areas and the navigation of a web interface will appear on
all pages and sub pages. In this step, the have to be defined from
the overall design. It is suggested to save these elements to the slide
master of PowerPoint. The slide master will make the main areas and
the navigation appear on every new page. If the design team decides
to change for example the navigation structure of the interface or the
position of a main area, the changes can be easily made in the slide
master and will at once apply to all pages of the prototype.

The master can only be used for elements that do not change if
users go from one page to the next. It can be used for headers and
background graphics as well as for navigation. But it cannot be used
for dynamic expanding navigation.

3.2.3 Homepage-Design
The design of the homepage is very relevant for the design process as
it will be the basis of the look and feel of all other pages. Even in
prototypes it is worth investing in this step as it helps users and clients
to imagine how the rest of the page might look like.

PowerPoint supports integration of graphics but is not that valuable
in creating refined graphics. In this step the graphic designers are re-
quired to provide versions of possible homepage designs.

3.2.4 Insert Pages and Links
Now the pages can be inserted. The slide master will help to avoid
repeating work. Thus only new items for sub pages have to be in-
serted. The slideshow mode of PowerPoint can help to simulate links
and navigation.

It is possible to insert links that link to other slides within the pre-
sentation by using anchors. The easiest way is to use the page title as
an anchor as it is not necessary to define anything on the target page.
Engelberg and Seffah suggest to copy and paste repeating links like
the navigation [3].

3.2.5 Testing
The use of links avoids that users are locked into the hierarchical struc-
ture of the slideshow. They can click on unexpected links, move back-
ward and forward and thus make usability problems visible.

3.2.6 Refine Page Contents and Links
After the raw setup of the prototype is made it can be refined and de-
tailed. PowerPoint supports a lot of features but the larger the project
gets, the more complicated it will be to alter navigation structures and
links as there is no feature to manage overall links in powerpoint.

Still Engelberg and Seffah provide a method that uses an easy to
learn tool that most subjects that are involved in the design process of
web interfaces are familiar with. No programming skills are needed
and changes in the prototype can be made right in the tests or design
sessions.

3.3 DENIM: Computer-Based Sketching
The DENIM framework is a visual language for sketching large and
complex interactive designs [6] [5]. It is a tool that combines some el-
ements of the two approaches mentioned above. Like paper prototyp-
ing, DENIM relies on the designers ability and wish to sketch during
the design process. The framework supports pen based computer in-
terfaces and sketching throughout the prototyping process. Like Pow-
erPoint, DENIM is computer based and allows users to navigate the
interface on a computer screen.

The developers of DENIM rely on two ethnographical findings [8]
about the work of web designers. First, web designers sketch on paper
during the early design process. So it has been of central interest that
DENIM supports sketching. Second, it can be distinguished between
three levels of sketching: site maps, storyboards and individual pages.
DENIM gives the opportunity to bring these three levels together by
zooming.

3.3.1 How to use DENIM?
The main part of the DENIM user interface is an infinite canvas on
which the designer can sketch the content of pages. The links between
pages are drawn as arrows (see figure 2). The zoom interface provides
five levels of zooming: overview, site map, storyboard, page and de-
tail. On the bottom of the screen, a toolbox that contains the tools
for drawing, panning and erasing is positioned [5]. The designer can
draw pages on the canvas and connect them with arrows. There are
two kinds of arrows: organizational and navigational. Organizational
arrows are created to show general connections between pages or sup-
posed paths that users might take interacting with the interface.

Navigational arrows specify ”a transition from one page to another”
[5]. They represent hyperlinks on web pages. Designers can draw the
arrows in DENIM. Orgnizational arrows go from one page to an other.
Navigational arrows lead from a specific object on one page to the next
page.

15

Fig. 2. DENIM [6].

There are two modes of DENIM: the creating mode in which the
interface can be designed like explained above and the run mode. In
the run mode, the links are clickable and the interface can be navigated
on a screen like a website.

3.3.2 Why DENIM?
The visual language of DENIM [6] lets the designer take advantage of
defining and reusing common interface elements like navigation bars.
It is suitable to design large and complex systems. The zooming al-
lows the designer to keep the overview of the whole system without
loosing the details. The tool requires some more learning than Power-
Point but is still well adapted to the group of web designers that have
less programming skills. With little learning effort, the tool can be
used by the target group of web site designers, even if they have low
programming skills [6]. In a newer version, DENIM supports HTML
export of the prototypes.

The run mode allows usability testing at an early stage of design.
By allowing more than simple click navigation, it is ready to help pro-
totyping complex user interfaces for the web.

The disadvantage of DENIM might be that the visual appearance is
rather poor as it is typical for low fidelity prototypes. But as the tool is
designed for the early stages in the design process, this disadvantage
can be neglected.

3.4 WARP
Web interfaces are used online, so why not use an online tool for pro-
totyping? WARP (Web Application Rapid Prototyping) [1] is based
on existing models and techniques that are brought together to support
prototyping for web applications. Thus it is more an environment than
a tool itself.

WARP provides an environment that supports the whole design pro-
cess from the definition of requirements to actual coding of the soft-
ware. This makes WARP The WARP environment is divided into two
parts: the development environment and the execution environment
(see figure 3).

We will concentrate on the development environment first and
within the development environment on the publishing editor. As it
becomes visible in the figure, WARP integrates a lot of tools that can
be used during the design process.

The pubishing editor (WPD) has to integrate the requirements that
come from the database design and the content author with the ideas

Fig. 3. WARP environment [1].

for visual representation of the content. This process is supported in
WARP by XML based editing and by the use of external tools like
DreamWeaver. [1]. As soon as the visual representation of the page
is generated in a prototype, it can be refined for the final application.
One advantage of WARP is that the visual interface of the prototype
can be changed very quickly. This gives the design team the possibility
to present alternative visual approaches without having to manipulate
the back end of the prototype.

At the same time, WARP offers the possibility to work with dif-
ferent solutions of for access structures and hyperbase. The flexibility
offered by WARP is combined with a workflow model that allows goal
oriented prototyping.

The execution part will aid the design team to deliver the application
on the web.

WARP appears to be a very complicated environment on first sight
that relies on a strict method. It uses a lot of different tools which
means that know how of using these tools has to be available in the
design team. Designers will have to invest in training on several tools
for prototyping and get used to the integrated method of WARP.

On the other hand the great advantage of WARP is that the work
invested in the prototype will directly go into the final product. This is
possible, because WARP supports flexible and fast prototyping in the
early stages of the design process and at the same time supports coding
and finalizing the web application. So WARP needs some extra work
in training the design team but will pay back if the learned skills are
used in many projects.

4 CLASSIFICATIONS OF TOOLS FOR PROTOTYPING OF WEB
INTERFACES

One way to make tools more accessible to designers is to reduce the
complexity of choosing the right tool. This task can be managed by
classifying the tools according to user needs. When we are talking
about classifications of tools, we have the target to bring an order into
the variety of existing tools. This section will give an overview of
existing classifications of tools for prototyping web interfaces. The
four tools presented in section three will be classified in the various
schemes.

4.1 The Grade of Fidelity of the Output

For example, if we have the target to know what kind of output a tool
can deliver, it will be interesting to know if it is a low-fidelity or a
high-fidelity tool. This binary classification certainly cannot cover the
variety of tools and has to be seen as two extremes on a continuum.
This becomes obvious for example when scholars feel the need of in-
troducing ”mid-fidelity” tools [3] like we have seen in section 3.2. If
we use the definitions of Engelberg and Seffah [3] for low, mid and
high fidelity protoyping, we can group the four presented tools from
section three.

16

• Low-Fidelity tools deliver a rough sketch and are schematic and
approximate. Their interactive functionality is very poor. They
are suitable in the early design process for conceptualizing and
envisioning the application.

• Mid-Fidelity tools deliver a more detailed and complete proto-
type but the objects are still schematic. The interactivity is sim-
ulated. Thus it can also be used for designing and evaluating
interactive aspects of web interfaces.

• High-Fidelity tools deliver lifelike simulations with refined
graphic design. They can be used as marketing tools or for pro-
totypes where highly advanced interactivity and graphic design
is needed.

Paper prototyping is a typical low fidelity prototyping method.
Denim seems to be low fidelity at the first glance as well, but its fea-
tures for interactivity (arrows) bring it towards the mid-fidelity tools.
PowerPoint as described by Engelberg and Seffah can be used to gen-
erate mid-fidelity prototypes for web interfaces as well. The WARP
environment can produce very sophisticated prototypes that are al-
ready on the way of a ready system. Thus it can be classified as a
high-fidelity tool. If customers should work with the prototype or
if the prototype is used for presentation purpose, one has to keep in
mind that paying customers usually want to see very early how the
final product will look like. Their expectation can only be met with
high fidelity prototypes. This hypothesis stems from practical experi-
ence and not from scientific research and it would be interesting if it
could be proved in an empirical study. By now I could not find any
study that addressed this question in literature.

4.2 Features vs. Functionality - Horizontal and Vertical
Prototypes

The purpose of a prototype can also be characterized by its ”depth”.
Horizontal prototypes are used to sketch out the features of the web
interface in general. They want to show the navigational structure and
the main elements of an interface. If the intention is to go into the func-
tionality of the web interface and model how it will react on specific
manipulation, then a horizontal prototype is needed.

Paper prototyping can perform both ways of prototyping. The
DENIM tool seems to be flexible enough for a horizontal and a verti-
cal prototype as well. PowerPoint might not be so suitable for vertical
prototypes and WARP can also cover both tasks.

4.3 Programming Skills that are Necessary to Use the Tool
As we have seen, some important actors of design processes do not
necessarily have programming skills. If a project relies on these actors
it will choose the tool for prototyping according to the skills needed.
Moreover the learning process to use the tool can be a threshold for
the acceptance of the tool in the design team.

Paper protoyping needs no programming skills at all but it needs
the skill of sketching with pen and paper. PowerPoint is a standard
tool that also needs no programming skills. The only threshold might
be the implementation of links but this can be easily performed after
some minutes learning. The DENIM tool relies on sketching but also
need some knowledge about its specific visual language. The learning
process might be quick but still can be a barrier. The WARP environ-
ment will be used by teams that are dominated by software designers
rather than by visual designers.

4.4 Design or Implementation?
This distinction asks what a prototyping tool has to be able to do.
Should it specialize on supporting the design process or should it cover
the whole project cycle. There are good reasons for both approaches
and it depends largely on the design team which approach will be ap-
propriate. Tools that only support the design process leave more free-
dom to the design team [2] because any automatic implementation of a
prototype will come to its limits when the web interfaces become very
sophisticated.

Table 1. Classification Scheme

Classification Paper Prototype PowerPoint DENIM WARP
Fidelity low mid low high

Vertical Prototype yes no yes yes
Horizontal Protot. yes yes yes yes

Progr.Skills none none mid high
Focus on Design yes yes yes no
Export feature no no yes yes

Our four examples can be classified as well under this distinction.
Paper prototyping and PowerPoint are just for Design. DENIM and
WARP do offer export functions for implementation although the re-
sults still have to be refined [5][1].

Table 1 shows the four tools with the suggested classification cri-
teria (see table 1). There can be more classification schemes and we
have seen that every scheme has its justification. Such tables might
be a first step for supporting design teams in choosing their tools for
prototyping and thus promote the use of prototyping in the design of
web interfaces.

5 CONCLUSION

In this paper we have show the benefits of prototyping for web inter-
faces. Four exemplary tools have been explained to show the range of
existing tools without neglecting that these four tools only give a small
insight into the wide field of tools for prototyping web interfaces. In
the fourth section the tools have been classified due to classification
schemes that could be found in the literature.

Prototyping tools can support the design process of web interfaces.
They are an investment but one with high return. Usability tests with
prototypes can identify weaknesses in the early stage of the project.
Prototypes can be a medium of communication within the design team
and thus lead to rapid improvements of the system before program-
ming has even started. In praxis, prototyping for web interfaces is still
rarely used. One reason might be the vast amount of methods.

Technically there are a lot of good arguments to use prototyping in
the development of web interfaces. As mentioned above, prototyping
can improve the result of a project. On the other hand, it is very often
seen as ”extra work”. Integrated environments like WARP or DENIM
that rely on a consistent methodology might be very helpful for the
design of web interfaces.

There is a lot of literature that promotes the use of prototyping but
I could not find studies that examine the practical diffusion of proto-
typing. How many companies do use prototyping in their everyday
software projects? And if they do not use prototyping tools, why?
These questions have to be discussed and answered to improve the dif-
fusion of prototyping techniques. Studies about the use of prototyping
for web interfaces will have to open the perspective on the everyday
(social) circumstances under which the development of web interfaces
take place.

Although classifications might not always be taylor made for every
single tool, they can be helpful for design teams that are searching for
the right tool. In this paper only a few classification schemes could be
chosen.

To create a useful tool for finding the right prototyping tool for
the right task further research about existing classifications has to be
made as well as a collection of existing tools for prototyping web in-
terfaces. To ensure a comprehensive scheme of classifications the re-
search might go further and evaluate the needs of web interface de-
signers in an qualitative study.

REFERENCES

[1] M. Bochicchio and N. Fiore. Warp: Web application rapid prototyping. In
Proceedings of the 2004 ACM symposium on Applied computing, pages
1670–1676, Nicosia, Cyprus New York, NY, USA, 2004. ACM.

17

[2] M. Bochicchio and R. Paiano. Prototyping web applications. In Proceed-
ings of the 2000 ACM symposium on Applied computing, volume 2, pages
978–983, Como, Italy New York, NY, USA, 2000. ACM.

[3] D. Engelberg and A. Seffah. A framework for rapid Mid-Fidelity proto-
typing of web sites. Kluwer Academic Publishers, 2002.

[4] Y.-K. Lim, E. Stolterman, and J. Tenenberg. The anatomy of prototypes:
Prototypes as filters, prototypes as manifestations of design ideas. ACM
Trans. Comput.-Hum. Interact., 15(2):1–27, 2008.

[5] J. Lin, M. W. Newman, J. I. Hong, and J. A. Landay. Denim: an informal
tool for early stage web site design. pages 205–206, Seattle, Washington
New York, NY, USA, 2001. ACM.

[6] J. Lin, M. Thomsen, and J. Landay. A visual language for sketching
large and complex interactive designs. pages 307–314, Minneapolis,
Minnesota, USA, 2002. ACM.

[7] P. Müller. Little Boxes. Books on Demand, Norderstedt, 2006.
[8] M. W. Newman and J. A. Landay. Sitemaps, storyboards, and specifi-

cations: a sketch of web site design practice. In DIS ’00: Proceedings
of the 3rd conference on Designing interactive systems, pages 263–274,
New York, NY, USA, 2000. ACM.

[9] Nielsen Norman Group. Strategies to enhance the user experience.
http://www.nngroup.com; last-checked: December 2009.

[10] R. Sefelin, M. Tscheligi, and V. Giller. Paper prototyping - what is it good
for?: a comparison of paper- and computer-based low-fidelity prototyp-
ing. pages 778–779, Ft. Lauderdale, Florida, USA New York, NY, USA,
2003. ACM.

[11] C. Snyder. Paper Prototyping: The Fast and Easy Way to Design and
Refine User Interfaces. Morgan Kaufmann Publishers, San Francisco,
2003.

[12] E. van Oost, S. Verhaeg, and N. Oudshoorn. From innovation commu-
nity to community innovation. user-initiated innovation in wireless lei-
den. Science, Technology and Human Values, forthcoming, 2008.

[13] R. A. Virzi, J. L. Sokolov, and D. Karis. Usability problem identifica-
tion using both low- and high-fidelity prototypes. Proceedings of the
SIGCHI conference on Human factors in computing systems: common
ground:236–243, 1996.

18

Usage of the Web for Various Prototyping Scenarios

Markus Zimmermann

Abstract—The emergence of new techniques for the web like JavaScript and AJAX and strong network technologies and servers
are empowering software developers to create vivid web applications. In this paper we will analyze the benefits of web applications
for one of the first steps in software development, the prototyping process. In combination with a vast amount of public accessible
APIs, a web prototype can be simply mashed by combining different data and presentation sources, that are easily wired with code
(those products are called a mashup). This paper will have a look at some projects, which employed this new prototyping approach by
gathering the main findings of the corresponding studies: high fidelity prototypes through low effort. In addition, the used frameworks
for rapidly creating web mashups will be figured out.

Index Terms—Web, Internet, Rapid, Prototyping, Mashup, API, AJAX

1 INTRODUCTION AND OVERVIEW

At the same time Eric Knorr produced the term Web 2.0 in late 2003
[20] because of the ”genuinely new technology” in the web, he diag-
nosed that web services have reached a sufficient level to be an al-
ternative to proprietary middleware (at least for new, not established
projects). Now, six years later, we take a step forward and explore,
how the web can be (and already has been) involved in the develop-
ment process of new applications, especially the task of prototyping.

First, we will analyze the technological principles of the Web 2.0
and examine the evolution that allows the development of web ap-
plications. This will lead us to Patchwork Prototyping by mashups.
Second, we will apply ourselves to different frameworks, that are use-
ful for rapid web prototyping without distinct knowledge of details.
Third, we will emblaze different studies that attend to various web
prototypes compared to traditional prototypes or existing products. In
conclusion we will put all findings of web prototypes in context and
lift web-prototyping out of different prototyping approaches.

2 EMERGENCE OF NEW TECHNOLOGIES FOR RAPID WEB
DEVELOPMENT

Development of new techniques not only made it possible to display
static hypertext sites, but also to dynamically create highly interac-
tive web-applications, where client and server are closely interact-
ing (a precondition for web-applications in general). As there are
several technologies available, we will highlight the well-established
techniques: PHP and MySQL as representatives of approaches on
the server side. DHTML, JavaScript and CSS on top of all modern
browsers, as well as helpers like Libraries and the new technology
AJAX and different Application Programming Interfaces (APIs) .

2.1 Server-Side: PHP and MySQL
The scripting language PHP and the database engine MySQL are pop-
ular for creating web applications and often used in combination, so
that most users mention them in one breath. Both Systems are robust,
approved and work with good performance. So significant and high
traffic websites like Wikipedia[28], YouTube[15] or Facebook[7] use
these two technologies for their service.

PHP (PHP: Hypertext Preprocessor) was originally created as a
toolkit for personal home pages, then continuously developed
towards a free and general purpose scripting language. PHP can
be embedded into a classic HTML page. The code is evaluated
by the web server when the user invokes the website. [13]

• Markus Zimmermann is studying Media Informatics at the University of
Munich, Germany, E-mail: zimmermann@cip.ifi.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/2010

MySQL stands for My Structured Query Language, which is a free
software for all major server platforms for accessing databases
and tables on a web server. The user can put, modify and
delete data in the tables and fetch the entries easily by request-
ing queries like SELECT * FROM staff WHERE name =
’Smith’ (which will result in a list of all employees called
”Smith”). MySQL has a comfortable interface to PHP. [22]

By combining the scripting language PHP with the database
MySQL, it is possible to dynamically create actual or even live content
out of a huge stock of data, where the contemporary appropriation of
the same data as a static web document would have been impossible.

2.2 Client-Side: DHTML, Javascript, CSS and Libraries
While the server is responsible for creating and delivering content,
the experience of interacting with an application comes up on the
client-side: Data has to be rendered, formatted and conditionally mod-
ified. The user input has to be collected, evaluated and delivered to
the server. Most browsers are standard-conform by now, so in the
recent years it became possible to create and style applications for
all browsers by joining the technologies (each in detail described by
Christian Wenz [27]) DHTML for website modification, the browser
scripting language JavaScript and the formatting-language CSS. Li-
braries make the usage and combination of all techniques easier.

DHTML stands for Dynamic HTML and allows the programmer
to modify a website dynamically. While static websites stay
changeless after loading them, DHTML (also known as DOM-
Scripting) affects style and function of elements like images
or paragraphs on the webpage when needed (for example by a
JavaScript call).

JavaScript is a modern, object oriented scripting language executed
in the web browser (with a java-like syntax). JavaScript enables
the web designer to validate user input on the client side, to ma-
nipulate the website via DHTML/DOM and to compute, send and
receive data.

CSS is a style-sheet markup language for appealing design of web
pages and applications. As a powerful amendment of HTML or
XML it can be used for formatting structured content (for exam-
ple adjusting color, position, size or spacing of elements). Indi-
vidual objects can be modified as well as it is possible to define
central formats for classes of elements.

Libraries such as Prototype [25] (helper functions for JavaScript de-
velopment) and the Dojo toolkit [9] (various user interface el-
ements for JavaScript) provide a comfortable way for solving
recurring tasks. For example requesting data from a server,
DHTML/DOM modifications in the document or creating com-
plex input elements like menus and calendars or drag-and-drop
functionality.

19

2.3 Interaction: AJAX

Classic web interaction is limited to a hypertext structure: Whenever
the displayed page or information is needed to be changed, this is ac-
companied by a reload of the whole page. This basic and slow in-
teraction mechanism was the only way of web interaction for a long
time. JavaScript improves the scope, but traditionally could not gather
completely different data than delivered with the first page load.

In 1998, Microsoft developed a remote scripting component, en-
abling a web access interface for the Outlook email client (first as
a java applet, then directly supported by their browser, the Internet-
Explorer, as a XMLHttpRequest-Object). Microsoft’s (and analog) ap-
proaches allowed the background loading of data without the need for
refreshing the whole page. Google adopted this technology for the
Google Suggest functionality: when you start typing new york, the
part new y is enough for Google to autocomplete the possible search
terms New York City or New York Times. All the loading is done in the
background, without the page’s reload.

The term AJAX was first mentioned by J. J. Garrett [10] in 2005:
He called the technique of dynamical loading data in the background
Asynchronous JavaScript + XML, ”a fundamental shift in what is pos-
sible on the Web”, featured by the mentioned technologies HTML (and
its ”dialect” XML), DOM, JavaScript and the XMLHttpRequest.

Fig. 1. Classic and AJAX web application model (original image in [10])

AJAX’ mode of operation is described in figure 1: While a classic
web application is just based on interaction between a browser (re-
questing pages on the client side) and a server (delivering the content
gathered from various sources), the AJAX approach has an additional
intermediary service level, the ajax engine (the simplest case is a sin-
gle XMLHttpRequest), which requests (unformatted) content from the
existing server infrastructure and attends to the styling and integration
on client side.

We can contend that AJAX is rather a paradigm than a technology,
powerful in combination with the well-established web techniques.

2.4 Application Programming Interfaces

An aspect of Web 2.0 are the various and public available data and
presentation sources from anywhere in the web. Content providers
allow users to connect to their applications and retrieve information
like database records, product informations or even graphical data like
pictures, videos or maps. ProgrammableWeb [23], an API database,
announces over 1.500 public accessible APIs by the end of 2009.

The most popular services are (the numbers represent the APIs’ us-
age based on 4506 analyzed mashups):

• Google Maps API [11] for geographical information and brows-
ing maps (1867)

• Flickr API [29] for photo acquisition (488)

• YouTube API [12] to get any video content (429)

• Amazon API [1] for book information retrieval (327)

With the help of all the so far considered technologies and tools,
combined with API service calls, it is possible to create entirely new
web services by wiring the chunks and foreign informations, com-
monly known as mashups.

3 UTILITIES FOR CREATING PROTOTYPES IN THE WEB

Because of the simplicity of creating mashups, those can be used as
rapid prototypes of future software products. The developer has no
need to create dummy content close to reality and is able to reach a
high fidelity prototype level without taking care of details.

We will distinguish between different integratable content: For-
eign data (like metadata gathered from a Music Database), applica-
tions/services and presentation (e.g. display maps from Google) and
look on different toolkits and frameworks valuable for a rapid proto-
typing process.

3.1 Mashups and Patchwork Prototyping
In 2007, Ingbert R. Floyd [8] did a research called Web Mashups and
Patchwork Prototyping about novel practices in development with Web
2.0, open APIs and open source systems. He introductorily describes
the two terms as following:

Mashups are websites combining data and services from multiple
sources, all across the web, conceptually like a DJ creating a
remix of multiple music sources. Mashups are being used for
”rapid realization of creative ideas which would be too time con-
suming or expensive”. A requirement for a mashup are public ac-
cessible APIs and data sources and the detailed knowledge about
how to access them. This barrier can be lowered by the toolkits
described in the following sections.

Patchwork Prototypes ”use combinations of web services, mashups,
locally developed code and open source software”. They reduce
development periods by rapid iteration cycles, incorporation of
the prototype in the users’ daily activities, and massive user feed-
back. The prototypes’ innovations are user-driven.

Fig. 2. Wikipedia-Amazon Search And Browse Environment, a simple
mashup (original image in [8])

As an example for creating a mashup as a patchwork prototype,
Floyd developed Wasabe (see figure 2) ”as a prototype hybrid library

20

catalog system that allows users to search within a single interface both
the detailed bibliographic information typically found in library cata-
logs as well as more general information about the topic of interest,
typically found in encyclopedias” [8].

Wasabe used the Amazon API, the Google Search API and
Wikipedia as additional data source. The first prototype of Wasabe
has been created in less than ten minutes. The prototypes’ successor
is now present and used in the A9 search engine.

He compared mashups to patchwork prototypes and found similari-
ties: Technical innovations are user driven (that means better software
through involved users). Although the methods are not new, Floyd
finds out that technological innovations made patchwork prototyping
affordable for single persons and small companies without hiring ex-
perts.

Nearly isochronal Cameron M. Jones [18] released his study Patch-
ing Together Prototypes on the Web with the same awareness: ”Patch-
work prototyping is a rapid prototyping approach” that saves speed
and cost but also creates depth and high functional, high fidelity pro-
totypes through mashups. By incorporation in the users’ daily work,
fast feedback can be gained while all the features and functionalities
of the prototype are disposable.

3.2 Data Integration
A problem for a mashed-up web application or web patchwork proto-
type (in the following both are meant equally) is receiving data that is
not reachable via API services or existent databases but only visible as
a website or as the output of a present software. An experienced soft-
ware developer would write some kind of converter. But in terms of
rapid prototyping that is neither economic nor fast or universal enough.

The solution could be programming by example, Rattapoom
Tuchindra [26] created ”a Mashup building approach that combines
most problem areas in Mashup building into a unified interactive
framework that requires no widgets, and allows users with no pro-
gramming background to easily create Mashups by example” called
Karma (see figure 3).

Fig. 3. The Karma interface: On the left an embedded browser, on the
right a table for data extraction (original image in [26])

A prototype developer only has to browse a website with Karma and
show the software where a data input (for example the search field) is
located and how the resulting output is aligned (for example a table
with corresponding names on the left and descriptions on the right).

The extracted data sets can be included directly into the prototype.

3.3 Application Integration
But even if API service calls are present, their invocation can be quite
complicated. In his research, Björn Hartmann et al. introduced a tool
called d.mix [14], which enables the prototype developer sampling
those service calls through a proxy by demonstration (this approach
is basically similar to Tuchindra’s). The main difference is the acces-
sibility of the content through API calls. In the background a mapping
of HTML elements and their associated service calls takes place (see
figure 4). Users browse a website where API accessible content is
highlighted by the proxy, mark elements they wish to copy, d.mix cre-
ates a corresponding service call and copies the results in its internal

wiki. Thence the content and service call are hosted, can be modified
and easily be integrated into a prototype.

Fig. 4. Example of d.mix mappings between HTML elements and corre-
sponding API service calls: Flickr Title, Image URL and Taglist retrieval
(original image in [14])

3.4 Presentation Integration
As an alternative to AJAX (where JavaScript renders new content with-
out reload), Jin Yu et al. created the presentation layer OpenXUP [30],
an approach for creating highly interactive web user interfaces, con-
sisting of a event driven thin client and server toolkit. It is based on
the Simple Object Access Protocol (SOAP) and the Extensible User In-
terface Protocol (XUP). SOAP is a technology for calling procedures
on the server and exchanging data between client and server. XUP
is a protocol used for communicating events and user interface up-
dates on the web. The Framework enables the Model-View-Controller
paradigm for web applications, offering a set of user interface compo-
nents and bringing them closer to their desktop counterparts. Devel-
opers can create whole applications including user interfaces without
assumed knowledge of many distinct web-technologies.

In his subsequent work, Yu proposed an XML-based presentation
language XPIL for creating generic presentation objects without the
need of interfaces and APIs [31]. The language is event based and the
user interface components are easily applicable towards both desktop
and web applications.

3.5 Prototyping Toolkit: WARP
Mario Bochicchio describes an environment called Web Application
Rapid Prototyping (WARP), that is suited for fast prototyping of web
applications [3]. WARP supports the user in the complete prototype
design process, from requirement analysis via design of the software’s
functionality to the complete coding and data handling process. The
complete creationary process as well as the phase of execution is tak-
ing place in the web. Therefore WARP is covering a set of online tools:

Fig. 5. The online tool WARP Page Designer (original image in [3])

21

• The Schema Editor for creating the application’s model and ex-
porting a XML scheme.

• The Feeder module that is complementary to a content manage-
ment system. It can produce a sample of actual data.

• With the Page Designer the user can visually define the presen-
tation of the Web Application (see figure 5).

• A Generator that creates a runtime Database for caching pur-
poses.

• The core Engine that dynamically delivers the pages based on
the schemas, contents and layouts. By recording all the events,
the usage of the prototype may be analyzed and evolved.

WARP, introduced in 2004 and presented as ”first environment for
fast-prototyping completely on-line”, is an innovative but only partly
finished project. Although it is apparently discontinued in its devel-
opment process, it could be a trendsetting toolkit for all-in-one web-
prototyping.

4 PROJECTS

Now that the technical fundamentals have been highlighted, we will
discover some tangible projects, which had their origins in web pro-
totypes. We will have a look at a Crisis Management Prototype and
a Healthcare Workers Service Prototype, both powered by the Google
Maps API. Furthermore we graze the different development steps of a
Mixed-Fidelity Prototype of a task planner for Mars surface operations
and we will end with considerations of Clinical Information System
Prototypes.

4.1 Crisis Management Prototype: CHEOPS
CHEOPS 2.0 is a prototype of a replacement for the CHEOPS geopo-
litical risk and crisis management system designed in 1997, helping
the military to understand and classify the situation.

In his paper, Francis Rousseaux [24] is describing the system and
comparing the complexity of the creation of the original software to
the creation of the prototype.

Table 1. Resources needed for CHEOPS and CHEOPS 2.0 (adapted
from [24])

CHEOPS CHEOPS 2.0 Prototype
Software/ Men/ Software/ Men/

Equipment Month Equipment Month
Maps/Images 20% 3% 0% 5%
Geographical In-
formation System

70% 70% 0% 0%

Crisis Manage-
ment System

2% 20% 0% 65%

User Interface n/a n/a 80% 20%
Other 8% 7% 20% 10%

CHEOPS had as components a commercial database management
system, a commercial geographical information system and the core
functionality. As we see in table 1, most of the development work and
time (70%) was spent for the geographical information system, while
the core system itself required only 20% of the attention.

The new prototype, CHEOPS 2.0, is a web application powered by
the Google Maps API as geographical information system and AJAX
techniques. Table 1 also shows the effort taken for the single steps,
while the geographical information system was now an external ap-
plication, most of the time could be spent for the core functionality
(65%).

Rousseaux’s main findings are the increased productivity in pro-
totyping but limitations for real applications on the other hand. The
product could not have been validated, secured and maintained. This
can not be guaranteed while using external components.

4.2 Healthcare Workers Service Prototype: GEOHEALTH

In his paper GeoHealth, A Location-based Service for Nomadic Home
Healthcare Workers, Claus M. Christensen describes the implemen-
tation of a functional prototype, ”which supports distributed and mo-
bile collaboration through representation of live contextual informa-
tion about clients, co-workers, current and scheduled work activities,
and alarms adapted to the users’ location” [4].

The GeoHealth web prototype heavily uses the Google Maps API,
Web 2.0 techniques and a GPS module for positioning. The prototype
was developed after design sketching, paper prototyping and technol-
ogy exploration (see figure 6). The prototype was evaluated in a field
study and was used for way finding assistance and task management
for workers.

Fig. 6. The GeoHealth Home Screen (original image in [4])

While Christensens main findings deal with the improvement of the
UI, he casually mentions the benefits of web prototyping: The web
application resulted in a user friendly, high fidelity and real life pro-
totype, with the advantage of mobility. But the future technological
platform was not sure yet, a tangible application would follow.

4.3 Mixed-Fidelity Prototype: SPIFe

Michael McCurdy et al. [21] compared the renewed web prototype
(SPIFe) of a preexisting tool (MAPGEN Activity Planning Tool) to a
tool based on the eclipse platform that has been developed (Ensemble)
using the prototype (see figure 7).

The preliminary case: MAPGEN, an activity scheduling tool for
the Mars Exploration Rover shown in figure 7(a) had to be redesigned
because of missing functionalities and the lack of performance, after
identifying the goals for the new product.

The web prototype SPIFe took advantage of HTML, DOM and
CSS, dynamically created by a server-side program as shown in figure
7(b). The prototype was created by a single developer in one month.
Through creating a web application, it was possible to measure the ac-
curate timing data (a mentioned goal was to increase the performance),
what would not have been possible when using traditional user inter-
face prototyping methods.

The final application Ensemble was built using the Java Eclipse De-
velopment Framework, which allowed to transport the gained results
quickly into working software, necessarily being high fidelity. Ensem-
ble can be found in figure 7(c).

McCurdy et al. compared and tested all the three software artifacts,
the results were (as expected) a slow MAPGEN tool. But for all tasks,
SPIFe and Ensemble showed no significant differences in usability.
Even though Ensemble was a high fidelity software product compared
to SPIFe with its high fidelity data depth but low fidelity user interface.
The prototype was as useable as the productive version (apart from the
lack of graphical refinement).

22

(a) The MAPGEN Activity Planning Tool, used dur-
ing the NASA Mars Exploration Rover missions in
2004

(b) The SPIFe Prototype Timeline (c) The Ensemble Timeline

Fig. 7. The evolvement of an activity planning tool for Mars surface operations (original images in [21])

4.4 Clinical Information System Prototypes

An interesting sector for prototyping applications in the web are Clin-
ical Information Systems (CIS). Because of the complex and different
procedures in clinical workday life, new ideas and processes have to
be implemented quickly and tested regularly.

An old study of web development has been done 1995 by J. Cimino
[6]. Subject is a Clinical Information System Prototype with the up-
coming techniques HTML and CGI (an early approach for executing
server sided scripts). Cimino used foreign internet based resources for
his project, for example medical information retrieval, as an early form
of a mashup. His findings at that time: The internet is an ”exciting new
environment” that excellently integrates with other resources.

Ciminos follow-up study in 1996 [5], was based on the earlier find-
ings and put a closer look on web prototyping, again considering the
CIS case. He still believes in the web as platform for rapid prototyping
that makes ”implementation of new functions quickly without large
investments of effort”, which had never been possible with traditional
prototyping. He discovers the anyway available logfiles valuable for
his user studies.

In 1998, G. Hripcsak built a web based CIS on top the existing
Columbia University CIS [16]. The goal was to ”make clinical infor-
mation available to users wherever and whenever they need it”, later
potentially replacing the classic system. Figure 8(a) shows the main
screen of the web application entirely written in C as a CGI appli-

cation. Although the system can be distinguished as a prototype and
Hripcsak mentions that the development cycle was fast, he discusses
that all time-consuming ”other aspects of the application life cycle”
are still necessary. He criticizes that in the moment the application
got finished, all used techniques (CGI, HTML and JavaScript) became
obsolete and maybe unsupported by browsers. He concludes his study
with the assumption, that ”the best one can do is stick to a good clin-
ical application architecture, with well-isolated modules, well-defined
layers, and industry standard protocols.”

A further disclosure and contemporary approach by J. H. Kim et
al. [19] followed in 2001: Kim recognized the complex and ever-
changing demands in CIS, too. Hence he developed of a rapid proto-
typing and clinical conversational system. Clinicians themselves (ex-
perts in acquaintance of clinical information systems but without pro-
gramming skills and database knowledge) were now able to compose
their own web-based clinical dialogues. Kims forecast was that ap-
plications will stay in the internet, because of the growing acceptance
and the possibility to link between heterogeneous systems.

Todays developments are unambiguous: Because of the complexity
and the demand for network compatibility, many CIS become web-
based. For example the IBA CIS (developed in the early 1990s), a
widespread system, has been redesigned because of lower mainte-
nance cost and contemporary user interface look [17]. BizMatics’
PrognoCIS shown in figure 8(b) is another example for the consequent
port of existing systems into the web.

(a) Hripcsak’s WebCIS prototype in 1998 (original image in [16]) (b) Bizmatics Medical Centre, a Web CIS Application in 2009 (original image in [2])

Fig. 8. Development of different Clinical Information Systems from a prototype to a running web application

23

5 DISCUSSION AND CONCLUSION

The use of the web for prototyping applications with the aid of Web
2.0 and APIs is an ascent for prototyping, due to the development of
programming possibilities and general conditions of the web. ”Highly
interactive” became an attribute for websites as well as for web appli-
cations. Prototyping scenarios benefit thereof, applications can easily
be prototyped in the web with low effort, high fidelity prototypes can
be created.

A limitation of the web is its stateless technology. Big effort has to
be taken to (certainly) identify an user or to authenticate him. There is
a huge offer of different browsers on several platforms (with slightly
different techniques). Whenever a constriction to a single system is
not possible, much work has to be invested for achieving a similar
result on all browsers. A piece of software has to be validated, secured
and maintained, that can not always be guaranteed when using foreign
enclosed products.

But the benefits of web prototyping are predominant: In patchwork
manner, the development cycle is fast. There is few need for knowl-
edge of technical details and user interface development to achieve a
wealth of functionality. The prototypes are highly interactive, here
mid fidelity, there high fidelity, resulting in a mixed fidelity prototype.
Prototypes (once adjusted) are platform- and device-independent, the
worldwide access is guaranteed.

Future Work will probably be spend in even more simplifying the
creation and data sampling process and imitating different target plat-
forms (like embedded systems, special hardware or mobile phones).
New upcoming techniques in the dynamic web will drastically blur
the borders between classic applications and web applications.

REFERENCES

[1] Amazon. Amazon web services. http://aws.amazon.com/, 2009.
Last checked: 2009-12-09.

[2] Bizmatics. Emr software. http://www.bizmaticsinc.com/
emr-software.html, 12 2009. Last checked: 2009-12-09.

[3] M. Bochicchio and N. Fiore. Warp: Web application rapid prototyping.
In SAC ’04: Proceedings of the 2004 ACM symposium on Applied com-
puting, pages 1670–1676, New York, NY, USA, 2004. ACM.

[4] C. M. Christensen, J. Kjeldskov, and K. K. Rasmussen. Geohealth: a
location-based service for nomadic home healthcare workers. In OZCHI
’07: Proceedings of the 19th Australasian conference on Computer-
Human Interaction, pages 273–281, New York, NY, USA, 2007. ACM.

[5] J. J. Cimino and S. A. Socratous. Just tell me what you want!: the promise
and perils of rapid prototyping with the world wide web. Proc AMIA Annu
Fall Symp, pages 719–723, 1996.

[6] J. J. Cimino, S. A. Socratous, and P. D. Clayton. Internet as clinical
information system: application development using the world wide web.
J Am Med Inform Assoc., pages 273–284, 1995.

[7] Facebook. Facebook platform news. http://developers.
facebook.com/news.php, December 2009. Last checked: 2009-
12-11.

[8] I. R. Floyd, M. C. Jones, D. Rathi, and M. B. Twidale. Web mash-ups and
patchwork prototyping: User-driven technological innovation with web
2.0 and open source software. In HICSS ’07: Proceedings of the 40th
Annual Hawaii International Conference on System Sciences, page 86,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] T. D. Foundation. The dojo toolkit. http://dojotoolkit.org/,
2010. Last checked: 2010-01-15.

[10] J. J. Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/ideas/essays/
archives/000385.php, February 2005. Last checked: 2009-
11-20.

[11] Google. Google-maps api. http://code.google.com/apis/
maps/, 2009. Last checked: 2009-12-09.

[12] Google. Youtube apis and tools. http://code.google.com/
intl/de/apis/youtube/overview.html, 2009. Last checked:
2009-12-09.

[13] T. P. Group. Php: Hypertext preprocessor. http://www.php.net/,
December 2009. Last checked: 2009-12-11.

[14] B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer. Programming by a
sample: rapidly creating web applications with d.mix. In UIST ’07: Pro-

ceedings of the 20th annual ACM symposium on User interface software
and technology, pages 241–250, New York, NY, USA, 2007. ACM.

[15] T. Hoff. Youtube architecture. http://highscalability.com/
youtube-architecture, December 2009. Last checked: 2009-12-
11.

[16] G. Hripcsak, J. J. Cimino, and S. Sengupta. Webcis: large scale deploy-
ment of a web-based clinical information system. Proc AMIA Symp.,
pages 804–808, 1999.

[17] IBAGroup. Web clinical information system. http://www.
iba-it-group.com/en/case-studies/technology/
other/a27c0d064f36a74f.html, 2009. Last checked: 2009-12-
09.

[18] M. C. Jones, I. R. Floyd, and M. B. Twidale. Patching together prototypes
on the web. 2006.

[19] J. H. Kim, R. Ferziger, H. B. Kawaloff, D. Z. Sands, C. Safran, and W. V.
Slack. A web-based rapid prototyping and clinical conversational system
that complements electronic patient record system. Stud Health Technol
Inform, 84(Pt 1):628–632, 2001.

[20] E. Knorr. 2004 - the year of web services. In CIO: Fast Forward 2010 -
The Fate of I.T., volume 6, page 90. Gary J. Beach, December 2003.

[21] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, and A. Vera. Break-
ing the fidelity barrier: an examination of our current characterization
of prototypes and an example of a mixed-fidelity success. In CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in computing
systems, pages 1233–1242, New York, NY, USA, 2006. ACM.

[22] S. Microsystems. Mysql - the world’s most popular open source database.
http://www.mysql.com/, December 2009. Last checked: 2009-
12-11.

[23] ProgrammableWeb. Mashups, apis, and the web as platform. http:
//www.programmableweb.com/, December 2009. Last checked:
2009-12-11.

[24] F. Rousseaux and K. Lhoste. Rapid software prototyping using ajax and
google map api. In ACHI ’09: Proceedings of the 2009 Second Interna-
tional Conferences on Advances in Computer-Human Interactions, pages
317–323, Washington, DC, USA, 2009. IEEE Computer Society.

[25] P. C. Team. Prototype javascript framework. http://www.
prototypejs.org/, 2007. Last checked: 2010-01-15.

[26] R. Tuchinda, P. Szekely, and C. A. Knoblock. Building mashups by ex-
ample. In IUI ’08: Proceedings of the 13th international conference on
Intelligent user interfaces, pages 139–148, New York, NY, USA, 2008.
ACM.

[27] C. Wenz. JavaScript und AJAX. Number 3-89842-859-1. Galileo Com-
puting, 2008.

[28] Wikimedia and Various. Wikimedia servers - overall system ar-
chitecture. http://meta.wikimedia.org/wiki/Wikimedia_
servers#Overall_system_architecture, December 2009.
Last checked: 2009-12-11.

[29] Yahoo. The app garden. http://www.flickr.com/services/
api/, 2009. Last checked: 2009-12-09.

[30] J. Yu, B. Benatallah, F. Casati, and R. Saint-Paul. Openxup: an alternative
approach to developing highly interactive web applications. In ICWE
’06: Proceedings of the 6th international conference on Web engineering,
pages 289–296, New York, NY, USA, 2006. ACM.

[31] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera.
A framework for rapid integration of presentation components. In WWW
’07: Proceedings of the 16th international conference on World Wide
Web, pages 923–932, New York, NY, USA, 2007. ACM.

24

Patchwork Prototyping for Web Applications

Felix Heller

Abstract— Patchwork prototyping was first defined in 2007 and is a new approch to rapid prototyping. It is a participatory design
concept which involves the prototypes’ users by integrating a patchwork prototype into their daily work routine. The users’ feedback
is being extensively demanded to continously develop and improve the prototype. Therefore, patchwork prototyping is clearly a user-
driven method. As patchwork prototyping is mainly a high fidelity prototyping method, it offers a relatively complex user interface which
looks similar to a possible final product. To reduce the workload for developers, application programming interfaces, web services
and open-source software are widely used and can be combined by using either simple programming techniques or by implementing
more complex realizations. In this paper, the history of patchwork prototyping is examined and relevant terms are defined. Patchwork
prototyping is compared to low fidelity, high fidelity, horizontal and vertical prototypes and prototypes using commerical off-the-shelf
software. To conclude, the potential of patchwork prototypes is discussed and several project examples and development tools are
presented.

Index Terms—Patchwork Prototypes, Rapid Prototypes, High Fidelity Prototypes, Participatory Design, Mashups, Open-Source
Software, Application Programming Interface

1 INTRODUCTION

Only a few years ago in 2007, the term “Patchwork Prototyping” was
invented by Floyd et al. [12]. It describes a new method of inventing a
high fidelity prototype by patching together multiple components that
can be used without further restrictions like open-source software. In
addition to the already known types of prototyping, patchwork pro-
totyping has some relevant advantages and allows to design a high
fidelity prototype rapidly. In this paper, the facts about patchwork
prototyping for web applications will be examined and will be com-
pared to other methods of prototyping. To sum up, both limitations and
strengths will be shown and a short overview over several patchwork
prototype projects will be given.

2 HISTORY

Participatory design is a user driven-technique and in its early days,
one of the first steps made was the initial computerization of spe-
cific work settings. Today, the conditions of work places have sev-
erly changed and are completly different to those of former days. The
use of computers is an irreversible development which is widespread
in most developed countries and the software that is used with these
computers like word processor and spreadsheet programs is nearly om-
nipresent. Due to the ubiquity of the internet, web browsers are a stan-
dard software program nowadays and are widely used in workplace
environments today [21].

For many years, the concept of free / libre open-source software
(FLOSS) has been an ongoing trend in the software industry. A major
advantage in comparison to commercially sold software is that a de-
veloper can liberally use components of a FLOSS program or even its
whole source code for his own ambitions without considering license
violations or having to pay fees to the original developers [21]. Fur-
thermore, the innovative potential for open-source software (OSS) is
named to be unlimited and innovation is present during desgin, devel-
opment and even during use [11].

In summer 2005, the website HousingMaps.com was launched
which fetches real-estate listings from the website Craigslist.org and
filters the harvested data for usable geographic information. This col-
lected data is then processed using the application programming in-
terface (API) of Google Maps. At the end, the data is shown dis-
played on a Google Maps’ map which is seamlessly integrated on

• Felix Heller is studying Media Informatics at the University of Munich,
Germany, E-mail: felix.heller@web.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009

HousingMaps.com. This was the first time when the term “mashup”
was mentioned and when an API was used to create a new and inno-
vative web application. Being able to use foreign resoures of the web
for own purposes was a vital feature of this application [4].

Today, the “programmable web” is another trend which results in
a movement from software installed and executed on a desktop com-
puter towards web applications which have its data and program rou-
tines stored on remote servers. The applications can be accessed with
web browsers so that a large installed base of those is a precondition
[9]. So the internet is no more just a system for content storage and
delivery but also an active platform for their users to empower their
participation and innovation [13].

3 DEFINITIONS

In this section, the three terms mashup, rapid prototyping and patch-
work prototyping will be defined to build a fundament for the more
profound sections in this paper.

3.1 Mashup

A mashup integrates data sources and APIs into a single web applica-
tion. The openness of data sources in the internet like XML feeds and
documented programming interfaces encourages developers to invent
own applications by mixing these sources [24]. If there is no open
access granted by the manufacturer, developers have to use techniques
like reverse engineering to gain access to the hidden program functions
and data. This behaviour may also violate laws and result in criminal
prosecution. In fact, creating an open web application’s interface may
also be an advantage for the manufacturer because an application may
become more popular when users may access it through mashups as
well. For example, the popularity of Google Maps is strongly founded
on the open API which did not exist from the very first moment [13].

The enormous number of about 1 500 available APIs and 4 500
created mashups that are listed on ProgrammableWeb.com proves the
high potential of this relatively new technology. The speed of devel-
opment is still high - nearly 500 mashups were newly listed on Pro-
grammableWeb during the past six months [17]. While the number
of existing mashups and APIs cannot be exactly disclosed, the correct
values may be even higher [9].

To program a mashup, a specific level of knowledge is needed
which depends on the complexity and scope of operation that the
mashup shall have. If only HTML and JavaScript skills are required,
undergraduate students without prior programming experience are
able to learn how to program a mashup in only three weeks [13]. This
short time can be realized as a consequence of the “black box” be-
haviour of most APIs which hides the complex functions and simply

25

returns the desired results to the developer. With the help of special-
ized online services like MapBuilder.net, even non-programmers with
no experience may be able to create simple mashups. The process
of “glueing” together the code is done by the web service [3]. For a
detailled description of such services see section 7.

3.2 Rapid Prototyping
Rapid prototyping is a method to quickly develop and test new ap-
plications. When time is an important and precious resource, this is
an advantage [13]. Using this method can help to improve the com-
munication between developers and users and may return insights of
possible strengths and weaknesses of the developers’ ideas at a point in
time before the whole application is finished. This can prevent spend-
ing money for disadvantageous developments [12]. Iteration is another
relevant characteristic of rapid prototyping that allows to explore new
features and alternatives beside existing solutions [11]. It supports cre-
ativity which is one of the main goals of rapid prototyping [12]. The
traditional literature about software development judges the choice be-
tween a rapid and a high fidelity prototype as a fundamental tradeoff
that has to be made in the design process of software programs [6].

3.3 Patchwork Prototyping
Patchwork prototyping is a relatively new approach to rapid proto-
typing and an example for a participatory design concept [10]. Fur-
thermore, patchwork prototyping belongs to the class of cooperative
prototyping methods [21].

One of the three main components of patchwork prototyping is that
high fidelity prototypes can be rapidly iterated by using existing of-
fline as well as online techniques like mashups, open-source software
and web services [21]. The availability of many APIs and mashups (as
shown in section 3.1) and high-quality FLOSS supports this fact [6].
Having an accessible source code is an important attribute of these
components. For this reason, commercial off-the-shelf (COTS) soft-
ware has major disadvantages and it is debatable whether it is adequate
for patchwork prototypes [21]. This will be discussed extensively in
section 4.4.

Third-party sources can be expanded with locally written code by
the developers. To combine these parts, “glue” code has to be writ-
ten to combine the single parts, although the required skill level for
developers may be quite low regarding the fact that simple HTML hy-
perlinks already fit the requirements for patching together components
[10]. Skilled experts though are able to produce patchwork prototypes
that reach a considerably higher level of complexity than mashups. By
all means, the time period consumed to produce a patchwork proto-
type is still short [6]. When building high complexity prototypes, time
may be saved - for example - by using a framework [13].

The second main component is the integration of the patchwork
prototypes into the end users’ daily work activities. These prototypes
are a “design in use” which can access and respond to these users’
needs in a quite short period of time. For this purpose, the design and
the implementation phases of the development process are blended.
Moreover, the prototype can be gradually improved by replacing the
integrated FLOSS components with production-scale modules [21].

The third main component is the the extensive collection of feed-
back so that patchwork prototyping can be clearly seen as a user-driven
process (see figure 1) [11]. The already mentioned integration into
users’ daily activities also changes the conditions of the development
process. The prototype is not defined in the first place, but it is ex-
panded during the process of use, taking given feedback and practical
experiences into account [10].

Floyd et al. [4] defined that developers and representatives of all
kinds of user shall join a design team for patchwork prototyping. They
divided the iteration process - which normally shouldn’t take longer
than a week - into the following five steps:

• Making an educated guess about the possible properties of the
desired target system

• Searching and selecting tools that allow to implement at least a
part of the designated functionality

Fig. 1. Rapid iteration in the user driven model (adapted from Floyd,
Jones, Rathi, Twidale [4])

• Combining the selected tools into a first draft

• Integrating the prototype into the end users’ daily activities and
collecting feedback from them

• Summing up the collected experience relying on the prototype
building and the collected feedback and repeat the whole process

4 COMPARISON TO OTHER KIND OF PROTOTYPING

Prototypes can be classified depending on the fidelity of the prototype
and whether the focus is put on the functionality or on the feature rich-
ness. According to Tullis, the person who views a prototype classifies
the fidelity of a prototype by the appearance of a prototype and not by
the similarity of the prototype to the target application [20]. However,
a neutrally precise differentiation is possible and so low and high fi-
delity prototypes as well as horizontal and vertical prototypes will be
described and compared to patchwork prototypes. Furthermore, the
use of commercial off-the-shelf software (COTS) in prototypes instead
of open-source software will be compared and discussed. In table 1 at
the end of this chapter, some of the findings of this chapter about the
strengths and weaknesses of patchwork prototyping, paper prototyp-
ing and prototyping with COTS are subsumed.

4.1 Low Fidelity Prototyping
Low fidelity prototypes can be developed and iterated with fast and
cheap methods. Especially the paper prototyping method allows to
construct prototypes with a short amount of time needed. To build a
paper prototype, office materials like paper, pens and markers are suffi-
cient enough which means that low fidelity prototypes are inexpensive
(see figure 2 for an example of a paper prototype) [11]. This is quite
similar to patchwork prototypes as they can be produced quickly and
with a small amount of effort as well [21].

Fig. 2. Paper prototype for demonstrating and testing an improved de-
sign of the social community platform lokalisten.de (own work)

Beyond that, prototypes with low fidelity are a method of rapid pro-
totyping like patchwork prototyping, too. On the contrary, they offer

26

only a limited functionality at most and shortened interactive elements
which results in the limitation that low fidelity prototypes can show
only a design direction with some details. For example, the content of
a paper prototype can be simple and contain just a number of menus
or static windows to match its designated use. Nevertheless, low fi-
delity prototypes can help to decide about fundemental design issues
like the position of control elements. They are useful when it comes to
the visualization of an interface. This qualifies low fidelity prototypes
for the use in the early phase of gathering requirements and in user
interface design teams. Using a lot of low fidelity prototypes is an ef-
fective instrument for identifying the requirements of both market and
users [18]. By contrast, the tasks that users have to fulfill with low fi-
delity prototypes are completly artificial which may lead to prototypes
that are designed for artificial use, but not for the real world [12]. In
comparison to this, high fidelity prototypes like patchwork prototyp-
ing offer a relatively high complexity, are fully interactive and their
design is closer to the one implemented in the final product [6]. On
the other hand, patchwork prototypes are not effective for gathering
requirements a priori [12].

A low fidelity prototype is often shown and demonstrated by a
trained facilitator who explains the major functions and issues to the
user. In order to simulate real functionality, these prototypes are ac-
curately scripted. A major disadvantage in comparison to patchwork
prototyping is that some of the features of a prototype have to be
demonstrated to the user resulting in an unwanted influence on the
user’s opinion [18]. On the other hand, the facilitator may help the
user instantly when facing problems so that feedback can be collected
directly and a breach in the workflow can be prevented effectively.
Comparing the fidelity of prototypes, Nielson arrived at the conclu-
sion that many inconsistencies may remain hidden when using low
fidelity prototypes. With high fidelity prototypes, the user is not influ-
enced during the usage of the prototype by another person but cannot
get immediate help if problems occur [14].

For the creation of low fidelity prototypes, no or only little knowl-
edge of programming languages is required [18]. Compared to patch-
work prototypes, low fidelity prototypes can be built with office ma-
terials and especially without a working computer system. In later
phases of a project, this can result in new problems when program-
mers have difficulties to assimilate a low fidelity prototype template.
The lack of detailed design specifications may produce an inappro-
priate design when the programmers have not enough experience in
developing user interfaces on their own [18].

4.2 High Fidelity Prototyping
As patchwork prototyping belongs to the group of high fidelity pro-
totypes, the following paragraphs name attributes of patchwork pro-
totyping as well. Possible differences between standard high fidelity
prototypes and patchwork prototypes will be discussed in detail.

High fidelity prototypes like patchwork prototypes “simulate real
functionality” [11] and offer a complete interactive user interface. In-
stead of focussing on design and layout issues, high fidelity prototypes
allow to get feedback how users navigate in the application [18]. In ad-
dition, it can be tested whether the design and user models match [22].

As a high fidelity prototype has almost the same behaviour as the
final product, the users are confronted with the same kinds of error
in the same places. This means that they can get a “feeling” of how
the final product would work like and thus help to improve the be-
haviour of the prototype. Rudd describes a prototype in this case as
a “test vehicle” [18]. Therefore high fidelity prototypes can be easily
used without further restrictions as tools for exploration and testing as
well as for marketing purposes. The already provided usability of the
prototype allows the producer to promote it efficiently and therefore
animate potential buyers.

As a result of the quite complete functionality of high fidelity pro-
totypes, they may be used as a “living specification” [18] for both pro-
grammers and developers. Instead of making own considerations, they
can simply start the prototype and examine how a specific problem has
been solved. This can save not only time but also money when the de-
veloper is forced to make an own decision on a design issue which

Fig. 3. High fidelity prototype of an account history page of a fictitious
homebanking website (original image in [23])

later on has to be withdrawn.
Furthermore, the final program can be adapted to the users’ needs

in a better way. While feedback is already available after a short pe-
riod of time when users have worked with the prototype, help utilities
and documentation can be adapted better to their needs. Usually some
time is needed to modify high fidelity prototypes, but patchwork pro-
totypes can be modified quickly so that users who gave feedback can
see that their desired improvements are quickly integrated. This may
motivate them to use the prototype even more intensively and generate
more feedback, resulting in an overall greater acceptance of a proto-
type. Since a high fidelity prototype can be used like the full featured
final program, the usability can be evaluated and test cases can be con-
structed early in the software development process [18].

One of the disadvantages of high fidelity prototypes are its high de-
velopment costs [18]. In comparison to them, patchwork prototypes
try to bypass this problem by using third-party components like appli-
cation programming interfaces and open-source software. “Outsourc-
ing” the efforts can thus lower the own development efforts [6]. These
measures also reduce the amount of time needed because of reducing
the workload to the relatively simple “glue” source code [10]. Instead
of taking several weeks to program the remarkable range of features
included in a high fidelity prototype, patchwork prototypes can be de-
veloped in several days [4].

Compared to low fidelity and patchwork prototypes, high fidelity
prototypes always require skilled developers who have to invest much
of their knowledge into the developing process even though facilita-
tions like high-level languages may support them [18]. As already
mentioned, part of the concept of patchwork prototypes is to use much
code from foreign sources to shrink the own development process. As
a result, even untrained developers may be able to create patchwork
prototypes by simply using HTML hyperlinks because the task of pro-
gramming complex code is already done by the developers of the for-
eign code. [13] [10].

In conjunction with high development costs comes the argument of
developers that a prototype is a waste of time and money and is seen as
a unneccessary duplication of effort. Additionally, the argument may
be raised that interface tests can also be done when it is already fully
coded. Even if the developers can be convinced to develop prototypes,
only few design approaches can be realized due to the fact that fur-
ther approaches would overdraw the budget [18]. The savings of both
money and time because of using patchwork prototypes may allow it
to realize a prototype even in the case of a small budget and may open
the possibility to build several more prototypes to prelude an effec-
tive design process. Still, the concepts of high fidelity and patchwork
prototyping are not perfect for numerous conceptual approaches [18].

In the context of Web 2.0, the term “perpetual beta” [15] has been
27

introduced to describe the phenomena of software that is long-lastingly
marked as a “beta” version which is constantly improved and updated.
Popular services like Google Maps or Flickr have been in this phase for
a long time [15]. A similar approach can be made towards high fidelity
and patchwork prototypes: Due to the already included features in
the unfinished product, customers may want to use the prototype as
an already finished software product when it offers enough features
and cannot be substituted with other available applications. A lack of
understanding may arise when those customers do not understand that
a prototype still lacks a well tested, documented and stable base of
source code and intensive testing before it can be seen as a finished
product [18].

4.3 Horizontal and Vertical Prototypes
While a fully functional and detailed program needs a lot of resources
like working hours and money, a tradeoff has to be made to reduce the
consumption of resources. This means that prototypes can be assigned
to one of the two categories focussing on the scope of a prototype that
Floyd [2] defined in 1984, its positioning depending on features and
functionality can be seen in figure 4:

• Vertical prototypes have only several selected features included
but they are realized almost completely like in the final product.

• Horizontal prototypes have a lot of features of the final product
implemented but the features are only superficially complete.

When time is an issue, vertical prototypes allow to demonstrate at
least the functionality of some features in a high fidelity prototype but
does not cover the complete bandwidth of the final system. For this
reason, low fidelity prototypes like paper prototyping are normally ver-
tically integrated [18]. The depth of the features of vertical prototypes
is “explored [...] through all layers” [12] and allows the developer to
get detailed information about strengths and weaknesses of the imple-
mented features [12]. The common ground of patchwork and vertical
prototypes is that they include several features on a high level of func-
tionality which is close to the final output of the product development
process [18].

In contrast to vertical prototypes, horizontal prototypes cover nearly
the whole breadth of a program resulting in a compulsive tradeoff to
implement the functionality superficially [18]. In most cases, the layer
in which the functionality is realized is the user interface which al-
lows to analyze design issues and collect feedback for further deci-
sions [11] [18]. Furthermore, users of a horizontal prototype can get
an impression of how many different functions the complete program
may contain without “plumbing” [12] the depths [12]. As with vertical
prototypes, users and developers can receive a good impression of the
width of a system with patchwork prototypes [10].

Fig. 4. Horizontal and vertical prototypes (adapted from Jones, Floyd
and Twidale [11])

As shown before, patchwork prototypes share similarities with both
horizontal and vertical prototypes. It can be concluded that patchwork
prototypes thwart the categorization of Floyd [2] while other prototyp-
ing methods like paper prototyping can be assigned to one of the two
categories without problems.

Due to this combination of attributes of horizontal and vertical pro-
totypes, Jones, Floyd and Twidale [12] consider that the economics
of developing may be problematical. High fidelity vertical prototypes
with the breath of horizontal prototypes are much closer to a final sys-
tem than vertical prototypes normally are. This means that an equiva-
lent of the finished system has to be developed from scratch to fulfill
the prerequisites of a both horizontal and vertical prototype. This can
result in a lack of time and money. Furthermore, while horizontal
prototypes span the breadth only within a specific level, both hori-
zontal and vertical prototypes include a large functionality although
several approaches to a satisfying design may be necessary. Neverthe-
less, patchwork prototyping allows to combine the two contradicting
sorts of prototypes as a result of the methods of reducing the own ef-
forts without lowering the feature richness as shown in section 3.3.
This means that the method of stitching together different components
guarantees the feature richness of a prototype. The developer is how-
ever still able to create a prototype that spans the width of a system
like horizontal prototypes do [12].

4.4 Prototyping with Commercial Off-The-Shelf Software
Commercial off-the-shelf software (COTS) has some major differ-
ences compared to free / libre open-source software. In spite of free
and editable source code, COTS products are closed systems in which
own manipulations cannot be realized. To be able to use COTS, license
fees have to be paid which can be due non-recurring or recurring. Fur-
thermore, payments for maintenance may have to be made. While
COTS is developed by a market participant, the buying of COTS can
result in a lock-in effect [19] and in dependence on the vendor. These
facts can be clearly stated as severe disadvantages in comparison to
FLOSS.

As a market participant, the further development and updating cy-
cle is mainly influenced by the needs of the market and not by the
own needs. This is similar to popular open-source software although
the vendor of commercial software can dictate the time period during
which support and updates for a version branch are granted without
having to respect the opinions in a strong community that contributes
to the product.

Furthermore, a developer has no control over the functionality and
the performance of COTS as it behaves like a black box which can
be notably complex. This results in a handicap for the development
process as the requirements for a program do not define the capabali-
ties but just the other way around. Not implemented features in COTS
cannot be added simply by modifying the source code because it is not
accessible. If a closed product has a helpful interface that offers the
desired functionality (like an API), this difficulty is not relevant.

Another disadvantage of COTS is the fact that the promises about
the features of COTS in advertising campaigns may deviate from the
real functionality of the end product. The black box character of COTS
may aggravate this issue even more because it complicates the process
of verifying the software’s reliability. This problem can be addressed
by the producer by complying to relevant open commercial standards
and by publishing a roadmap of further software releases.

A major issue for prototyping and patchwork prototyping in partic-
ular is the possibility to combine several different techniqual compo-
nents to one seamless application. With COTS, an additional challenge
is the lack of programming interfaces for exchanging data with other
software as well as the architectural mistake that makes COTS pro-
grams act like “sole rulers”. This means that interoperability of com-
mercial off-the-shelf software can be a serious issue when patching it
together with other software components.

A positive aspect about some commercial off-the-shelf software
products is that they are widely used and therefore can be seen as a
stable and advanced technology product. Due to the existence of the
commercial production process, expert support directly from the de-
velopers may also be available although it may not be free of charge.
Like open-source software, commercial software used in a prototype
can help to lower the own development efforts [1].

When analyzing the existing literature on patchwork prototyping,
two different opinions about the use of commercial off-the-shelf soft-

28

Table 1. Comparison of patchwork prototyping with paper prototyping
and prototyping with COTS (adepted from [12] and combined with the
conclusions made in section 4)

Attribute Patchwork Paper COTS
Prototyping Prototyping Prototyping

Speed ++ + -
Monetary costs ++ + - -
Need for materials ++ ++ o
Functionality - - + +
Accessibility ++ o -
Interface o + +
Flexibility + ++ -
Disposability ++ + -
User attachment - + ++

Rating Meaning
++ / + strongly positive / positive

o neutral
- - / - strongly negative / negative

ware in patchwork prototyping can be found: In 2008, Twidale and
Floyd [21] neglected the possibility of using COTS in combination
with patchwork prototyping while in 2007, Jones, Floyd and Twidale
[11] [12] were of the opinion that patchwork prototyping does not nec-
essarily require open-source software. Furthermore, in [4] is stated
that APIs of closed source code proved numerously that they can be
implemented in various software applications. In their opinion, adapt-
ing methods could be used to implement COTS even into a working
prototype [11] [12]. However, they saw the availability of production-
scale FLOSS as a major fact for the emergence of patchwork proto-
typing [11]. It may be assumed that the change of mind of Michael
B. Twidale and Ingbert Floyd is an outcome of further research that
underlines the necessity of the use of software with modifyable source
code.

Nevertheless, COTS has some significant disadvantages compared
to open-source software like the limitations in patching together dif-
ferent components. These are caused by application programming in-
terfaces of COTS which may be artificially reduced by the software
developer. Furthermore, it is not guaranteed that an API is allocated
at all. The closed source code precludes to alter the functionality of
the software and denies the possibility to receive an impression of the
underlying algorithms. To sum up, qualitative open-source software is
the first choice for patchworking prototypes as it has none of the disad-
vantages of commercial software and the slightly different advantages
can be disregarded as they are not serious [12].

5 POTENTIAL OF PATCHWORK PROTOTYPES

The method of patchwork prototyping has been compared to several
other approaches in the previous section 4. While some advantages
and disadvantages were already brought up, this chapter will explore
them in detail and discuss possible causes and impacts.

5.1 Limitations
The development of high fidelity prototypes normally takes several
weeks. In cases where decisions have to be made really quickly, this
may take too long. As to speak of matters of time, patchwork prototyp-
ing is dependent on the staying power of the users as it is expected that
they commit to a prototype on a long-term base. Thus, the users have
to be motivated and convinced to use a patchwork prototype in their
daily work activities and to commit feedback on a regular basis [12].
For this purpose, a motivated facilitator has to be appointed to actively
stimulate the users and to collect feedback about the users’ experi-
ences [10]. Furthermore, significant leadership is required to ensure
fast iteration cycles [21]. An unmotivated user base and insufficient
feedback can otherwise lead to the outcome that the iterative develop-
ment process collapses and the whole approach of using a patchwork
prototype ends up in failure [10].

The usage of free / libre open-source software can result in a vulner-
ability of the own patchwork prototype as security flaws of included
FLOSS programs may still be exploitable in the prototype [10]. Strong
evidence for this risk are the events of project II (see section 6.1) where
a patchwork prototype used the widespread internet community soft-
ware phpBB. Due to a vulnerability of phpBB which was successfully
used by an internet worm, the prototype was severly affected during
the project phase [12]. Patchwork prototypes for web applications are
in a higher danger because they can be accessed over the internet and
are not deployed in a local and secure area.

Although seams of the process of patching together different com-
ponents may still be recognizable in the prototype, users tend to see
patchwork prototypes as already finished products. The existence of
such “stitchings” seems to be of no advantage to underline the char-
acter as a prototype [10]. The main reason for this behaviour is the
high functionality of a prototype while prototype users may not be
able to understand the explicit differences between a patchwork proto-
type and a final product [12] [18]. With a further “socializing” of the
prototypes’ users, this effect may be eventually lowered. Incoherent
design and usability may confuse users and developers of patchwork
prototypes. They should try to hide the seams and the inconsisten-
cies of different components [10] [12]. According to Jones, Floyd and
Twidale, patchwork prototypes are not “renowned” for their good us-
ability [12].

Furthermore, in some cases users may need different views of a
prototype’s features when using miscellaneous ways to access the ap-
plication. This can go to such lengths that differences and seams be-
tween the different components of a patchwork prototype need to be
completely imperceptible [10].

Another aspect of possible limitations due to the the users’ be-
haviour may be that a used technology is disliked because the users
were confronted with a similar unsatisfactory technology before. As
single components of patchwork prototypes can be easily substituted,
this issue can be addressed with little effort. The situation itself should
be identified correctly before further steps can be taken [5].

In spite of the fact that patchwork prototypes can be realized by
using programming or markup languages such as HTML which are
quite easy to learn, patchwork prototypes that offer a higher level of
functionality and complexity need to be developed by experienced per-
sonnel [13] [10]. This means that an effective iterative development
process can only be guaranteed if developers do not have to spend a
lot of time on reading source code and learning development environ-
ments. A lower implementation speed could be the consequence and
could endanger the rapid development cycle [12]. For developing such
complex patchwork prototypes, the tasks that developers have to per-
form are a limitation: Hard mental working has to be done when the
used components are written in different programming languages and
offer several different levels of abstraction [9].

This leads to another limitation of patchwork prototyping: Al-
though it is cheaper than using commercial off-the-shelf software for
prototyping issues (see section 4.4) and needs less time compared to
high fidelity prototypes (see section 4.2), a relevant amount of money
has to be invested for maintaining the computer infrastructure and for
paying the developers [21].

Unlike open-source software whose source code is entirely open,
application programming interfaces offer only a predefined interface
which may not span the entire breadth of an application. The pro-
ceedings inside remote APIs cannot be disclosed furthermore and are
unknowable [9]. Into the bargain, a lot of application programming
interfaces do not rely on a common standard, resulting in various con-
flicting models and data formats. A global authoritative control could
define such standards, but there is no such institution at the moment
[8] [9]. An exemplary exception is Google’s OpenSocial API which
is widely used by social network platforms [16]. Additional efforts
may however be needed to transform data from one format into an-
other. The single components potentially were not designed to coop-
erate with each other. “Custom marshalling” [9] thus could become
a need. Other side effects may occur when components do not work
as expected, for example when a data source is temporarily unavail-

29

able. Trusting the realiability of third parties leads to these limitations
and limits the power of patchwork prototyping [9]. Despite of the
high number of freely available code, there may be scenarios where
the offered APIs do not fit and new solutions have to be created with
possibly high efforts.

5.2 Advantages
The patchwork prototyping approach offers several strong advantages
like the rapid iterative development cycles of patchwork prototypes
which can be named as the “holy grail” of the high fidelity prototyp-
ing method. This rapidness leads to an overall improved design quality
[4]. Additionaly, a strong advantage of patchwork prototyping is the
complete functionality realized by patching several different compo-
nents together which allows a fully interactive user interface that can
be used well for both exploring and testing scenarios. Users of such
prototypes probably feel like they are using a final product [18]. To
sum up, the approach of patchwork prototyping uses a lot of the ad-
vantages offered by integrating qualitatively high FLOSS, APIs and
web services [4].

In addition to that, patchwork prototyping demands developers as
well as users a remarkable level of informality and flexibility [6]. This
brings forth the possibility to easily add, substitute or remove compo-
nents in a fast and straightforward way. New features can be integrated
with little effort and the whole prototype can be set up within a few
days or - at most - within a week [10]. Disparate information from
different sources can be collected and transformed into a unique out-
put, enhancing both usefulness and relevancy [16]. In special cases,
even users may be able to contribute to the development process and
improve the prototype on their own. Furthermore, patchwork proto-
typing is compatible with community-driven initiatives [4]. For these
reasons, patchwork prototyping can be seen as a user-driven model
and has many advantageous characteristics to support this [18].

As already mentioned in section 3.3, the collection of feedback is
one of the main characteristics of patchwork prototyping. This impli-
cates that the patchwork prototyping method allows to collect users’
feedback to the full extent. Due to the software architecture (described
in the first paragraph of this section), developers of patchwork proto-
types can respond to users’ desires effectively so that response times
can be kept short. This results in the advantage that users receive the
impression of being an integral part in the whole process [4].

In addition, patchwork prototyping enables the users to not only
give general feedback but to state their opinions in a more detailed
way. This makes the feedback even more valuable [12]. In patchwork
prototyping enviroments, users are able to criticise specific instances
because many different ideas and concepts can be demonstrated to
them. Thus the users can get a certain understanding [4]. The low
equivocality of the design space can be seen as a supporting fact in
this matter [10]. To this end, the given feedback relates to a prototype
which does not require to change the users’ work enviroments gravely
in order to adapt the prototype and which is not set up in artificial
surroundings but can be used like in the real world [12].

Using the widespread technology of web browsers as runtime envi-
ronment, patchwork prototypes become mostly platform-independent
as web browsers are available for all major operating systems (Win-
dows, Linux, Mac). Developers have the choice whether to use only
simple markup languages like HTML or to write own source code in
order to patch the different components together. This freedom of de-
cision is another advantage of prototyping. It influences the amount
of time needed to build a prototype as the use of simple markup lan-
guages results in a shallower and thus faster implementation [10].

If a patchwork prototype is successful and shall be finished to a fi-
nal product, the transformation to production-scale components can
be done piecewise when using a stable and modular framework. The
advantage is that the prototype can be continously used without inter-
ruptions as well as the transformation can be carried out transparently
for the users [10].

To conclude, patchwork prototyping combines a lot of advantages
and can be seen as a unification of some attributes of low and high
fidelity prototypes as well as of vertical and horizontal prototypes.

These prototypes were already compared to each other in section 4.
The advantages of low fidelity prototypes such as high speed imple-
mentation, (very) low costs and easily available materials are also part
of the characteristics of patchwork prototyping as well as the fully
interactive, functional interface in the user-driven process of high fi-
delity prototypes. Additionally, patchwork prototyping combines the
two opposed categories of scope as it melts the breadth of vertical pro-
totypes with the depth and high fidelity of horizontal prototypes [10].

6 PROJECT EXAMPLES

In this chapter, two different web applications that use patchworking
prototyping will be described and discussed.

6.1 Project I: Patching Together Community Tools
This project started in 1997 with the target to support processes of
inquiry by constructing and evolving adequate web-based tools. As
the project has been running for a lot of years, a long-term perspective
on the design process can be assumed. Over the years, several different
prototyes have been developed [12].

Six years later, in 2003, a first approach towards the use of third-
party tools was made. These tools are customized for the use in com-
munities. The project is furthermore completly based on free open-
source software. The server environment is a typical LAMP config-
uration, including the use of Linux (operating system), Apache (web
server), MySQL (database) and PHP (programming language). The
prototypes can be accessed by anybody and their source code is pub-
lished under a Creative Commons license. They already empowered
widely heterogenous types of communities all over the world. On the
one hand, this demonstrates the flexibility of the prototypes to be used
in various kind of situation, but on the other hand, it disables the pro-
cess of customizing the prototypes for a more specific use [12].

Due to a lack of knowledge and know-how, the prototypes in this
project did not make use FLOSS technology at first. Hence, a lot of
efforts were made to construct and develop the aimed functionality
from the scratch. Later on, free web-based technology products like
TinyMCE as a WYSIWYG editor and phpBB as a bulletin board were
implemented and included into the prototypes. As already mentioned
in section 5.1, the implementation of phpBB resulted in security vul-
nerabilities that were successfully exploited by an internet worm and
resulted in damage to the prototype as a whole. Nevertheless, the us-
age of phpBB as a bulletin board is interesting when focussing on the
aspects of patchwork prototyping. At the beginning, an instance of the
phpBB bulletin board had to be manually installed and configured for
usage by a specific community. The integration of the bulletin board
was simply realized by putting a HTML hyperlink on he community’s
home page. The installation procedure was afterwards improved so
that no direct interaction of a developer was required any more. An
automatic procedure substituted the manual interaction and installed a
new instance of the bulletin board. Until then, two different login pos-
sibilites were needed. To eliminate the rather redundant second login,
the authentification and user management were thus melted together
with the rest of the community home page [12].

As most users needed only the basic features of the bulletin board
like posting replies and dividing their postings into different sections,
the phpBB software was seen as overscaled and thus replaced by a
“homemade” bulletin board with less features. The “homemade” com-
ponent offered a better integration with the rest of the community plat-
form. This concludes that the choice of an open-source software that
fits the own needs is important to avoid further efforts needed to adapt
applications that do not offer the right amount of functionality [12].

6.2 Project II: Combining Powerful Search Engines
The next example of patchwork prototyping is an approach to merge
the output of different search engines wisely. It is called “Wasabe”, an
acronym for “Wikipedia-Amazon Search And Browse Environment”,
and is a hybrid search engine system (see figure 5 for a screenshot).
Wasabe’s main feature is the search for both encyclopedic and detailed
bibliographic information in one single step. Thus, the application
programming interfaces of two major internet companies, by name

30

Fig. 5. Wasabe: A hybrid search engine system (original image in [13])

Amazon and Google, were used [10]. The Google SOAP API was
thus used to search the encyclopedia wikipedia for information as it
can be assumed that the wikipedia itself apparently did not provide an
applicapble programming interface [4].

Three differently advanced prototypes of Wasabe were produced.
The first prototype combined search results from Amazon as well as
from the wikipedia (with the help of the Google API). The second pro-
totype widened the search in the Amazon catalog and respected only
the standard search results for the search term but also the informa-
tion about related items. As the calculation of related items is done by
an Amazon algorithm that evaluates the actions of Amazon users on
their website, the second prototype of Wasabe adapted effectively the
knowledge of the large Amazon user community for its own purposes.
The second prototype furthermore copied the ISBN numbers of the
Amazon search hits and pasted it into a query for a library web cat-
alog to gather information about the availabilty of goods in a library.
Due to the low response speed of the queried library web catalog, the
technology of querying was altered to speed up the prototype [10].
Asynchronous JavaScript and XML (AJAX) [4] was implemented to
change the method of querying the library catalog from server-side to
client-side [10].

Unfortunately, the data about the exact size of the source code of
Wasabe differs between a few dozens and multiple hundred lines de-
pending on the literary sources [10] [4]. Anyway, the amount of source
code needed to realize the three differently advanced prototypes is low
and the first working prototype has been produced extraordinary fast
in only ten minutes [4].

As a whole, all of the different Wasabe prototypes have remark-
able strengths of the patchwork prototyping approach in common: The
speed with which a working prototype can be created is extremly high
and can - at least in this case - compete even with low fidelity prototyp-
ing methods like paper prototyping (see section 4.1). In conjunction
with this, the efforts needed to both build and improve a patchwork
prototype can be really low without having to accept compromises re-
garding functionality and usability. Open access to large foreign data
sources is furthermore a key component to get the prototype working.
The advantage of harvesting in titanic databases of real data material
supersedes the need for dummy data and demonstrates the functional-
ity and helpfulness of an application in an even better way [4].

7 DEVELOPMENT TOOLS FOR WEB APPLICATIONS

As mashup programming requires skills in developing web applica-
tions, a new class of tools has emerged to allow less trained develop-
ers and even people with no programming experience to put together
different input sources on the internet to one common output [24] [9].
These applications are named as mashup development environments
(MDE) [9] and describe web-based visual programming languages [8].
Although these applications are primarily focussed on the production
of mashups at the moment, a closer look can be risked as the rapidly
ongoing evolution of web-based applications may lead to tools with
which more complex tasks like the development of patchwork proto-
types could also be fulfilled.

Mashup development environments like Yahoo! Pipes visualize the
dataflow between different data sources and allow to transform and
combine the collected information. At the end, the processed data
flows into one main output. To realize this, Yahoo! Pipes offers sev-
eral different programming interactions. On the one hand, this simpli-
fies some operations, but on the other hand, some may get even more
difficult [9]. Advantages as well as disadvantages can be seen in the
area of error handling as well. As the use of Yahoo! Pipes may mit-
igate a lot of different error types, new kinds of error may occur and
the source of errors may be obfuscated [8].

Another slightly varying approach is d.mix which can be used to
rapidly create new web applications. A difference to systems like Ya-
hoo! Pipes is d.mix’ attribute of providing a “site-to-service map” [7]
through a programmable proxy system. This is already a more ad-
vanced approach as it allows to already edit the source code which
collects and transforms the harvested data. The collection of such data
for the use in d.mix is quite easy as new data sources can be simply
defined when browsing a web site - preconditioned that a special tem-
plate has been created to define how the data has to be processed for the
use in d.mix. The attributes of the collected data can be altered using
property sheets in the d.mix application. This enables even non skilled
users to put together their own simple application and advanced devel-
opers are able to modify the code (written in Ruby) which processes
the data. Furthermore, if data from a web site shall be collected and
no application programming interface is offered, d.mix can be used to
parse data directly from the HTML source code. The access through
APIs is normally accelerated, but fetching normal HTML web sites
may slow down the whole application [7].

To conclude, mashup development environments may already share
some similarities with web-based tools which could produce patch-

31

work prototypes. Even though there is no possibility yet to include
source code of FLOSS or even own source code, these tools may be a
first prospect to more complex development tools in the future.

8 CONCLUSION

To sum up, patchwork prototyping is a promising new methodology
which consequently advances the possibilites of existing kinds of pro-
totyping by combining some of the main advantages of these proto-
typing approaches with both solid and rapidly evolving kind of soft-
ware. While the number of mashups and application programming
interfaces has grown rapidly over the last years, the field of patchwork
prototyping may play an important role when it comes to future-proof
prototyping methods. However, one should not lose sight of the possi-
ble negative aspects of patchwork prototyping as slackness may clear
some of the advantages.

The unequal opinions in several papers about the use of
commercial-off-the-shelf software in patchwork prototypes underlines
the need for further research about this topic. As it can be seen in
the list of references at the end of this paper, only few authors have
examined patchwork prototypes by now so it can be stated that the
“breakthrough” for this technologyhas has not yet happened. At the
end, as internet technologies are emerging really fast and technologies
like mashups and APIs are already widespread, this might be only a
question of time.

REFERENCES

[1] B. Boehm and C. Abts. Cots integration: Plug and pray? Computer,
32(1):135–138, 1999.

[2] C. Floyd. A systematic look at prototyping. Approaches to prototyping,
pages 1–18, 1984.

[3] I. R. Floyd. Using mash-ups for end-user rapid and responsive pro-
totyping in collaborative environments. Communications of the ACM,
37(4):21–27, 2006.

[4] I. R. Floyd, M. C. Jones, D. Rathi, and M. B. Twidale. Web mash-ups
and patchwork prototyping: User-driven technological innovation with
web 2.0 and open source software. In HICSS, page 86. IEEE Computer
Society, 2007.

[5] I. R. Floyd and M. B. Twidale. Issues in infrastructure development:
Proposed interventions for addressing third order issues. In CSCW, pages
1–4, 2008.

[6] I. R. Floyd and M. B. Twidale. Learning design from emergent co-design:
Observed practices and future directions. In Proceedings PDC, pages 1–
4, 2008.

[7] B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer. Programming by a
sample: rapidly creating web applications with d.mix. In UIST ’07: Pro-
ceedings of the 20th annual ACM symposium on User interface software
and technology, pages 241–250, New York, NY, USA, 2007. ACM.

[8] M. C. Jones and E. F. Churchill. Conversations in developer communities:
a preliminary analysis of the yahoo! pipes community. In Communities
and Technologies ’09: Proceedings of the fourth international conference
on Communities and technologies, pages 195–204, New York, NY, USA,
2009. ACM.

[9] M. C. Jones, E. F. Churchill, and M. B. Twidale. Mashing up visual
languages and web mash-ups. In VLHCC ’08: Proceedings of the 2008
IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 143–146, Washington, DC, USA, 2008. IEEE Computer Society.

[10] M. C. Jones, I. R. Floyd, and M. B. Twidale. Patching together prototypes
on the web. CSCW, pages 1–4, 2006.

[11] M. C. Jones, I. R. Floyd, and M. B. Twidale. Patchwork prototyping:
A rapid prototyping technique that harnesses the power of open-source
software. pages 1–19, 2007.

[12] M. C. Jones, I. R. Floyd, and M. B. Twidale. Patchwork prototyping with
open source software. In K. S. Amant and B. Still, editors, The Handbook
of Research on Open Source Software: Technological, Economic, and
Social Perspectives, pages 126–140. Idea Group Inc (IGI), 2007.

[13] M. C. Jones and M. B. Twidale. Mashups and cscw: opportunities and
issues. In CSCW, pages 1–4, 2006.

[14] J. Nielsen. Paper versus computer implementations as mockup scenarios
for heuristic evaluation. In Proceedings of the IFIP TC13 Third Inter-
ational Conference on Human-Computer Interaction, page 320. North-
Holland Publishing Co., 1990.

[15] T. O’Reilly. What is web 2.0: Design patterns and business models for
the next generation of software. MPRA Paper, 2007.

[16] J. Palfrey and U. Gasser. Mashups interoperability and einnovation. Berk-
man Publication Series, Harvard University Research Center of Informa-
tion Law and University of St. Gallen, St. Gallen, pages 1–33, 2007.

[17] ProgrammableWeb. Programmableweb - mashups, apis, and the web
as platform. http://www.programmableweb.com, 2009. visited
06.12.2009.

[18] J. Rudd, K. Stern, and S. Isensee. Low vs. high-fidelity prototyping de-
bate. interactions, 3(1):76–85, 1996.

[19] C. Shapiro and H. R. Varian. Information rules: A strategic guide to the
network economy. 2000.

[20] T. Tullis. High-fidelity prototyping throughout the design process. In
Proceedings of the Human Factors Society 34th Annual Meeting (Santa
Monica, CA, Human Factors Society 1990), page 266, 1990.

[21] M. B. Twidale and I. R. Floyd. Infrastructures from the bottom-up and
the top-down: Can they meet in the middle? In Proceedings PDC, pages
238–241, 2008.

[22] M. van Harnielen. Exploratory user interface design using scenarios and
prototypes. In People and computers V: proceedings of the fifth confer-
ence of the British Computer Society Human-Computer Interaction Spe-
cialist Group, University of Nottingham, 5-8 September 1989, page 191.
Cambridge University Press, 1989.

[23] M. Walker, L. Takayama, and J. A. Landay. High-fidelity or low-fidelity,
paper or computer choosing attributes when testing web prototypes. In
Human Factors and Ergonomics Society Annual Meeting Proceedings,
volume 46, pages 661–665. Human Factors and Ergonomics Society,
2002.

[24] N. Zang and M. B. Rosson. What’s in a mashup? and why? studying
the perceptions of web-active end users. In VLHCC ’08: Proceedings
of the 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 31–38, Washington, DC, USA, 2008. IEEE Computer
Society.

32

Evaluating Prototypes for Web Applications

Korbinian Huff

Abstract— In this paper the main methods to evaluate a prototype of a web application are introduced and their characteristics
are classified. These are the methods discussed: One can evaluate the prototype by analyzing the web server log data of a web
application, observing user interaction with the application with the help of tracking scripts, with user tracking software, video cameras
or eye tracking devices. Other methods discussed include questionnaires, interviews and the evaluation by an expert panel. All these
methods are classified according to the technical complexity, the required manpower, the location where they can be deployed, the
required number of test users, the financial means needed and the type of approach (practical / theoretical). Additionally the kinds
of information that can be gathered with each method are introduced and examples which problems can be evaluated using which
method are given. Finally an outlook on the future of web application evaluation is given.

Index Terms—Prototyping, Evaluation, Usability, Web Application

1 INTRODUCTION

Prototyping is a key factor in the development process of web applica-
tions. Prototyping means, that a preliminary model of an application is
being developed which simulates parts of the final application. These
parts might be incomplete in design and/or function and are solely
used for evaluation. In iterative software development processes, these
prototypes are then further developed using the information from the
evaluation process. Subsequently these advanced prototypes are then
re-evaluated until the application is feature complete and the evalua-
tion results are satisfactory. While web applications can help users to
achieve their goals, the usability of an application is a key part for the
application to be accepted by users. Evaluation for usability has been
shown to be useful ”in terms of increased sales, increased user produc-
tivity, decreased training costs and decreased needs for user support”
[2]. Therefore prototypes need to be evaluated and then refined ac-
cording to the evaluation results [5].

The following evaluation methods will be discussed and classified
in this paper:

• Analysis of web server logs

• Adding tracking scripts through a proxy server

• User tracking software

• Watch users using the prototype

• Observe users views with eye-tracking devices

• Evaluation by the means of questionnaires

• Evaluation by the means of face-to-face interviews

• Evaluation by an expert panel

In the following sections the different methods that can be used for
the evaluation of prototypes of web applications and the different kinds
of evaluation results that can be attained by the use of each method are
introduced. In the following section these methods are subsequently
classified and traded off against each other. Finally a conclusion and
an outlook on future evaluation methods are given.

• Korbinian Huff is studying Media Informatics at the University of Munich,
Germany, E-mail: korbinian.huff@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/2010

2 ANALYZE WEB SERVER LOGS

The analysis of web server logs is a very simple way to evaluate a web
application. As this analysis relies on web server logs it cannot be used
to evaluate prototypes of standard applications, but only prototypes of
web applications.

2.1 Technical information

Standard web servers usually automatically create server logs. These
logs contain information about each user query to the server. More
specifically, for each query the sender’s IP address, the sender’s userid
(if he is logged in), a time stamp, the exact request, the server sta-
tus and the size of the returned data is logged [7]. Additionally the
referring site and information about the user’s operating system and
browser are logged. A sample log entry for the request of the site
”index.htm” looks like this:
127.0.0.1 - - [03/Dec/2009:14:42:12

+0100] "GET /index.htm HTTP/1.1" 200 13990
"http://www.referingsite.com/links.htm"
"Mozilla/5.0 (Windows; U; Windows NT 6.0; de;
rv:1.9.0.15) Gecko/2009101601 Firefox/3.0.15
(.NET CLR 3.5.30729)"

2.2 What can be Evaluated?

While this log contains no information on what the user does exactly
in the web application itself, it can still help to evaluate the web ap-
plication, because the sequence of requests alone can tell much about
what the user did. With the log data a user’s visit can easily be retraced
from the beginning to the end. Even some clicks of the ”back” button
in the browser can - indirectly - be retraced using the logged data of
the referring site [16, 5].

Therefore developers can find starting points to improve their pro-
totype, for example when a lot of users just load the first page and then
leave the application that might be a sign that the first page is too con-
fusing for the user to even bother clicking through. As server response
codes are logged too, these might help in finding application errors.
For example when a lot of users encounter a ”404 file not found” error
that might be an indication that some link in the application is not set
correctly. In that case the logged referring site might help to find out
from where in the web application the user came when he encountered
the problem. As requests for each single element can easily be sum-
marized it is also possible to find out, which parts of the application are
the most used and thus where the developers should focus on. As the
time for each request is logged, it can be retraced where in the applica-
tion the users spent the most time. If this is for example a registration
site the evaluation result could be to simplify the registration process.
Obviously staying on a page for a longer time could also mean a user
was just distracted for example because he got a phone call. Therefore
a high number of server logs is needed to average the data and to get

33

valid results to almost any of the questions that can be answered using
this method.

Also implicitly saved is the last page of the application the user has
used. Knowledge of this exit page can also help for the evaluation of
the web application: If the exit page is for example an order confir-
mation page this might mean that everything went well and the user
just finished the use because he was done. If on the other hand the exit
page was a page where the user had to make a decision and instead
of making that decision he just exited the application, that is a sign
that this step might need improvement. In order to properly evaluate
which the last page the person visited was however it is required to
properly identify all requests from a single user in the logs. As the
userid in the logs is usually empty, because most web applications use
another login mechanism than the web server’s standard one, this is
usually done using the IP address. In some cases though, this address
is not enough to properly identify a single user because for example
if multiple people from a company use a shared Internet connection
they all have the same IP address. Therefore this analysis cannot be
done for every single user and as it is not possible to see from the logs
which log data is affected by this problem and which is not again a
great number of logs is needed in order to eliminate the effects of the
problem. [5]

2.3 How can this be Evaluated?
All this information can easily be evaluated using designated software
that computes these findings from server log data. From free and open
source software like AWStats [6] or Webalizer [3] to more complex
commercial solutions like Urchin Software [9] a large number of pro-
grams is available for this purpose. The test users then just need to use
the web application like they normally would [8].

3 ADD TRACKING SCRIPTS THROUGH A PROXY SERVER

A more complex method for the evaluation of web applications is to
deliver them through a proxy server that adds tracking scripts to the
web pages. While the setup and realization is more complex, also
more - and different - information can be gathered with this method.
Therefore other problems of the web application can be assessed using
this method. Just like the previous method this method relies on web
technology for gathering information and can therefore solely be used
for prototypes of web and not for normal applications.

3.1 Technical Information

Fig. 1. Use of a proxy server [1]

This method focuses on the things the user actually does in a web
application, like filling out a form, moving the mouse or clicking
on something. This information is not automatically transmitted to
the server, so additional measures are needed. Nowadays most web
browsers are Java Script-capable, so the information can be gathered
using Java Script that is added to the pages of the web application.
This Java Script can save any mouse movements, mouse clicks, the
size of the browser window and keys pressed on the keyboard. This
information is subsequently being transmitted back to the researchers.
As adding Java Script in each page of the application would induce a

high effort on the server-side another approach is used: As illustrated
in figure 1, a proxy server is used as intermediary between the client
and the server. This setup ensures that only a small change has to be
made on the server-side and nothing has to be changed on the user’s
side. This proxy server simply adds a single line of code to every html
site passing through that adds the script code to the page. The gathered
data is then sent back to the proxy server in regular intervals, where it
is stored in a log file that can later be analyzed. Naturally a standard
log file with the information discussed in the previous section is also
created. The website itself is not changed in any way by the added
Java Script. Even already existing scripts on the page still work after
adding the tracking script. Yet, the script is limited to things happen-
ing within the web application. If a user uses a browser menu or opens
a new tab this as well as anything happening outside the browser like
opening another application would not be recorded. [1]

3.2 What can be Evaluated?
Using this method the data discussed in the previous section can be
merged with the new information that is gathered with the Java Script.
This leads to a detailed picture of what exactly the user did in the
application and when. In addition to the questions that can be an-
swered using conventional server logs, other questions can be an-
swered with this method. Using the mouse movements it can be evalu-
ated if the user immediately found the menu options he was looking for
(straight mouse movement to the items) or needed some time to find
it (slow, searching mouse movements, possibly hovering over other
menu items). This can help evaluating the navigational structure of a
web application. This approach uses the assumption that there is a di-
rect relationship between the gaze position and the cursor position on
the screen. Previous research shows that this relationship exists, mean-
ing that the probability that someone is looking at the part of the screen
where the mouse cursor is, is high, (more than 75%) though the num-
ber varies under different settings [4]. Using this information one can
also create a visualisation of the mouse movements in a web applica-
tion by overlaying the mouse tracks on a screenshot of the application.
An example for such a visualization is shown in figure 2. Such a vi-
sualization can help to evaluate which information in an application is
noticed by the user and which is not. For example figure 2 shows, that
the user did not notice the information in the top right of the applica-
tion. Depending on the kind of information that is located there, this
could tell the developers to move the information somewhere where it
would be noticed by more users.

As the Java Script logs each mouse click and key press inside the
web application, this method also logs actions that would not have
been recorded by conventional server logs as they do not result in
server requests. An example for this would be a click to hide some
information in an application. This process can happen locally in the
user’s browser without any server interaction. However this informa-
tion is important for the evaluation, because it might help the develop-
ers to find out which information can be hidden from the beginning in
order to have a cleaner user interface without loosing information that
is important for the user. [1]

3.3 How can this be Evaluated?
These results can be gathered using designated software for the proxy
server like the UsaProxy that has been presented by Atterer et al. [1] or
the WebQuilt system [11]. This software not only collects the data, but
also processes it and offers reports that can then be used for evaluation.
The test users can then use the web application just like they normally
would and their actions would be recorded. Due to the high extend of
possibly private data that is collected from users, it has been suggested
to first ask for the users permission to record the data in order to deal
with possible legal and ethical problems of the data collection [1, 5].
This can happen either within the web application itself or in a popup
window [1].

4 USER TRACKING SOFTWARE

Even more information on the usage of a web application can be gath-
ered using user tracking software. This tracking software is installed

34

Fig. 2. Mouse trails on a screenshot of the web application [1]

on the test-users computers in order to record user interaction of any
kind.

4.1 Technical Information
The method relies on installing software on computers of test users.
Unlike the proxy server method, this software can then be configured
to record virtually anything that happens on the computers and is not
limited to user actions within the web application itself. After record-
ing the information the applications sends it to the developers. The ad-
vantage of this method is the huge amount of information that can be
gathered. While for example for the experiment of Goecks and Shavlik
only the number of mouse clicks, the scrolling and mouse activity are
recorded [8], for other scenarios many other things can be logged as
well. Like with the proxy server method, any key presses could also be
recorded and additionally only this method can for example log when
another application is started. User tracking software also allows the
developers to record screenshots or even video of what is happening
on the screen during the test. With this method, the amount and kind
of data collected can be precisely adjusted to match the developer’s
intentions about what needs to be evaluated [5].

4.2 What can be Evaluated?
The main difference to the data that can be collected using the proxy
server method is, that using this method not only things happening
within the web application can be recorded, but everything happening
on the computer. For example if a user would run the calculator appli-
cation to do calculations based on information in the web application
this would also be recorded and could be used by developers to im-
prove the prototype by giving the user the possibility to calculate these
information within the application. Additionally with this method it
can also be retraced if for example an user opens an external search
website to find information in the prototype. This helps in the evalua-
tion of the web application because it shows the user was not content
with or could not find the search option in the application. [1]

4.3 How can this be Evaluated?
The method can be used remotely, but requires users to install the ap-
plication before taking part in the test. Therefore the gateway hurdle
for the user to take part is higher than when using a proxy or server
log based method [1]. Depending on the amount and type of infor-
mation recorded the analysis of the data differs. While some kinds of
logged information can easily be summarized and evaluated using sta-
tistical software, other information like screenshots or videos need to
be evaluated manually [17].

5 OBSERVE USERS

A prototype of a web application can also be evaluated by watching a
user use it. This can give developers an idea on how users approach

certain problems and help them to evaluate how useful and how easily
operable the prototype is. As these methods, in contrary to the ear-
lier discussed methods, do not require a technical implementation, all
following methods can also be used with paper prototypes.

5.1 Just Observe Users
A fairly easy method to evaluate a prototype is, to watch a user interact
with it. This can be done by simply observing a user and, where nec-
essary, by taking notes. Usually however this is done with the help of
at least one video camera [19]. This enables the developers to be able
to exactly recreate every single step a user performed. Normally users
are given a specific task to fulfill in the application [1], but depending
on how advanced the prototype already is, it is also feasible to just let
the user explore the application on his own. To gain additional insight
on the actions, users can also be asked to explain their actions while
they perform it [12].

5.2 Watch Users with Eye-Tracking Devices
Eye trackers are devices which enable application developers to re-
trace the direction of the view of users while using the web applica-
tion. There are two major technical implementations to realize eye
trackers: head-mounted and stationary cameras. The former are cam-
eras that are mounted on a helmet, that capture the eye movement of
the user. The latter option realizes this by filming the user’s eyes from
a stationary location. Usually this means having one or, for enhanced
precision, more cameras mounted near - usually under - the screen the
user uses the prototype of the web application on [13]. This setup
makes it possible to retrace where a user looked during the use of the
web application, but the technical equipment has the disadvantage that
it creates a relatively artificial environment for the tester which might
result in different behavior than in non-test situations [5].

5.3 What can be Evaluated?
Observing users can help to evaluate general usability problems with
the prototype. The possible results include all that can be acquired
by previous methods and more. By watching a user, observers can
for example easily notice when a user is stuck somewhere in the ap-
plication or when he’s frustrated by a certain aspect. Obviously the
limitation for this aspect is, if the user is not explicitly expressing his
feelings they cannot be recorded [17]. Therefore the method of in-
terviewing the user is often used afterwards, to gain insight on not so
obvious feelings. This method is particularly suitable for the evalua-
tion of device-specific problems with the prototype, especially because
these problems would often not be recorded using other methods. For
prototypes of web applications device specific feedback is however
very important as web applications can be used on numerous different
web-enabled devices. If for example a web application would only be
poorly usable on a mobile device without touch input, previous meth-
ods would, if at all, record that the user exits the application within
a short time frame from accessing it after pressing a few keys. Us-
ing this method developers can observe, that the user has problems to
navigate through the application using only the arrow buttons on the
device. Using this method it can for example also be evaluated, that
the application is not working the way it should, because the hardware
does not support Java Script or that Java Script is disabled. Using only
log based methods, this would not have been noticed, because when a
log entry says the user clicked the menu button the developers would
automatically assume, that this opened the actual menu without know-
ing, that something prevented this. [14]

While these and many other things could also be evaluated using
the eye tracking method, the method usually focuses on the positions
where test users are looking, because the method is way to elaborate
to be used for simpler tasks. Therefore the evaluation concerns mainly
the layout of the application. The tracking of the views makes it pos-
sible for the developers to see which parts of an application the user
noticed and which information he missed. While this evaluation can
also be made using methods that log the movements of the mouse cur-
sor, these methods all just have a certain (although high) probability
of predicting the user’s views [4], while this method returns definite

35

results. The method also shows where a user would have expected the
information he was looking for. This information can help developers
to evaluate the prototype by comparing this with the place where the
information is actually located. It can also easily be evaluated which
information on a site the user was looking for. As shown in figure 3,
the most important information for the user in the example is located
on the bottom of the page. If that result is consistent in the evalua-
tions of multiple users, in a later prototype this information should be
located near the top of the page in order to help the user to locate it.
[14]

Fig. 3. Heatmap created by eye tracking software [12]

5.4 How can this be Evaluated?
Videos and records of sessions where test users use the prototype can
best be evaluated by looking through them and listing and summariz-
ing the problems the users encountered.

Traditionally the mapping of eye movements to the web applica-
tion was done by hand. In the meantime software was introduced to
simplify that process. First with software that provided templates that
allowed to speed up the by hand mapping process then by software like
the WebEyeMapper [18] that automates the whole mapping process.
The evaluation itself can then be simplified by heatmaps that show
graphically where a user looked. An example for such a heatmap is
given in figure 3. These heatmaps and other analysis results and dia-
grams can be automatically created by designated software like NYAN
[14].

6 EVALUATION BY ASKING A USER

Some information cannot be attained by simply observing a user.
Therefore other methods are used to obtain information about a user’s
intentions, feelings and thoughts when using the web application. This
subjective information can be useful to understand how a user ap-
proaches certain problems and the application itself. Users are ques-
tioned in order to give developers an insight to their perspective [17].
To obtain such information two methods can be used: After they used
the prototype, the users can be asked to fill out questionnaires or the
users can be asked directly in face-to-face interviews.

6.1 Evaluation by the Means of Questionnaires
Users can be asked to fill out questionnaires that ask them to report
their experience with the prototype. These questions can be asked in

paper based or in web based form. That and the fact that the questions
asked can be precisely adjusted to match the possible problems of the
web application make this method very flexible and usable in various
situations. Closed questions are used to rate specific aspects of the
application for example on a likert scale. From the answers to these
questions absolute data can be computed to assess and compare the
certain aspects. No or only poorly, absolute data can be gathered from
open questions. Therefore these are mostly used for suggestions or
wishes of the users. While in paper based questionnaires the questions
asked to a user are predefined and can at most be skipped if they are
not applicable to the user, online based questionnaires can be more
flexible: Depending on previous answers of the user, different follow-
up questions can be presented. Nevertheless all variations have to be
included in the software from the beginning.

6.2 Evaluation by the Means of Face-to-Face Interviews
In face-to-face interviews that limitation does not exist and the inter-
viewer can fully adapt the questions asked if the situation arises that
this seems beneficial. Although, this and the fact that usually open
questions are used in interviews, leads to the disadvantage that few
absolute and thereby comparable data is gathered using this method.
On the other hand being able to ask a user to further elaborate on
something he said can be necessary for the understanding of his re-
marks. Also an interviewer can rephrase and explain a question if
it was misunderstood by the interviewed person. Hence the method
is very flexible and can be used with different questions to evaluate
numerous different aspects of web applications. The data collected
in interviews largely depends on the interviewer. Therefore special
knowledge is needed to conduct interviews in a way that produces re-
liable data rather then unwillingly influence the user to adapt a certain
opinion. [17]

6.3 What can be Evaluated?
Although these methods certainly have disadvantages, they are neces-
sary and important methods, as using these methods, information can
be gathered, that cannot be gathered by other methods [17]. While in-
dividual problems can be addressed with other methods, things like the
overall satisfaction with a web application can be the key factor that
decides if a user uses the application or rather a competing product.
If for example there are only so much funds to add one feature to the
application, it can be valuable to know that, while all possible features
have their advocates, one feature would increase the overall satisfac-
tion more that the others. Other topics like the feeling of an user while
using the application, can help to evaluate that, for example, the user
interface is perceived as intimidating or that the colour composition
of the application causes certain feelings which might or might not be
wanted.

Only these methods offer the possibility to get direct suggestions
for improvement the developers might not have thought about. Using
questions like ”do you have anything else to add?” users can even ex-
press their opinion on parts of the web application that were not part
of the initial evaluation. The interviewed users can also be asked to
make suggestions for additional features that they would like to see in
the application.

6.4 How can this be Evaluated?
Answers to open questions and generally answers given in interviews
without a predetermined scale can generally best be evaluated by sim-
ply reading every single answer, as a summarization of the results is
often hardly possible due to the wide array of answers. For some ques-
tions though, a summarization using generalizations like ”most users
mentioned user interface elements” can help. [17]

Data gathered using these generalizations and obviously already ab-
solute data gathered in questionnaires can then be further evaluated.
Therefore standard spreadsheet programs like Microsoft Excel can be
used as well as designated statistical software like SPSS. There are
also designated software products just for the analysis of question-
naires regarding the usability of software. One example for such a
software is SUMI [15].

36

7 EVALUATION BY AN EXPERT PANEL

As other methods are often rather complex and can not be completed
in a short time frame, the method to evaluate a web application by an
expert panel has been introduced. This expert panel can assess the web
application in a timely fashion and still point out where a prototype
needs improvement.

7.1 Method Details
Using this method means first putting together a panel of experts that
will then evaluate the web application. In order for the method to pro-
vide accurate results the experts need to be familiar with the matter of
usability evaluation. The usability experts are then asked to assess the
application in several categories according to a given checklist. Pop-
ular checklists used include the Keevil Usability Index [10] and the
Web Usability Index [10], but depending on the requirements of the
evaluation own criteria can be used as well. For example the Keevil
Usability Index contains questions in regard to finding, understanding
and presenting information as well as questions in regard to if the in-
formation is complete and helps the user to perform a task. Using the
Keevil Usability index questions like ”Is new information indicated?”
can be answered with yes, no or with not applicable. Other, more
advanced, checklists give the experts a scale to evaluate the question
instead of a yes and no option in order to get a more differentiated
answer. The Web Usability Index uses a numerical scale from one to
five. The checklists are the main issue of the method. For example
if the questions leave room for interpretation different experts might
gather contradicting results.

7.2 What can be Evaluated?
The topics that can be evaluated and the problems that can be found are
largely dependent on the checklists used. Examples from the Keevil
Usability Index are given in the last section. The Web Usability Index
[10] covers similar topics: navigation, interaction, quality and up-to-
dateness, design and accessibility. These categories can be used to
evaluate any prototype of a normal web application, but other cate-
gories can be included, if desired. The usual approach for this method
is to evaluate the own web application and one from a competitor.
Thereby a direct comparison can be made. The different categories
in the Web Usability Index enable developers not only to compare the
overall results but also the results in each category.

7.3 How can this be Evaluated?
Using the Keevil Usability Index [10], the result for a web application
is computed by dividing the number of ”yes” answers by the number
of the sum of ”yes” and ”no” answers. The result is a percentage that
represents the overall result of the evaluation for the web application,
where a perfect application would reach 100%.

Using the Web Usability Index [10], a more detailed result can be
computed using the following formula:

(sum of question values - number of answered questions)/((number
of questions - number of questions answered with n/a) * 4) *100

The result is a percentage that indicates the number of usability
problems. Therefore a perfect application would reach 0%. As the
Web Usability Index has different categories, not only a overall result
but also results for every single category can be computed using the
same formula.

8 CLASSIFICATION OF METHODS TO EVALUATE WEB APPLI-
CATIONS

There are multiple ways to classify the introduced methods. The fol-
lowing classification can help in finding the appropriate method for
different situations.

8.1 Complexity
The complexity to deploy a certain method is a key factor when choos-
ing a method for prototyping. The deployment complexity includes
the technical means and the required manpower that are required for
the realization of the method. Therefore the complexity is also a main
factor regarding the financial means needed.

8.1.1 Technical Complexity
For the analysis of web server logs the complexity is relatively low
which makes this method rather simple to deploy. That is because
the required data for the evaluation is usually already being gathered
automatically and just needs to be evaluated with analysis software.
As on the server-side, no changes are required on the user’s side: The
test user can use the application just like he would use it when he’s not
testing it.

Compared to that, the complexity of using tracking scripts is higher,
because this method needs an additional proxy server with special
tracking software. This means small changes are necessary on the
server-side, while again none are necessary on the user’s side. [1]

When using user tracking software, the hardware requirements on
the developer’s side are relatively low, as only a web server to upload
the results to and the tracking software itself is needed. Nevertheless
the tracking software has to be elaborately configured to record enough
but not to much information, therefore the overall technical complexity
is average.

Users can be observed using the application without any device
other than the device they use the application on. Nevertheless to
improve traceability of the results these sessions are often not only
recorded on paper but also on video. Therefore at least one video
camera is needed. [1, 19]

The technical complexity when using the eye tracking method is
fairly high, because workstations equipped with eye tracking devices
as well as special software to map the gathered data to the application
are needed [18].

The technical complexity of using the evaluation method of ques-
tionnaires is low, as only paper based questionnaires or designated
web-survey web applications are needed. These applications already
exist in great numbers and have rather low technical requirements on
the required server.

For face-to-face interviews with test users the technical complexity
is very low as only a standard workspace is needed.

If the evaluation is done by an expert panel, the technical complex-
ity is also very low, as theoretically only one workspace without any
special technical hardware is sufficient.

8.1.2 Required Manpower
To analyze web server log data or the data gathered by proxy servers
or the data gathered by the use of user tracking software, the required
manpower is very low as the gathered data can theoretically be ana-
lyzed by just one person.

When using the methods that observe users, the required manpower
is high as all test users that come to the test lab need to be introduced
to the setup/technology and need to be supervised throughout the test
[1]. Additionally for the eye tracking method the technical setup is
complex, so specially trained people need to be employed.

For the questionnaires method, obviously more manpower is
needed if paper based questionnaires are used, because the informa-
tion on paper needs to be digitalized in order to analyze it. Never-
theless the required manpower for this method is rather low, as the
following analysis of the data can again be done by just one person.

Face-to-face interviews on the other hand need a high amount of
manpower, as obviously interviewers are needed to conduct the inter-
views themself.

If an expert panel is used for evaluation, the required manpower is
limited to the experts and a person to analyze the data. Though, the
method can only be done with properly qualified experts, and the task
to find them might add to the complexity of this method. [10]

8.2 Remote or On-Site Deployment
When choosing a prototype evaluation method it is also important to
know where a certain method can be deployed. While some meth-
ods can be deployed remotely, others require people to come to an
on-site location. On-site setups have the advantage that more environ-
ment variables can be influenced by the researchers, for example by
supplying the same hardware to all test users hardware problems can
be barred and by using a bare room for the test, distractions of testers

37

that might result in different behavior can be reduced. Obviously these
factors can also be a disadvantage for some evaluations, because test
users are taken out of their normal behavior patterns and might behave
different in these rather artificial environments. [5]

When using the method of analyzing web server logs, this method is
considered as remotely deployed, as the test users can interact with the
web application and thereby test it from wherever they have Internet
access and do not have to come to a designated location [1].

The same applies to the use of the method that uses proxy servers
to add tracking scripts to web pages. The data gathered by this method
is also gathered remotely and the test users can access the web appli-
cation from wherever they choose to. [1]

Data collected by user tracking software can also be transmitted
from a remote location so that test users can test the web application
from a location of their choosing.

In contrary, the eye tracking method and the method to simply ob-
serve users requires test users to come to a designated location. There-
fore this method is considered to be on-site.

Questionnaires can be answered remotely whether they are paper or
web based.

Face-to-face interviews are usually conducted at a designated loca-
tion the testers have to come to. The method is therefore considered
as on-site.

An expert panel can test the web application remotely and after-
wards submit their findings to the researchers. Though it is also fea-
sible to perform these tests on-site, as due to the small number of ex-
perts only few resources are needed on-site and remote testing would
require a setup that would make the web application accessible from
the outside, which might not be desired for various reasons.

Nevertheless all methods that can be deployed remotely can the-
oretically also be deployed on-site if for any reason that is desired.
Similarly the use of eye tracking devices and the conduction of face-
to-face interviews and user observations could theoretically also be
done at the testers homes or other locations of their choosing, though
this is usually not done due to the much higher effort needed.

8.3 Number of Users
When planing an evaluation it is also important to know how many test
users are needed for which method. Methods that use small numbers
of users can often be cheaper and easier to deploy, while the informa-
tion gathered through methods that need high numbers of test users
can be more universally valid.

For the method that uses the server logs, a high number of test users
is needed, as only very few information is gathered from each user.
That means that the information might not always be unambiguous, so
more test data helps to point out where real problems are and where for
example a user just might have been distracted and therefore needed
longer for a certain step. The fact that for this method no changes have
to be made on the user’s side also make this method ideal for a high
number of users. Also as only few data is gathered from each user even
high numbers of users will not complicate the analysis of the data by
much.

More data is gathered from each user using the evaluation method
that adds tracking scripts through proxy servers. Therefore for this
method fewer test users are required. Nevertheless as also for this
method usually no changes on the user’s side are needed, information
from a great number of test users can also be easily gathered. As
if the number of test users is too high, the analysis of the data gets
increasingly complicated, a medium number of test users is usually
needed.

User tracking software gathers not very different information, so a
comparable number of testers is used for this method.

When using the eye tracking method all test users have to use the
devices one after another [1], so a high number of testers is not fea-
sible. Also for this method and the method of just observing people,
the personnel expenditure is fairly high. Therefore comparatively few
users are observed with these methods.

The results of questionnaires are usually the better the more people
answered them. That means the overall number of people needed for

this method is medium to high.
Naturally interviews require rather high amounts of manpower.

Therefore this method is only reasonable for small groups of testers.
Using an expert panel means no test users are needed at all. This

method relies just on the experts. [10]

8.4 Cost

The cost to deploy a certain method can be the main factor when
choosing a method to evaluate a prototype of a web application and
is closely linked to the complexity of the method used, because the
technical requirements and the required manpower usually accounts
for the highest costs. Additionally factors like the number of partic-
ipants in the test and if the method can be deployed remotely or test
users have to come to a specific location influence the costs, as more
users usually means more effort and for on-site deployment a desig-
nated space for the tests is needed [1].

As both the technical and human resources requirements are low
when using the method to analyze website log data, the overall cost of
this method is low.

As for the proxy server method the human resources requirements
are as low, but because the technical requirements are slightly higher
the overall cost of the method is mean [1].

The cost for the user tracking method is made up of the relatively
low costs on the technical side and the also relatively low staff costs.
Nevertheless the method requires the users to install the tracking soft-
ware on their computers instead of doing nothing in particular (web
server logs) or simply clicking ”yes” (adding tracking scripts through
a proxy server), so an incentive to install the software might be needed.

Simple observations of users interacting with a prototype actually
cause fairly high costs, as much supervising staff is needed and users
have to come to a designated location for the evaluation.

Usage of the eye tracking method is rather complex and therefore
the costs for it are high. Both the high technical complexity and the
high personnel expenditure are the reasons for this. Additionally the
time consumption for the test users is high and as the method can-
not be deployed remotely they need to travel to the test location, so
considerable payments for them might also be required.

For both, the paper based and the web based questionnaires, few
people are needed and the technical requirements are also mean, so
the overall cost of the method is mean.

Face-to-face interviews are more expensive, because for this
method, the personnel expenditure is rather high. Just like with the
eye tracking method, payments for test users might also be needed, as
the time consumption for them is significant and they need to travel to
the interview location.

The main part of the costs for the expert panel method is the pay-
ment for the experts. If external experts are used this payment may
vary, according to the needed level of specialization of the experts.
If available, experts from the own company can also be used to save
money. Therefore the overall cost of this method is low [10].

8.5 Theoretical / Practical Approach

Web applications can either be assessed using a practical approach,
where users directly use the application and it is recorded and an-
alyzed how they used it and where they might have had problems.
Alternatively a rather theoretical approach where experiences and re-
quirements of users are prompted with questions can be used. Another
option for a theoretical approach is to assess the web application ac-
cording to best practices and evaluate where problems are, by analyz-
ing where the application differs from these. [10]

The methods that use the practical approach are the analysis of web
server logs method, the method that adds tracking scripts to the ap-
plication with proxy servers, the method that uses tracking software,
the method that requires observing people using the prototype and the
method that uses eye tracking devices. All of these have in common,
that test users use the actual web application and researchers assess the
application according to the data gathered during actual usage.

38

Table 1. Classification overview

Method technical complexity required manpower remote/ on-site number of users cost approach
Analysis of web server logs low low remote high low practical

Tracking scripts average low remote medium medium practical
User tracking software average low remote medium medium practical
Observation of users low high on-site low high practical

Eye tracker high high on-site low highest practical
Questionnaires low low/medium both medium/high medium theoretical

Face-to-face interviews low high on-site low high theoretical
Evaluation by an expert panel low low both none low theoretical

In contrary a rather theoretical approach is used when the methods
of questionnaires, face-to-face interviews or the evaluation by an ex-
pert panel are used. In the first two, the web application is evaluated
by the answers to questions regarding the expectations of the program
and regarding the actual usage. In the expert panel method the web
applications are rated according to checklists that list what an optimal
application should be like.

Table 1 gives an overview of all the classifications of the different
methods.

9 CONCLUSIONS AND OUTLOOK

Of the presented methods none fits for all situations as no single one
can point out all problems. Therefore for a thorough evaluation usu-
ally a combination of these methods is required to capture all vari-
ous aspects. It my be feasible to start the evaluation process with a
method that is rather simple to deploy like the expert panel method,
then advance the prototype accordingly and use more complex and
therefore more expensive methods not before the main aspects that
can be found using the simple method are fixed, because it is likely
that the more costly method would only bring up those bigger prob-
lems which are possibly masking smaller ones, too. Also simpler -
and thereby cheaper - methods can be used to point out which parts of
the prototype need further evaluation using more advanced - and more
expensive - methods and which parts already perform well and do not
need to be evaluated using the costly approach. Thereby the use of
basic methods as a start can save money that would otherwise be spent
evaluating perfectly well performing parts of the application. [16]

Due to the rising number of web enabled mobile devices with dif-
ferent device specifics, the increasing number of touch-enabled com-
puters, as well as the rising number of devices that enable web surfing
on television screens users expect to be able to use web applications
on these devices, too. Therefore in the future more evaluation methods
are needed that can capture device specific problems of new hardware
products. [19]

REFERENCES

[1] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s every move:
user activity tracking for website usability evaluation and implicit inter-
action. In WWW ’06: Proceedings of the 15th international conference
on World Wide Web, pages 203–212, New York, NY, USA, 2006. ACM.

[2] J. O. Bak, K. Nguyen, P. Risgaard, and J. Stage. Obstacles to usability
evaluation in practice: a survey of software development organizations.
In NordiCHI ’08: Proceedings of the 5th Nordic conference on Human-
computer interaction, pages 23–32, New York, NY, USA, 2008. ACM.

[3] B. Barrett. Home of the webalizer, December 2009.
http://www.mrunix.net/webalizer/ (Last checked:
01.12.10).

[4] M. C. Chen, J. R. Anderson, and M. H. Sohn. What can a mouse cursor
tell us more?: correlation of eye/mouse movements on web browsing. In
CHI ’01: CHI ’01 extended abstracts on Human factors in computing
systems, pages 281–282, New York, NY, USA, 2001. ACM.

[5] E. Cuddihy, C. Wei, J. Barrick, B. Maust, A. L. Bartell, and J. H. Spyri-
dakis. Methods for assessing web design through the internet. In CHI
’05: CHI ’05 extended abstracts on Human factors in computing systems,
pages 1316–1319, New York, NY, USA, 2005. ACM.

[6] L. Destailleur. Awstats - free log file analyzer for advanced statistics (gnu
gpl)., December 2009. http://awstats.sourceforge.net/
(Last checked: 01.12.10).

[7] A. S. Foundation. Log files - apache http server, December
2009. http://httpd.apache.org/docs/1.3/logs.html
(Last checked: 01.12.10).

[8] J. Goecks and J. Shavlik. Learning users’ interests by unobtrusively ob-
serving their normal behavior. In IUI ’00: Proceedings of the 5th inter-
national conference on Intelligent user interfaces, pages 129–132, New
York, NY, USA, 2000. ACM.

[9] google inc. Urchin-software von google, December 2009.
http://www.google.com/urchin/de-DE/index.html
(Last checked: 01.12.10).

[10] I. Harms, W. Schweibenz, and S. Johannes. Usability evaluation von web-
angeboten mit dem web usability index. In 24. DGI-Online-Tagung 2002:
Proceedings der 24.DGI-Online-Tagung 2002 - Content in Context, pages
283–292, 2002.

[11] J. I. Hong, J. Heer, S. Waterson, and J. A. Landay. Webquilt: A proxy-
based approach to remote web usability testing. ACM Trans. Inf. Syst.,
19(3):263–285, 2001.

[12] interactive minds. Eye tracking usability — interactive minds, Decem-
ber 2009. http://www.interactive-minds.com/en/
eye-tracking-usability/ (Last checked:
01.12.10).

[13] interactive minds. Eyetracker eyefollower — interactive minds, Decem-
ber 2009. http://www.interactive-minds.com/en/
eye-tracker/eyefollower/ (Last checked:
01.12.10).

[14] interactive minds. Nyan 2.0xt editions — interactive minds, De-
cember 2009. http://www.interactive-minds.com/en/
eye-tracking-software/nyan-20xt-editions/ (Last
checked: 01.12.10).

[15] J. Kirakowski. The use of questionnaire methods for usability assess-
ment, 1994. http://www.ucc.ie/hfrg/questionnaires/
sumi/sumipapp.html (Last checked: 01.12.10).

[16] N. Nakamichi, K. Shima, M. Sakai, and K.-i. Matsumoto. Detecting
low usability web pages using quantitative data of users’ behavior. In
ICSE ’06: Proceedings of the 28th international conference on Software
engineering, pages 569–576, New York, NY, USA, 2006. ACM.

[17] M. Q. Patton. Qualitative research and evaluation methods. SAGE, 2002.
[18] R. W. Reeder, P. Pirolli, and S. K. Card. Webeyemapper and weblogger:

tools for analyzing eye tracking data collected in web-use studies. In CHI
’01: CHI ’01 extended abstracts on Human factors in computing systems,
pages 19–20, New York, NY, USA, 2001. ACM.

[19] S. Waterson, J. A. Landay, and T. Matthews. In the lab and out in the
wild: remote web usability testing for mobile devices. In CHI ’02: CHI
’02 extended abstracts on Human factors in computing systems, pages
796–797, New York, NY, USA, 2002. ACM.

39

Evaluating Prototypes for Web Applications

Thomas Creutzenberg

Abstract— The subject of this paper is to present an overview over some possibilities to evaluate prototypes for web applications.
The focus is set on different tools and methods. They are divided into separate categories. The category evaluation with checklists
features the Keevil usability index and the Web usability index. Behavior-based evaluation with logging presents Web Usage Mining
with WUM, WebQuilt, UsaProxy and GINIS, automated tools supporting evaluation takes a look at Quantitative Evaluation of Web
Sites and Automated Evaluation with Guideline Review and the category interviews introduces the Repertory Grid Technique for Web
Site Evaluation. It is described why a tool to evaluate the flow experience is missing and a new possible form of the evaluation of web
applications is suggested. Then an overview over the different tools and methods is given. Finally it is concluded that checklists are
the most flexible type of evaluation for web applications, automated tools supporting evaluation are best for evaluating formal aspects
prototypes of of web applications and some of the tools of behavior-based evaluation with logging are best for remote evaluation in
detail.

Index Terms—Evaluation, Prototype, Web Application, Overview, Keevil Usability Index, Web Usability Index, Web Usage Mining,
WUM, WebQuilt, UsaProxy, GINIS, Automated Web Evaluation, Quantitative Evaluation of Web Sites, Guideline Review, Repertory
Grid Technique, Flow Experience

1 INTRODUCTION

This paper aims at giving an overview over some methods and tools
to evaluate prototypes of web applications as well as classifying them,
although this paper does not claim to be exhaustive. The focus lies on
the different tools and techniques and not so much on the underlying
theories behind the approaches. Also, an outlook on possibly missing
tools is given.

The structure of this paper is as follows: At first the question is
clarified why prototyping is important for software development in
general. Then some of the different approaches to evaluate web ap-
plications and their prototypes are presented. The tools and methods
discussed are divided into different categories. Types of evaluation can
be distinguished between formative evaluation, this takes place during
the design process, and summative evaluation, this takes place after
the product or the stage of a prototype is final [10]. Evaluation types
are not useful as categories though as tools can be useful for formative
and summative evaluation at the same time. But tools have different
approaches to the process of evaluation. They employ different means
to achieve the evaluation of web applications although they share the
same theory and goal. To measure and evaluate the usability of a web
application there is for example the approach to convey a survey or to
log user behavior. The categories covered in this paper are evaluation
with checklists, behavior-based evaluation by logging their actions,
automated tools supporting evaluation and conducting interviews with
the Grid Repertory Technique. After presenting tools and methods in
each of those categories ordered by date of publication there is an out-
look on the flow experience while interacting with a web application.
A tool to measure and evaluate the flow experience by users is not de-
veloped yet. Next is a section to suggest a new form of evaluation with
modular prototypes of web applications to improve their usability and
layout. The next section then discusses the different evaluation tools
and techniques and tries to compare them against each other. Finally
it is concluded which tool is best used for which application are made
here.

2 MOTIVATION

The motivation behind this paper is to present different types of eval-
uation tools and methods for prototypes of web application compared

• Thomas Creutzenberg is studying Media Informatics at the University of
Munich, Germany, E-mail: thomas.creutzenberg@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009

to each other. Already 25 years ago Floyd [5] stated: “(...) prototyping
serves to introduce into software development methodology an ele-
ment of communication and feedback”. Prototyping is not only done
for theorem proof but also because changes and improvements can be
made and tested a lot easier with a prototype before the final version of
the product is presented to a large audience. It is important to evaluate
prototypes of web applications even though they can be updated quite
easily by just putting a new version on the hosting server because the
application should be as final as possible when it is published. This
is because poor web applications are turning users away according to
Matera et al. [10].

Atterer et al. stated in 2006 that “in recent years, the web has con-
stantly been gaining importance as a platform for applications” [1]. A
web application is an application to be accessed via a web page with
a browser. Due to this connection the evaluation methods and tools
for web pages and web sites are also valid for web applications. It is
redundant to say that this is also true for their prototypes.

As the web hosts a growing number of web applications in recent
years and as prototyping is an integral part of software development,
knowing how to evaluate prototypes of web applications can only be
of advantage. The following sections will give a rough overview over
some of the possibilities to evaluate how to achieve this goal.

3 EVALUATION WITH CHECKLISTS

Checklists are a popular tool to conduct empirical studies or surveys.
A checklist consists of a number of questions with one response option
each. Response options can be check boxes in various quantities and
meanings or the possibility to write down text or numbers. Checklists
can be filled out by experts conducting an interview for qualitative
reasons. Alternatively, it can be a survey in written form or an online
survey which is normally used to get feedback from larger audiences to
get quantitative feedback. The answers to the questions are evaluated
as intended by the designer of the checklist. This knowledge can then
be used to improve the web application.

There are several tools to evaluate web applications with checklists
like the Keevil usability index [8] of 1998 or the Web usability index
[6] of 2002 which are both described in this chapter. The Web usability
index is inspired by the previous Keevil usability index [6] and tries to
overcome some of its shortcomings.

3.1 Keevil Usability Index (1998)
The Keevil usability index [8] is a checklist to measure the usability
index of a web site and can be used either formative or summative.

It can be obtained for free [8] in HTML or Excel format. For this
tool, usability refers to finding, understanding and using the informa-

40

tion of a web site. The checklist contains over 200 questions. Each
question can have one answer out of Yes, No or Not Applicable (N/A).
The questions are based on related research on the web and usability in
general. A scoring system was intentionally not used, because a “scor-
ing system is open to interpretation by the evaluators” [8]. Web site
creators are encouraged to add extra questions about their specific web
site design and purpose. The questions are organized in five different
usability categories [8]:

• Finding the information: Can you find the information you want?

• Understanding the information: After you found the information,
can you read and understand it?

• Supporting User Tasks: Does the information help you to per-
form the task?

• Evaluating the Technical Accuracy: Is the technical information
complete?

• Presenting the Information: Does the information look like a
quality product?

Each category contains a set of matching questions. Keevil says that
using the usability index is simple, but to use it to full effect one needs
to understand many usability principles (see figure 1).

Fig. 1. Keevil usability index in context [8]

The process to measure the usability index of a web site demands
four steps:

1. Displaying and Downloading the Checklist

2. Determining the Purpose and Style

3. Asking the Questions

4. Answering the questions

Either experts or normal web users can fill out the checklist. Keevil
states that it is not necessary to have the web site peer-reviewed, also
normal users should be able to cope with it. After the whole checklist
is answered the usability index is calculated by the following formula:

Usability Index =
Total Yes Answers

Total Yes + No Answers
x 100

The result is the usability index of the web site in percent. Not appli-
cable answers are not taken into account for the calculation.

In a nutshell one can say that the Keevil usability index is a simple
and structured method to evaluate web sites. Additionally, it is sim-
ple and inexpensive to use. It provides a rough impression about the
usability of a web site.

3.2 Web Usability Index (2002)
The web usability index as introduced by Harms et al. [6] in 2002 is
a method to evaluate information-oriented web sites. It is based on
the principles of the Keevil usability index [8], suggestions of related
checklists and the fundamentals of web usability. It can also be used
either formative or summative.

Since the introduction of the Keevil usability index the increasing
use of the web as a means for communication and source of informa-
tion changed the expectations and the needs of the users. The web
usability index tries to consider this by adjusting it to the state of the
web-related research of 2002. It can be downloaded for free from the
web site of the University of Saarland, Germany [6]. It consists of
a checklist with nearly 150 questions in Excel format. The web site
creators are invited to add additional questions and even categories for
their specific web application if necessary. By default the questions
are grouped in five categories:

• Navigation and Orientation: consistency of navigation, color of
links, etc

• Interaction and Information-Exchange: availability of a home-
page, skip functionality for intros, etc

• Being up-to-date and Quality: marking of texts with author and
date, absence of spelling mistakes, etc

• Information- and Text-Design: size of the font, expressiveness if
icons, etc

• Ease of Access and Accessibility: connection between URL and
web site, availability of high- and low-tech variants of the web
site, etc

The web usability index is aimed to be peer-reviewed. Experts test
the web application individually and fill in the Excel sheet. What is
also important about it is that a second web site has to be evaluated
parallel to the web site to be evaluated. The checklist introduces a
scoring system for each question with a five point scale ranging from
one (very good), two (good), three (satisfactory) over four (fair) to five
(poor). In addition there is the option to check not applicable (N/A) if
the question does not relate to the web application. After answering
all questions the two web sites are then automatically compared to one
another. The formula is:

Web Usability Index =

Total Sum O f Scores − Total Answered Questions
(Total Questions − Total N/A Questions) x 4

x 100

The result is expressed in percent, a lower number is equal to few
usability problems, a high number means the web application has a lot
of usability problems. This formula also takes into account how many
questions were answered with not applicable (N/A). The less questions
are answered with not applicable, the greater the significance of the
result. The finding shows a quick overview of the usability problems of
both competing web sites. The significance of the overall score is not
as important as the direct comparison between the itemized categories
where the real shortcomings can be detected. But the web usability
index can give no advice on what precisely has to be improved. If
serious problems with usability are found additional measures have to
be taken.

Summing up, by default the web usability index is tool to get an
overview of the shortcomings of a web application regarding usability
compared to another web site. It does not tell if it has a good usability
but denotes just a comparison.

4 BEHAVIOR-BASED EVALUATION WITH LOGGING

This section describes some of the tools to evaluate web applications
according to logged user behavior. There are many different kinds
of behavior-based evaluation techniques, like eye-tracking or video-
recording a tester. The focus in this section though is on the evaluation

41

of user actions, for example clicking, scrolling, bookmarking, printing,
which were logged either client-side, server-side or through a proxy
server in-between the client and the server. The recorded log files are
prepared and aggregated for evaluation. This data is then analyzed and
evaluated to improve the web application.

Client-side logging can be done with the GINIS Framework [20],
server-side logging with WUM [3, 16] and the proxy-approach is taken
by WebQuilt [7] and UsaProxy [1].

4.1 Web Usage Mining with WUM (2000)

M. Spiliopoulou explains in her article “Web Usage Mining for Web
Site Evaluation: Making a site better fit its users” [17] how developers
can use web mining tools to summative evaluate web applications in
regards to user behavior.

Data mining is a procedure to extract patterns from data, in this case
web server log files, to generate information. The knowledge acquired
can be used in multiple ways, one of them is to discover navigation
patterns in a web site. Web logs have to be prepared for evaluation and
can then be analyzed with a mining tool (see figure 2). The preparation

Fig. 2. Web usage mining: The process of discovering navigation pat-
terns in a site [17]

of the web log for analysis demands to allocate the different log entries
to single users. Only then does the mining process make sense. It has
to be taken into account that there are several problems distinguishing
between single users. For example proxys, client-side caching or secu-
rity considerations taken by users with privacy concerns will make it
difficult to impossible to differentiate between users due to the nature
of normal web logs. Additionally, automated web spiders browsing the
web site will leave traces in the log file which are not appropriate for
evaluation. After the data preparation phase users’ activities will be ar-
ranged into sequences of page visits. Then the mining phase can begin.
The data gathered is mined for sequences and patterns. But which? To
also find the interesting non-trivial sequences like entry page then main
page, web log miners are needed which also understand abstract pat-
tern descriptions. Spiliopoulou evaluated two different web log miners
and but recommends the Web Utilization Miner WUM [3, 16] for sev-
eral reasons. WUM is a web mining tool with special attention to
increased interaction possibilities with human users (compare to fig-
ure 2). It employs a powerful mining language. Experts can use their
knowledge to guide the miner and thus refine or refocus the informa-
tion discovery process according to previous mining results. WUM’s
mining language is similar to SQL queries and can understand com-
plex requests. The result of a WUM query is a tree composed of the
routes users took through a web site regarding the conditions stated in
the query. With this information the developer can for example com-
pare routes taken by the users frequently with what he intended to be
frequent routes taken and adjust the different web pages accordingly.
This, of course, implies that the expert evaluating the web site has a
thorough understanding of usability, navigation and the web in gen-
eral.

By discovering bad and popular routes through web sites among
users, developers can progressively improve their prototypes of web
application. To use WUM they have to have access to the web logs
though and they have to learn the WUM mining language to be able to
write their own queries and to modify existing ones.

4.2 WebQuilt (2001)
A tool to realize web logging with an integrated visualization system
was introduced in the form of WebQuilt by Hong et al. [7] in 2001.
It uses the proxy approach to overcome many logging problems with
previous methods. The main goal of WebQuilt is to help developers to
understand user behavior to improve the usability of their web applica-
tions. It can only be used for summative evaluation as unfinished web
applications would interfere with normal user behavior thus leaving
wrong traces in the log files.

WebQuilt exerts automated systems to interpret the special log files
it creates. But it is designed to give a detailed overview about user’s
courses of navigation on a web site, thus it is a tool to evaluate user
behavior. WebQuilt gathers information about the paths specific users
take while they interact with a web application. Previous systems
which did the same were either client-side or server-side tools which
had to be installed on the appropriate machines. There are several
problems with each of both approaches, ranging from compatibility of
operating systems to ownership and restricted access to the machines.
WebQuilt addresses these problems by employing a different approach
to the data collection process. A proxy server is set in-between the
server and the client (see figure 3). WebQuilt can be used on any web

Fig. 3. WebQuilt’s proxy approach [7]

site. It changes the HTML code of the web page to be displayed in
such a way that any further request from this page can be exactly con-
nected to this special user. As the proxy is in-between the client and
the server and only changes HTML code there are no problems with
different browsers or operating systems of neither client nor server.
This takes care of the first two needs. The third need is addressed by
an integrated visualization tool. It can take aggregated data from one
or several test sessions and display the path users took alongside dis-
playing the web pages themselves. Additionally to paths, also time-
based metrics can be shown, for example how long a user spent in
average on a certain web page. These indicators, among other things,
help to identify key entry and exit points, where navigation does not
work like intended and where there might be dead ends. All in all,
the data gathered by WebQuilt supports designers to discover where
users encounter obstacles while navigating the web application. The
intended way to use WebQuilt is the following:

1. Set up a set of tasks

2. Recruit 20 to 100 participants

3. Give the participants a starting URL that uses the WebQuilt
proxy

4. Ask the participants to complete the tasks

5. Use WebQuilt to collect the data

6. Aggregate, visualize and interact with the data collected

7. Spot and identify usability problems
42

8. Fix these problems

9. Repeat the process iteratively

It can also be used in conjunction with other evaluation tools, like for
example online surveys. WebQuilt’s architecture is divided into five
different independent components: the proxy logger, the action infer-
encer, the graph merger, the graph layout and the visualization. The
proxy logger captures the actions of the user in a special WebQuilt log
file format. The action inferencer sets a log file of page requests into
context and creates a log of the actions performed. An action can either
be requesting a page, clicking the back button or clicking the forward
button of the browser. Developers can write their own plug-ins for the
action inferencer to address their needs. The graph merger can merge
several log files if desired. This allows the aggregated evaluation of the
data of several users at once. The graph layout then prepares the data
for visualization. An algorithm spreads out the relevant web pages ac-
cording to their connection path and importance. Visualization then
displays the aggregated and converted data. Web pages are displayed
as rendered screen captures of that page in a web browser. The con-
nections and path of action is visualized by arrows in-between these
screen captures. There are also many filters available to help to visu-
alize certain relations. For example can the color of an arrow be set
to represent the frequency of use of that connection. It is possible to
zoom in and out of the view to get an overview or to examine single
web pages in detail.

Hong et al. ([7], p. 283) summarize WebQuilt best with their own
words:

We have described WebQuilt, an extensible framework for
helping web designers capture, analyze, and visualize web
usage where the task is known. WebQuilts proxy-based
approach to logging overcomes many of the problems en-
countered with server-side and client-side logging, in that
it is fast and easy to deploy, can be used on any site, can be
used with other usability tools such as online surveys, and
is compatible with a wide range of operating systems and
web browsers.

But WebQuilt also has a few limitations. It cannot handle web applica-
tions which employ JavaScript. Also, a lot of actions connected to user
behavior are not captured, for example mouse clicks and key strokes,
which might be important to recreate and understand the whole user
session.

4.3 UsaProxy (2006)
Atterer et al. [1] introduced UsaProxy in 2006. It is a tool to ex-
tensively track user interaction on a web site. It also uses the proxy
approach like WebQuilt [7] but implicates the means of modern web
sites like JavaScript. UsaProxy works by adding JavaScript code to
requested HTML pages before they are passed on to the client. The
additional JavaScript code tracks user input and behavior and passes it
on to the proxy server. The logged data can then be used for summa-
tive evaluation purposes.

UsaProxy was developed to utilize a tracking technology which is
flexible yet non-invasive. The general requirements for it were to track
user actions in detail, be platform independent, be transparent in oper-
ation not to alter the browsing experience, to employ as few server-side
or client-side changes as possible and to work automated. To address
these needs UsaProxy follows the proxy approach. All requests from
the client are not sent to the web site’s server but are addressed to the
proxy server. Here the proxy requests the web page as asked by the
client and waits for the response. The response is then modified by
adding JavaScript code to the HTML of the web site and is passed on
to the client (see figure 4). If images are requested, no code will be
added. UsaProxy not only logs all traffic to and from the client, in-
cluding page visits. The client-side JavaScript code also records user
actions like the movement of the mouse cursor, mouse clicks and hov-
ering, key presses, scrolling, changes of window size, which elements
are focused alongside all time based metrics. This detailed informa-
tion is then passed on to the proxy server for logging. The collected

Fig. 4. UsaProxy functionality [1]

knowledge about the user’s behavior can then be used in a variety of
different scenarios to help to evaluate a web application [1]:

• User profiling

• Development or debugging of web applications

• Usage analysis of websites, e.g. determining detailed usage pat-
terns for purposes of marketing, business process streamlining or
similar

• Usability tests of websites

• Self-adapting websites, i.e. websites which adapt some of their
content (menu structure, main text on front page) to the varying
demands of users

Atterer et al. [1] state that the information gathered could be used for
other applications as well. Furthermore implicit information about the
user can be extracted from the log files. This obviously raises ques-
tions about privacy, ethical and legal issues. They strongly recommend
to ask a user for his approval to be allowed to track his actions. For
evaluation purposes, the aggregated data can be visualized in a variety
of ways from normal website statistics to the visualization of mouse
movements on a web page (see figure 5).

Fig. 5. Mouse trails recorded by the HTTP proxy, combined with a
screenshot of the website. [1]

UsaProxy is a flexible tool to track user actions in great detail while
staying transparent. Not even client-side or server-side changes to any
setups have to be done. The information and the knowledge about the
user behavior can then be used to evaluate a web site. But the amount
of information gathered about users raises privacy concerns, UsaProxy
should not be abused.

43

4.4 GINIS (2006)
The GINIS Framework is a client-side tool to log and analyze user
behavior. It is based on customized web browser and was developed
by Velayathan and Yamada [20] in 2006. The data collected is used to
build a user profile according to the web pages a user shows interest in
to help with the summative evaluation of web pages.

By detecting and learning user actions like for example clicking,
scrolling, bookmarking or printing, it is possible to extract user pro-
files from this data. A behavioral interaction database can be built.
Web pages can then automatically be evaluated according to these user
profiles. Velayathan and Yamada state that implicit user behavior plays
a major role to accomplish this task. The GINIS Framework is based
on the .NET Framework 2.0. It uses many MS Internet Explorer com-
ponents. Collecting user behavior is done in two separate parts. In the
first stage, the learning stage (see figure 6), every time a user moves

Fig. 6. GINIS Learning Stage [20]

on to a new web page, he is asked whether he likes the page or not.
The default setting is “unknown”, so the user can go on quickly if de-
sired without collecting data from forced decisions. These decisions
are stored in a database. An automated learning engine cleans up the
raw data and stores it in the User Behavioral Database. The second
stage, the testing stage (see figure 7), compares the user action with

Fig. 7. GINIS Testing Stage [20]

previous recorded patterns in the User Behavioral Database. Based on
the comparison of this information the user’s implicit interest in a web
page is predicted. The four main modules of GINIS are [20]:

1. The browser: Very similar to IE6.0 but with tabs. Logs user
navigation actions

2. The logger: Logs more than 70 actions and 40 behaviors

3. The analyzer: Employs a decision tree algorithm to build a be-
havioral database

4. The predictor: Automatically classifies web pages into the
classes “interested” and “not interested”

According to the different user profiles collected, GINIS evaluates
different web pages for different user groups and applications. A big
database with profiles is needed to evaluate prototypes of web appli-
cations, but a general predictions can be made.

5 AUTOMATED TOOLS SUPPORTING EVALUATION

Another methodology to evaluate prototypes of web applications is
the approach to do the evaluation automatically according to certain
criteria. There are some restrictions to the automatic evaluation with
software. Humans can evaluate implicit information and the context of
the content. Software can only interpret the facts given like tags, num-
ber of links, etcetera, but software is much more accurate in finding
and evaluating these elements than humans can be. Thus automatic
evaluation is useful regarding these aspects, faster and not prone to
human interpretation of the criteria given. Prototypes of web applica-
tions can only gain value by evaluating their shortcomings in certain
basic usability features.

The following subsections present two different approaches to this
topic. The quantitative evaluation of web site content and structure
presented by Bauer and Scharl [2] describes how huge quantities of
web sites can be compared, Vanderdonckt and Beirekdar [19] present
an approach to evaluate a web application according to a set of freely
definable guidelines.

5.1 Quantitative Evaluation of Web Sites (2000)
In 2000 Bauer and Scharl [2] introduced an approach to automatically
classify and summative evaluate web sites which are publicly acces-
sible according to their content and structure. Along other useful ap-
plications it is also possible to evaluate prototypes of other web ap-
plications with the data gathered. The system works by employing
three different autonomous software tools. The first mirrors existing
and publicly accessible web sites, the second extracts the classifica-
tion criteria and the third uses analyzing and clustering mechanisms to
aggregate the information.

Software which evaluates web sites is not prone to subjective judg-
ment of individual human experts. Though, evaluation has to be ac-
cording to a set of rules which has to be defined. But evaluation itself is
a lot faster and more efficient and thus can be applied to a larger num-
ber of web sites than humans could do. Of course, the data collected
is more technical and implicit information of the web applications is
lost. Possible applications of the data collected can be divided into
three areas [2]:

• Snapshot analysis (static): Analysis of a large number of web
sites at a given time

• Longitudinal analysis (dynamic): A defined set of web sites can
be documented and analyzed over a longer period of time

• Comparative analysis: Web sites are compared to evaluate and
optimize the different applications

The last approach, the comparative analysis, is the one which is use-
ful for evaluating prototypes of web applications. To actually build a
database with web sites available on the world wide web, Bauer and
Scharl [2] suggest these three steps:

1. Web mirroring

2. Extracting the classification criteria

3. Analysis and clustering mechanisms

Each phase has an input and output interface which is clearly defined
and connects it to the next phase. This way each of the three phases can
be run independently from the other phases and the tools employed can
be replaced by other tools with the same interfaces if desired. Bauer
and Scharl [2] recommend the free software tool HTTrack [14]. It is
set to only download HTML files. Images, sound, video, etcetera are
not downloaded. Bauer and Scharl [2] state that the sheer amount of
memory space would not be feasible. A maximum size for the HTML
files can be set as well. These statements are from the year 2000.
Nowadays it should be possible to download all data for specific tests
as well as today AJAX website cannot be downloaded and thus can not
be evaluated correctly. The WebAnalyzer tool is written by Bauer and
Scharl [2] themselves in Perl 5. It parses the HTML files saved by the

44

web mirroring tool. It can be set to extract classification criteria cat-
egorized into three groups: content (number of documents, kilobytes
downloaded, number of file types and number of images), interactiv-
ity (number of forms, number of documents with JavaScript, number
of Java applets and number of mailto-links) and navigation (frames,
number of internal links, number of external links, number of anchors
and number of links to anchors). In addition to this a text file is ex-
tracted from the HTML and stored with the data for textual analysis.
To actually generate semantic meaning out of this raw information, the
data needs to undergo the process of the analysis and clustering mech-
anisms integrated in the program. With a data base of many evaluated
web sites in different categories, it is possible to evaluate those against
prototypes of web applications of these categories [2]. The data gath-
ered shows differences and similarities and thus can help to improve
the prototypes.

The quantitative evaluation of web site content and structure is an
automated process to collect information which is useful for the evalu-
ation and classification of prototypes of web applications. The down-
side is that a huge data base is needed. The web is growing all the
time, so there will always be more memory needed. The quality of the
information gathered is only of technical nature, no statement relating
to the relevance of the web application or any implicit information can
be made.

5.2 Automated Evaluation with Guideline Review (2004)

Vanderdonckt and Beirekdar [19] present an approach to automatically
evaluate a web site according to flexible usability and accessibility
guidelines. The guidelines can be defined using a Guideline Defini-
tion Language which is implemented using a XML scheme. The si-
multaneous summative evaluation of several guidelines at once is also
supported.

With the presented approach it is possible to automatically check
web sites for freely defined guidelines. Usability guidelines are often
misinterpreted by developers because of inappropriate phrasing which
makes it favorable to have them checked by software. Of course, only
conditions can be checked, which can be traced in the HTML code
of a web application, like tags or attributes. The evaluation process
itself employs the interaction of two separate elements: the evaluation
logic and the evaluation engine. The separation of those two was a
new approach in 2004 according to Vanderdonckt and Beirekdar [19].
This allows the evaluation logic to be autonomous from the evalua-
tion process, both can be defined in different phases (see figure 8).
Structuring the usability and accessibility guidelines is the first phase
of the process. To be able to formulate reasonable guideline postu-
lates a thorough knowledge of usability and accessibility principles
as well as an understanding of HTML is necessary. These two ele-
ments need to be brought together to formulate reasonable guidelines
which are feasible to be applied on the data given. Formal guidelines
are established and expressed in the Guideline Definition Language.
This is a XML-compliant language where it is possible to formalize
these guidelines for automatic evaluation. The second phase consists
of three steps. The first step is site crawling. A web site specified by
its URL is downloaded automatically. Any further processing is based
on this data. In the second step the web page is parsed in a single scan
according to the parameters given in guidelines. It can be prompted
which guidelines have to be taken into account. The web page will
only be parsed looking for the elements in question. The third step,
the evaluation, generates a detailed report regarding the page elements
which have respected or violated the guideline defined. The funda-
mental concepts of Vanderdonckt and Beirekdar’s approach and their
interactions [19] are visualized in figure 9. The Guideline Definition
Language allows the evaluation of the basic data types [19]: Integer,
Float, Color and String. Vanderdonckt and Beirekdar added the con-
structed data types: Sequence, Table and Cartesian Product, to be able
to evaluate more complex conditions and to be more flexible in gen-
eral. With this set of evaluation criteria it is possible to evaluate web
applications regarding guidelines like [19]: “Use a limited number of
fonts in a web page”, “Select colors that will make your page easy to
read by people with color blindness”, “Web pages shall be designed

Fig. 8. The two main phases of evaluation process [19]

so that all information conveyed with color is also available using any
combination of the above markup elements” (Bold, Italic, text size,
text font) or to check if all elements are tagged so blind people can
browse the web page correctly.

The approach presented by Vanderdonckt and Beirekdar for the au-
tomated evaluation of web applications according to guidelines is a
flexible one which can also be used for prototypes of web applica-
tions. Using the Guideline Definition Language, usability and acces-
sibility guidelines can be evaluated, as well as simple or complex self-
defined guidelines. The freedom of formulating the guidelines for an
automated check also makes it feasible to evaluate web applications
according to established guidelines proposed by W3C, ISO or Sec-
tion508 [19]. This is a good way to help to run automated tests to
improve prototypes of web applications. But still, developers have to
have a thorough understanding of usability and accessibility principles

Fig. 9. Fundamental Concepts [19]

45

as well as a thorough understanding of HTML and XML to add own
guidelines to the repertoire.

6 INTERVIEWS - RGT FOR WEB SITE EVALUATION (2009)
Interviews demand that there is a person conducting the interview, the
interviewer, and a person to be interviewed, the interviewee. The in-
terviewer asks questions which are answered by the interviewee. In
contrast to evaluation with checklists, interviews do have a set of ques-
tions to be asked, but also take the additional information given by the
interviewee into account. With checklists, any extra information is lost
for the evaluation of the given questions.

The Repertory Grid Technique (RGT) is based on Kelly’s Personal
Construct Theory [9] according to his Repertory Grid interviewing
technique. It was first used in 2009 by Tan and Tung [18] in 2009
to explore web site evaluation criteria for commercial B2C web sites.
They explain why it is suitable to use the Repertory Grid Technique
for research in the area of web site evaluation [18]. The Repertory
Grid Technique can be used for formative or summative evaluation
purposes.

The working order for the Repertory Grid Technique in general is
two steps. First, a list of concepts is generated. Concepts for web ap-
plications are for example “implementation of the search functional-
ity”, “positioning of the menu”, “design to allow frequent updates”,
“information based on user interest”. Tan and Tung [18] propose
a wide variety of concepts grouped in meta-categories. The meta-
categories are divided into conceptualizations which are then divided
into construct classes which house the real constructs. For example the
meta-category “navigation” is divided into the conceptualizations “po-
sition of menu / navigation bar”, “search function”, “rollover effect”,
“links” and “user friendliness”. Each of those is further divided into
construct classes. “Search function” is for example divided into “scope
of search” and “quality of search”. Each of those construct classes can
then result into concrete constructs. Examples of constructs for “scope
of search” would be “offer global search engine” and “search engine
within own website”. The second step is to rate these constructs on
an uneven scale. Mostly used are intervals of five or seven with the
Repertory Grid Technique.

The evaluation of a web application according to the Repertory Grid
Technique according to the process employed by Tan and Tung would
work like this [18]:

1. Sampling: Invite a number of representative subjects or experts
to be interviewed

2. The Repertory Grid Interview Process

(a) Elements Selection: Select relevant elements. In the case
of the evaluation of web applications, comparable or com-
petitive web applications are considered.

(b) Construct elicitation: This works by “Triading” [9]. Se-
lect the web application to be evaluated and two additional
ones. Now have the interviewee identify how two of these
are similar or different from the third considering the ap-
propriate design principles for web applications. This way
the constructs will be generated. For each construct, ask
the interviewee if a high or low value for this construct is
desirable. Repeat until the interviewee does not find any
new constructs.

(c) Rating of elements along constructs: As there are no new
constructs to be found, the interviewee is asked to rate all
constructs gathered for web applications.

3. Analysis of Data: The information collected from the interview
now has to be analyzed. If other web applications have better rat-
ings of constructs than the one to be evaluated, it has to checked
why and how it can be improved. For this task a thorough under-
standing of design principles is needed though.

Interviews withe the Repertory Grid Technique can identify short-
comings of web applications or their prototypes in all of their aspects.

Experts are consulted and can openly create constructs of all aspects
of the application which are then evaluated and compared to other web
applications. This may result in aspects the developers did not think
of in the first place as there are no set questions which need to be
evaluated. But, inviting interviewees is time and cost consuming.

7 A FUTURE IDEA: FLOW EXPERIENCE

At this moment there is no tool to evaluate the flow experience while
using a web application.

The “flow construct” was first introduced by Mihaly Csikszentmi-
halyi in 1975 [4]. He describes it as ([4], p. 6) “the holistic sensation
that people feel when they act with total involvement”. In 1996 Hoff-
man and Novak [11] define flow in online environments as:

The state occurring during network navigation which is: 1)
characterized by a seamless sequence of responses facili-
tated by machine interactivity, 2) intrinsically enjoyable, 3)
accompanied by a loss of self-consciousness, and 4) self-
reinforcing.

A lot of research and empirical studies were performed around the
flow construct in connection with the web, starting with Novak and
Hoffman in 1996 [11] and in 1997 [12]. Several others were con-
ducted until the present day, to mention two: Pace in 2003 [13] or
Skadberg and Kimmel in 2004 [15]. Skadberg and Kimmel try to give
an answer to the question what the flow experience is for web users in
information-seeking activities. Their empirical study [15] shows that
experiencing flow while interacting with a web application increases
the user’s learning about its content. They also proof that increased
learning in this context also contributes to a positive change in atti-
tude and behavior towards the content presented. These elements are
a favorable goal to achieve for any web application. To integrate the
evaluation of flow to the iterative process of prototyping would be a
great benefit.

Some of these studies use checklists for their empirical studies
([12], [15]), but they do not propose a universal checklist to measure
the flow experience while using any web application, they are always
customized to exactly fit their needs. Automated evaluation of flow
with a software application would not be feasible because flow is a
human experience which cannot be captured by software. Pace [13]
already conducted research about flow and reasoned “a grounded the-
ory of the flow experiences of web users”. Starting from this basis
and the empirical studies already performed it might be possible to
develop a tool set for measuring and evaluating the flow experience
while using a web application. This would be a useful tool to improve
the evaluation of prototypes of web applications, too.

8 SUGGESTION OF A NEW FORM OF EVALUATION

A possible new form of evaluation is depicted in this section. After the
investigation of the literature regarding the evaluation of prototypes of
web applications up to date no literature regarding this idea was found.
It is to be evaluated if this is a valid approach.

A possible approach to evaluate a web application regarding usabil-
ity and layout can be the use of a modular web site during the prototype
stage of the web site. A modular website with a layout proposed by the
developers is provided as a prototype. Testers can move the elements
around as they prefer. If an element is moved, this data is transmitted
to the developers. It also has to be noted if elements are moved back
to were they were and how often they were used in which position.
This way, at the developers end, a database of the different layouts of
the modular elements can be built. At some point in production then
a snapshot of the database is made. The developers can now process
the information about the layouts they have. The most commonly used
layouts can be defined by frequency of occurrence. Users who wanted
to just try moving elements around without using them can easily be
recognized this way. If many users prefer a different layout than the
standard layout, it has to be evaluated why this is the case. The web
application can be improved according to the knowledge gathered or
simply to the preferences of the majority of testers. This process can

46

be repeated iterative until the final version of the prototype. The final
web application is then a frozen version of the last iteration.

Advantages of this system are that many users can test the web ap-
plication at the same time. And it is possible to satisfy the majority
of users. Disadvantages are that testers might miss to be able to cus-
tomize the website to their needs if they prefer a different than the
standard layout. The web application has to be set up up to trans-
mit any movement of the modular elements. This functionality is not
needed for the final version anymore.

9 OVERVIEW AND CLASSIFICATION

For the evaluation of a web application the person processing the re-
sults always has to have a thorough understanding of basic web de-
sign principles. Only then he will be able to understand and interpret
the findings of the evaluation. And only then he is able to improve a
web application or its prototype. All tools and methods have this in
common. But there are some features which only certain evaluation
tools or methods demand. These features resemble constructs from
the Repertory Grid Technique presented earlier.

• Evaluator: The person performing the evaluation can be an ex-
pert, a novice, an expert or a novice or it can be an automated
test where software is running the evaluation.

• Resources: Special resources can be needed to conduct an eval-
uation of a web application: A Server, a proxy-server, special
software, a checklist, etcetera.

• Special Knowledge: Some tools require other tools or special
languages to be learned before they can be utilized properly.

• Access to Log Files: Some evaluation methods require access to
log files. These can be produced client-side, server-side or at a
proxy server.

• Location: It is possible that the evaluation of a web application
can only be done in a certain location, for example a laboratory
with special equipment.

• Type of evaluation: The evaluation can be formative and / or
summative, or quantitative and / or qualitative.

• Content: The evaluation is restricted to formal content or also
implicit information can be evaluated.

An overview over the all the different features claimed the different
tools and methods can be consulted in table 1. All tools and methods
to evaluate prototypes of web applications presented in this paper are
merged into this one table for reference.

10 CONCLUSION

In this paper, several approaches to evaluate prototypes of web appli-
cations were presented and suggestions for missing tools were made.
The functionality of the tools and methods has been explained. Addi-
tionally, they were divided into different categories according to their
natures. In the respective categories, the tools were refined over the
time. They always tried to overcome the shortcomings of their prede-
cessors.

In general it can be said that the evaluation with checklists and inter-
view is the most flexible form of evaluation. Both types are strongly
related to each other. They don’t need special resources or special
knowledge of software and they are not bound to a certain location.
All types of evaluation can be conducted, all types of content, formal
and implicit, can be evaluated. The only downside is that the Web
Usability Index and the Repertory Grid Technique are supposed to be
performed using expert evaluators for best results. The Keevil usabil-
ity index can also be conducted with novice testers, but experts would
deliver more appropriate results.

Behavior-based evaluation with logging does need special resources
in the form of software or proxy-servers. Also, access to the log files
has to be assured. Without the log files the evaluation cannot take

Table 1. Evalution Tools and Methods - An Overview
Feature Option 1 2 3 4 5 6 7 8 9

Novice x x x x x
Evaluator Expert x x x x x x x

Software x x
Checklist x x

Resources Proxy Server x x
Software x x x x x x
Database x x

Special Required x x x x x x
Knowledge
about Tools
Access to Server-side x
Log Files Client-side x

Proxy-side x x
Home x x x

Location Field x x x x x x x x x
Remote x x x x x x x

Formative x x x
Type of Summative x x x x x x x x x

Evaluation Qualitative x x x x x x x x
Quantitative x x x x x x x

Content Formal x x x x x x x x x
Implicit x x x x x x x
Legend of Table 1

1 Keevil Usability Index
2 Web Usability Index
3 Web Usage Mining with WUM
4 WebQuilt
5 UsaProxy
6 GINIS
7 Quantitative Evaluation of Web Sites
8 Automated Evaluation with Guideline Review
9 Repertory Grid Technique

place. But WebQuilt and UsaProxy are the best tools to evaluate re-
mote testers. Evaluating a prototype while it is still worked on does
not make sense, only summative evaluation can be used on the fin-
ished stages of the prototypes. Qualitative evaluations can be made
with all these tools like GINIS or web usage mining with WUM, but
only some are suited for quantitative evaluations of web applications,
like WebQuilt or UsaProxy. To be able to evaluate the information of
the logged data every tool needs a special software, so this can only
be done on location. Formal and implicit content and information can
be evaluated. The interpretation of informal content is prone to the
interpretation of the person evaluating the log files, so is to be taken
with a pinch of salt. The advantage of these approaches is that normal
users can be used to evaluate a web application. This is even desirable
in some cases, because expert users would not make the mistakes of
novice users. Their mistakes would be unnoticed and so no improve-
ment could take place.

Automated tools supporting evaluation are superior to humans in
the evaluation of the correctness of formal content of web applications.
They cannot evaluate implicit information of web pages though. There
is special software needed to run these kinds of evaluation as there are
no human evaluators involved. This postulates that the person running
the evaluation has a thorough knowledge of the software tools. For the
quantitative evaluation of web sites also a huge database is required to
be able to store the information gathered which is needed for further
evaluation. In addition, this does not allow for qualitative evaluation
like the automated evaluation with Guideline Review.

There are no tools to measure and evaluate the flow experienced by
user interacting with a web application yet. Taking Csikszentmihalyi
theory of flow [4] into account, flow in general can be experienced
by novices and experts alike. Software cannot compute flow as it is a
state of the human mind. Flow is not suitable for formative evaluation
because the flow experience results from the whole experience. Miss-
ing or not working parts of a prototype would interrupt the flow. The

47

evaluation would be qualitative and could also be employed quantita-
tive. It would be possible to evaluate content formal as well as implicit
using the flow construct. As there is no tool yet, no statement about
possibly required resources or knowledge of tools can be made.

All in all it can be said that each tool presented has a special domain
where it is superior to the other tools presented. Which tool is best
used to evaluate a certain prototype of a web application depends on
so many factors that is has to be separately evaluated for each purpose
independently.

REFERENCES

[1] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s every move:
user activity tracking for website usability evaluation and implicit inter-
action. In WWW ’06: Proceedings of the 15th international conference
on World Wide Web, pages 203–212, New York, NY, USA, 2006. ACM.

[2] C. Bauer and A. Scharl. Quantitive evaluation of web site content and
structure. Internet Research: Electronic Networking Applications and
Policy, 10(1):31–44, 2000.

[3] B. Berendt and M. Spiliopoulou. Analysis of navigation behaviour in
web sites integrating multiple information systems. The VLDB Journal,
9(1):56–75, 2000.

[4] M. Csikszentmihalyi. In Beyond Boredom and Anxiety, San Francisco,
CA, USA, 1975. Jossey-Bass.

[5] C. Floyd. A systematic look at prototyping. In Approaches to Prototyp-
ing, pages 1–18, Berlin / Heidelberg, Germany, 1984. Springer.

[6] I. Harms, W. Schweibenz, and J. Strobel. Usability evaluation von web-
angeboten mit dem web usability index. In Proceedings der 24. DGI-
Online-Tagung 2002 - Content in Context, pages 283–292, Frankfurt am
Main, Germany, 2002. DGI. 283-292. visited 10.11.2009.

[7] J. I. Hong, J. Heer, S. Waterson, J. A. Landay, and J. A. L. Webquilt: A
proxy-based approach to remote web usability testing. ACM Transactions
on Information Systems, 19(3):263–285, 2001.

[8] B. Keevil. Measuring the usability index of your web site. In SIGDOC
’98: Proceedings of the 16th annual international conference on Com-
puter documentation, pages 271–277, New York, NY, USA, 1998. ACM.

[9] G. Kelly. In The Psychology of Personal Constructs, New York, USA,
1955 (reprinted by Routledge, 1991). Norton.

[10] M. Matera, F. Rizzo, and G. Carughi. Web usability: principles and evalu-
ation methods. In Web Engineering, pages 143–180, Berlin / Heidelberg,
Germany, 2006. Springer.

[11] T. P. Novak and D. L. Hoffman. Marketing in hypermedia computer-
mediated environments: Conceptual foundations. The Journal of Mar-
keting, 60(3):50–68, 1996.

[12] T. P. Novak and D. L. Hoffman. Measuring the flow experience among
web users. 1997. visited 10.10.2009.

[13] S. Pace. A grounded theory of the flow experiences of web users. Inter-
national Journal of Human-Computer Studies, 60(3):327–363, 2003.

[14] X. Roche. HTTrack homepage visited 09.12.2009.
[15] Y. X. Skadberg and J. R. Kimmel. Visitors’ flow experience while brows-

ing a web site: its measurement, contributing factors and consequences.
Computers in Human Behavior, 20(3):403–422, 2004.

[16] M. Spiliopoulou. The laborious way from data mining to web log min-
ing. International Journal of Computer Systems Science and Engineer-
ing, 14(2):113–125, 1999.

[17] M. Spiliopoulou. Web usage mining for web site evaluation. Communi-
cations of the ACM, 43(8):127–134, 2000.

[18] F. B. Tan and L. Tung. Exploring website evaluation criteria using the
repertory grid technique: A web designers’ perspective. Second Annual
Workshop on HCI Research in MIS, Seattle, WA, 65-9, 2003.

[19] J. Vanderdonckt and A. Beirekdar. Automated web evaluation by guide-
line review. Journal of Web Engineering, 4(2):102–117, 2005.

[20] G. Velayathan and S. Yamada. Behavior based web page evaluation. In
Proceedings of the 16th international conference on World Wide Web,
pages 1317–1318, New York, NY, USA, 2007. ACM.

48

Haptic Icon Prototyping

Dario Soller

Abstract— The development of more complex technical devices demand new sensory channels to transmit increasing abstract
informations. The main communication of Human Computer Interaction (HCI) essentially uses visual and auditory based channels
and is often overloaded nowadays. With the aim to balance the computer generated information on the different human sensory
channels and to possibly communicate additional informations, the prototyping techniques in the field of haptic feedback and the
more complex form of haptic icons is going to be discussed in this paper. General terms and questions of haptics are exposed and
followed by several detailed explanations of current haptic prototyping techniques especially concentrating on tactons. They are of
major interest in this paper, because representations of abstract information with icons always showed easier and better cognitive
performances, no matter if it is in the visual or auditory modality. Their different prototyping techniques are presented in-depth. In
the end we address unsolved questions in Haptic Icon Prototyping (HIP) and complete this paper with an outlook on the future in
previously unused potential haptic icon feedback technologies and their possible future prototyping techniques. This paper provides
a summary of the current state of research in the field of haptic icon design. Details on kinesthetic or force feedback are not part of
this paper.

Index Terms—Prototyping, Prototype, Design, Haptic, Tactile, Haptic Icon, Tacton, Hapticon, Icon, Tangible, Touch, User Interface

1 INTRODUCTION

Since the 1960s mouse, keyboard and monitor have been our gateway
to the computer. But ”tangible interfaces and ubiquitous computing
technologies are changing the human relationship to computing tech-
nology, and designers must take this into account when creating prod-
ucts and services”[22]. Ivan Sutherland, a founding father of virtual
reality, suggested that the ”human kinesthetic sense is as yet another
independent channel to the brain, a channel whose information is as-
similated quite subconsciously”[51] .

The scientific research in the field of haptic feedback has already
been around since the 1990s. But still the amount of new devices
supporting haptics is still relatively small and most of the time not im-
plemented to their full possible extend. One reason may be the lack of
proper low-fi haptic prototyping techniques being involved in early de-
sign states in general [10]. Therefore possible prototyping techniques
should be reviewed and compared, especially concentrating on the pro-
totyping of haptic icons, which are hiding great potential implemen-
tation possibilities and improvements for HCI. ”The goal, inspired by
the common use of audio icons in desktop interfaces and mobile tele-
phony [13], is to allow for the design and construction of specific and
short abstract tactile messages that can easily be interpreted by users
with minimal cognitive effort”[24]. For instance, ”if the visual sys-
tem is overloaded, you can provide object identification information
haptically without adding significant cognitive load”[53].

First of all the major terms and expressions in the field of haptic
icons are defined, followed by examples for potential fields of applica-
tion as a delicacy, sensibilizing for the practical context of haptic icons.
Then the historical development of publications in the field of haptic
icons indicates the research activity in this topic. After that we analyze
the affected group of people, designing haptic icon user interfaces and
working with them in the future. Subsequently important parameters
and their domains of definition give the basis for the actual approaches
on HIP and how they could be classified into hi-fi and low-fi prototyp-
ing techniques. Out of these results, domain proposals for the different
HIP techniques and the different design situations are given. In the end
open questions in the HIP research are listed and discussed, as well as
a short outlook for up to date unused potential haptic feedback tech-
nologies and their possible future prototyping. This paper tries to give

• Dario Soller is studying Media Informatics at the University of Munich,
Germany, E-mail: dario.soller@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/2010

detailed views on the present state of haptic icon research, with the
concentration on HIP.

2 OVERVIEW

This section provides initiatory details on haptic icons, their practical
contexts, the history of haptic icon research and informations about the
group of people actually using haptic icon prototyping. The most im-
portant part definitely is the summary of technical parameters, which
are of major relevance when designing hapticons.

2.1 Definitions
haptic: With haptic, one means everything concerning the sense of
touch. In the context of this work, it describes the transmittance of
computer generated information by haptic user interfaces and spe-
cial devices to the human tactile sensory system. Possible parame-
ters for the human skin and thereby for haptic prototyping are kines-
thetic (forces on and motions of body parts), tactile (materials and
surfaces), vibrating, temperature and pressure sensations [54] (more
details in 2.5 Technical Parameters of Haptic Icons). Furthermore one
should know that ”the human haptic system is made up of two sub-
systems, the motor sub-system and the sensory sub-system. There is
a strong link between the two systems. Unlike the visual system, it is
not only important what the sensory system detects, but what motions
were used to gain that information”[51].

Force feedback and other kinesthetic events are felt predominantly
with the motor sub-system and are left out of this study, because of
the differences in examination principles and the different prototyping
devices claimed by the two haptic sub-systems.

haptic icon: a jingle like symbol or piece of abstract informa-
tion consumed via the sense of touch of the human tactile sensory
system. Haptic icons do not only legitimate by complementing other
modalities as visual icons or earcons, but accomplish abilities of being
an independent sensory channel, on which complex information can
be transmitted separately on the multiplicity of cutaneous mechanore-
ceptors [30]. ”They are structured messages that can be used to
communicate to users non-visually”[14]. ”In the visual domain
there is text and its counterpart the icon, the same is true in sound
with synthetic speech and the earcon. In the tactile domain there is
Braille but it has no iconic counterpart. Tactons fill this gap.”[13] It
is still state of the latest research work, how to iconify certian events
(more details in ?? Haptic Icon Design). Slight differences between
hapticons and tactons are made by Enriquez and MacLean[26] as
well as Brewster[13], who define hapticons as the simpler version of
haptic feedback similar to visual icons and earcons. Hence tactons are

49

discribed as laconic representations of ”complex interface concepts,
objects and actions”[13] like navigating through directories on a pc
via the sense of touch.

2.2 Fields of Tacton-Application
There are many potential fields of application for haptic icons in com-
mon tasks with technical devices today. Many of the referenced au-
thors talked about practical adoption examples for haptic icons, of
which a few are presented in the following passage as a further en-
try.

Swindells imagined the indication of a station’s genre of music by
an unique feeling or pulse at the haptic radio tunning knob [54]. An-
other already implemented haptic feedback knob was introduced by
BMW’s iDrive with which one can ”access secondary vehicle func-
tions such as audio and climate-control systems. It varies the knobs
feel (via programmed compliance and damping) to create a range of
detent sensations, with different sensations mapped to different control
functions”[25].

Hoggan proposes a multimodal combination example, where mes-
sages are presented through an auditory signal and the urgency of the
email is expressed by a rhythm with a rough texture to the left hand
side of the user’s waist[31]. A progress bar widget, for example, could
be displayed by two sets of tactile pulses. The closer the two pulses
the nearer the download is to finish[13]. Or the set of transducers on
a belt tells the progress of the download with a moving pulse start-
ing on the front and moving around the body in a clockwise direction
[13]. Brewster gives us some more application examples, like tactons
signifying additional information to the type of building (shop, bank,
office-block, etc.), type of shop (cloths, food, etc) and the pricebracket
of the shop (budget, mid-range, expensive)[13] one is standing in front
of. Such wearable devices are of great importance where screens are
limited or in interfaces for blind people [14]. A further potential appli-
cation for blind people is given by McDaniel, who presents a vibrotac-
tile belt, which indicates the location of someone in front of the user.
The relative direction is communicated by the position on the vibrotac-
tile belt, while the duration of the vibration displays the interpersonal
distance [42].

Also more complex informations could be mapped into haptic
icons. ”For example, with multidimensional data one dimension might
be mapped to the frequency of a pulse in a tacton, another might map
to rhythm and another to body location” [13]. Even a whole file sys-
tem is representable by transformational tactons (see ?? Haptic Icon
Design). ”The file type could be represented by rhythm, size by fre-
quency, and creation date by body location. Each file type would be
mapped to an unique rhythm”[13].

2.3 History of Haptic Icon Research
The mass of information in the world wide web only provides a rare
amount of information about the field of haptic icons and one soon
finds out about a handful of authors and scientist which bear the brunt.
The first Wikipedia articles concerning haptics appeared around 2003,
but there are still no own articles for haptic icon or tacton, not to men-
tion special prototyping techniques for this topic. The words ’haptic’
or ’tactile’ are not even alluded once in the article about prototyping
on Wikipedia so far. An attempt with Google Trend was only available
for ’haptic’ and hence had not been meaningful enough.

The number of publications (see figure 1) were investigated with the
’Google Scholar’ search engine. Searching for different expressions
for haptic icon showed following results. The expression ’tacton’ also
has a meaning in specialized medicine and had therefore unfortunately
not been regarded furthermore. Starting in 1993 the topic came up and
showed a slight increase of interest with little variabilities since then.
Also years with no publications occurred during 1995-1996 as well as
between 1999-2000. For the last four years the annually publications
are nearly consistent at around 16-20 publications per year. One peak
definitely is the year 2006 with 24 publications. The one paper ad-
dressing HIP directly in 2006, is the often refered to work ’The Role
of Prototyping Tools for Haptic Behavior Design’ by Collin Swindells
et al.[54].

Fig. 1. Number of Publictions on relevant Key Words since 1993.

Again it is said, that these results are based on the limited expres-
siveness of the Google Scholar entries. But over all there are relatively
few scientific works in the field of haptic icons and barely any con-
cerning HIP invariably. It will be very interesting how these numbers
develop in the near future, maybe indicating how overloaded visual
and auditory based user interfaces effectively are today.

2.4 Affected Group of People

During the design of prototyping techniques, the affected group of
people going to design haptic icons need to be familiar. This is neces-
sary to really improve and find productive prototyping methods.

Programmers and Engineers: The first group consists of the en-
gineers and programmers developing interfaces for technical devices
in their laboratories. They have the knowledge base to handle ”more
complicated user interfaces and program code to create sophisticated
and/or novel haptic effects”[54]. On the other side they demand for
great flexibility and control of the haptic icon prototyping technique.
In the past most of the haptic interface developments ”has taken place
in robotics or engineering labs, concentrating on the challenges inher-
ent in building low cost, high-resolution devices with realistic size,
power and safety performance”[13]. Somehow only a little amount
of realized haptic feedback implementations and an approved usabil-
ity of haptic feedback arose from this research [13]. This is about to
change with the adoption of certain haptic prototyping techniques by
the design community [22].

Designers: Designers are less interested in programming details
and low level hardware configurations, but with this trade-off of flex-
ibility they gain fast iterations of prototypes concentrating on higher
level concepts like usability of haptic icon feedback [54]. With more
advanced tools and techniques supporting the fast design processes,

50

one can expect more mature innovative haptic interfaces [22]. ”De-
vices are now available that allow the use of tactile displays so the
time is right to think about how they might be used to improve
interaction.”[13]

Users: This group is willing to learn new interaction concepts, for
example selecting between pre-defined components in order to be sup-
ported in their actions at best. They are satisfied with ”stock cus-
tomizations that are specialized to their particular device”[54]. Select-
ing a vibrotactile ring tone on a cell phone GUI would be an example
here.

2.5 Technical Parameters of Haptic Icons
Beginning to design haptic icons one should pay downright attention
to gain detailed knowledge about the physical characteristics of the
skin. Technical parameters, especially their expedient ranges and the
mutual manipulation of parameters are still not completely understood
and subject of current research. Due to the temporal and spatial acu-
ity, the skin could be the key medium to complement visual and au-
ditory elements. ”Visual icons can convey complex information in a
very small amount of screen space, much smaller than for a textual
description. Earcons convey information in a small amount of time as
compared to synthetic speech. Tactons can convey information in a
smaller amount of space and time than Braille”[13]. As a result of that
hatpic icon designers are refused to draw directly from the field of mu-
sic theory. But still the similarities between audio and tactile signals,
like the way they are technically produced for example, seem to give
little initial aid in the design of hatpic icons [17].

Fig. 2. Different Mechanoreceptors in the Skin [1]

On a closer view on the actual structure of the skin’s mechanore-
ceptors (see figure 2) some limitation already become clear. Hale and
Stanney[30] give a good overview about the different properties of the
human skin:

• the skin’s sensitivity depends on its size (large receptors have
poor spatial resolution)

• density (many receptors in a given area results in high spatial
acuity)

• frequency range (receptors don’t perceive signals outside their
range)

• nerve fiber branching (higher branching leads to spatial and tem-
poral summation of signals)

• the type of stimulation (skin motion or sustained pressure) affects
the degree to which individual mechanoreceptors are activated

In the following line-up you will find, different parameters, which
had been elaborated in the different investigated works:

Duration: A certain number of meanings could easily be en-
coded in pulses of different durations alone [15]. Investigations by
Gunther [29] show that vibrotactile ”stimuli lasting less than 0.1
seconds were perceived as taps or jabs whereas stimuli of longer
duration, when combined with gradual attacks and decays, may
be perceived as smoothly flowing tactile phrases”[13]. Taps are
experienced by sudden attacks, while a gradual attack is perceived as
a rising pressure on the skin [13]. But in any case, stimuli must be at
least 5.5ms apart to ensure that the cutaneous signals are perceived
individually [50].

Amplitude: The amplitude, pressure or intensity of a tactile
stimuli is proposed by several scientist ([13] [17] [53]) as an useful
parameter in tacton design, but only if certain thresholds are factored
into the haptic icon design process. Gunther writes that the intensity
range is felt from the level of detection till approximately 55dB. An
intensity above 55dB is perceived as painful [28]. Pressure sensations
are activated by forces greater than 0.06 to 0.2 N per cm [50]. As a
further limitation this range has no linear or homogeneous resolution,
as it deteriorates at a level of 28dB [49], which is proposed by
Brewster to be a useful maximum level of intensity [13]. Although
Gunther found out that the just noticeable difference (JND) in
detecting intensities is carried out in steps from 0.4dB-3.2dB [29], it
is suggested by Gill not to use more than four different amplitudes
within a single context [27]. Sherrick describes the JND as a ”values
range from 5 milligrams on a woman’s face to 355 mg on a man’s big
toe”[50].

More sophisticated shapes of designing with amplitudes had been
confirmed by Brown et al. [17]. They introduced dynamic transitions
of amplitudes, forming linear, exponential and logarithmic in- and de-
creases of vibrations. Worth mentioning is that the recognition rates
of logarithmic in- and decreases showed weaker results than the other
ones.

The most suitable approach of designing with the amplitude param-
eter is certainly reported by Brown et al.[15], as they suggest to leave
the control of actual intensities in the hand of the user. Having the
possibility to customize the amplitudes of the tactile signals in a pre-
defined range individually, will ensure the best general performances
in terms of usability at the same time.

There seems to be an intense dependency of amplitudes and
frequency parameters used in haptic icons, so that several researchers
([6] [53]) have claimed ”to combine [them] into a single parameter to
simplify design”[14].

Frequency: As widely known the perceivable range of the hu-
man ear is from 20Hz-20kHz, but ”the practical frequency range
of the skin is much smaller, ranging from 10Hz-400Hz”[21], being
most sensitive at 250Hz [15] [28]. Brewster even writes of an tactile
spectrum of 20Hz-1000Hz [14], but most of the transducers, actuators
and vibrotactile devices even have a much more restricted range
than 10Hz-400Hz [15]. Experiments by Tan showed that users could
distinguish three categories of frequencies between DC and 300Hz
[35]. Frequencies below 100Hz are experienced as periodicity or
buzzing whereas higher frequencies are felt smoother or diffuse [58].
For example Hoggan and Brewster did successfully use frequencies
of ”6 Hz (slow motion, very rough), 70Hz (fluttering slightly faster
motion, rough), and 250 Hz (smooth)” in their experiment [32].
Another discrepancy to the abilities of the human ear, is the identifica-
tion of absolute frequencies. ”Making relative comparisons between
stimuli is much easier than absolute identification”[13]. Therefore a
maximum of nine different frequencies is suggested by Gill [27]. A
similarity to the field of sound is that ”a change in amplitude leads to a
change in the perception of frequency so this has an impact on the use
of frequency as a cue”[13]. As a consequence of this strong affection
of the different parameters, they all have to be taken into account
simultaneously. This then leads us to specifications like that of Biggs:
”Vibration from a single probe must exceed 28 decibels (relative
to a 1ms peak) for 0.4- to 3-Hz frequencies for humans to perceive.”[9]

51

Waveforms: With waveforms one means a sine wave whose
amplitude is modulated by a second frequency different to the first
one [15]. Users are even able to differentiate between sine and square
waves [13], but more subtle differences are critical to perceive clearly
[29]. The auditory equivalent for ’waveform’ is ’timbre’, which ”is
a key attribute in earcon design”[11]. This makes waveforms the
important parameter in crossmodal combinations or substitutions [34]
as well as an important texture design parameter for haptic icons.
”So, in tacton parameter design, waveform can be correlated to the
’texture’ of tactile stimuli”[32]. Furthermore the often referred ([15]
[16] [46]) to tactile impression of ’roughness’ (with a recognition rate
of 80% [15]) can be achieved with waveforms. The recognition rates
of waveforms are with 94% over all very promising, as it seems that
waveforms combine the advantages of the amplitude (recognition rate
of 61%) and frequency (recognition rate of 81%) parameters [32].
In code of practice 250Hz sinusoids modulated by 50Hz or 30Hz
frequencies have been proven positive application [15] [32]. But
”since tactons should be as short as possible in order to communicate
information quickly, it is important to choose higher modulation
frequencies, so that shorter pulses can be used”[15].

Rhythm: A combination of pulses with different duration forms
first basic rhythmic units [15] [13]. Additionally variations in tempo
[14] in which these rhythms are played, can provide tactile ’melodies’
[56] and further design possibilities. Brown et al.[15] examined
recognition rates for rhythm in tactons of 93% which is similar to that
of melody in earcons (90%) [43]. In an experiment using ”temporal
patterns (rhythm) along with frequency and amplitude to encode
speech information in vibrations, [Summers[52] found out] that
participants mainly used the information obtained from the temporal
patterns, rather than from the frequency/amplitude modulation”[15].
”The amodal attributes between our senses of hearing and touch
include intensity, rate, rhythmic structure and spatial location”[39].
All this gives further evidence that it is possible to draw from the field
of music and that rhythm is a major parameter in tacton design [17].
Even though this association should always be carefully observed.

Swerdfeger et al.[53] elaborated detailed results for the use of rhyth-
mic elements in the design process of haptic icons. They report that:
”The most groupable stimulus characteristics are note density and
rhythm, as long as the rhythms are not syncopated.” Further results
of rhythmic stimuli, which dominated the users’ perception are:

• Rhythmic differences between melodies dominate other distinc-
tions. And the rhythm of a stimulus is perceived rather than its
onset.

• Perceived quantity of notes is a major grouping factor. Hence
replacing a quarter note with two eighth notes can increase ex-
pressiveness while maintaining groupability. Groups of rapid
(eighth) notes are perceptually salient in rhythms.

• Items that only differ in phase are grouped together. While dis-
tinct groups that contained eighth notes were often confused by
participants.

In another conclusion by Swerdfeger et al. [53], they found out that
”low amplitude sustained notes surrounded by staccato notes are
often grouped with those that have rests in the same position as the
sustained notes”. So the more complex tactile rhythms get, the harder
mutual differences can be identified, rising confusion by users. This
underlines that simple haptic stimuli should be aspired [48].

Body Location: The human skin embraces a surface of 1.5-
2m2, an expanse which had been barely used for information display
yet. But the transmittance of information with spatially allocated
transducer has been successfully proofed in different researches [57],
so we will take a closer look on present facts. The spatial acuity and
sensitivity of the skin differs on different body locations. For instance,
the two-point threshold shifts smaller from palm to fingertips, with
a spatial resolution of 2.5mm on the index fingertip [50]. Haptic

interface designers must consider this as well that distributed tactile
stimuli get groupable by their regional closeness. Often haptic
feedback concentrates on the hands and fingers because of the high
sensitivity and resolution ability [49]. However, under real conditions
the hands are mostly used for other tasks [13], that’s why Sherrick
et al.[49] suggest to use other suitable positions like back, thigh and
abdomen. But vibrotactile transducers should never be placed near
the head, as they influence the ear, producing undesirable auditory
side effects [28]. If haptic icons are learned on one location they can
be transferred to other locations nearly without any loss in recognition
[49]. Already with ”an 3x3 array of stimulators located on [the
users] back, lines and geometric shapes can be drawn”[13]. This
operates like tactile, geometric animations, which can vary in time
and location that’s also why they are called spatiotemporal patterns
[13]. Nevertheless the most elaborated use of body locations, was
done by Rupert [47], harnessing the complete torso. 128 transducer
indicated pilots the relative position of other objects (e.g. airplanes,
borders, horizon) in a 3D space around them.

Temperature: Due to the latencies of temperature sensations,
hardly any works had been found referencing temperature as a param-
eter in haptic icon design. Anyhow some thermal-tactile facts still
might be useful. The skin contains cold-sensitive and warm-sensitive
thermoreceptors, which detect temperatures of 5-43 ˚ C and 30-48 ˚ C.
The pain threshold is beneath 17 ˚ C and over 44 ˚ C. Remarkable
might also be that cold-sensitive thermoreceptors exist ten times
more often than warm-sensitive ones. Thermoreceptors occur with an
irregular disposition, depending on the body location. A fast change
from cold to hot can cause a paradoxical response to heat, which is
a thermal shock, based on a sudden discharge of the cold-sensitive
thermoreceptors.[38]

Finally rounding off all these technical attributes, Hoggan notes
that ”tactile feedback becomes ineffective at vibration levels of 9.18
9.45 g/s and above suggesting that audio feedback should be used at
these levels”[33]. Furthermore, Tan actually measured bit rates for
perceiving vibrotactile stimuli of 2-3 bits per second [35].

Maybe in the past designers were just astonished by the sheer
amount of affected parameters, that they have often avoided to max out
the human tactile sensory channel to its full potential. The difficulty
of building prototypes covering all these parameters and the difficulty
to integrate them into an early design status prototype, can be outlined
as the technical novices’ difficulty [22]. In the next sections we will
see ways of fast and efficient haptic icon prototyping, constituting on
the presented technical parameters.

3 HAPTIC ICON PROTOTYPING

The availability of consumer products are inevitably bound to the con-
junction of sensors and actuators in devices featuring haptic feed-
back. ”Sensing technology in manufactured products is efficacious
and affordable yet requires the input of trained engineers to specify
and prototype. So, product and interface designers often don’t have
the opportunity to explore this technology’s potential benefits early
enough to incorporate it in a products design”[22]. Before specifying
a production-ready haptic interface, designers need a possibility to ex-
perience these interactions in order to truly imagine the users necessi-
ties. All this pictures the demand of adequate prototyping techniques,
especially in the field of the more complex form of haptic icons.

Recent trends in the market of mobile devices show that a lot more
”tactile actuators with increased degrees-of-freedom” have been inte-
grated [24]. In the following section a selection of different useful
actuator and transducer components will be presented. Enjoy!

3.1 Haptic Devices
There are almost as many technological devices as affected parame-
ters (see 2.5 Technical Parameters of Haptic Icons). Most of the time
a plate or an array of pins in direct contact with the skin is used. The
Tactaid VBW32 transducer C2 Tactor (see figure 3 left) for example, is
an inertial transducer, in which a mass is suspended on a spring, being

52

all placed into a rigid case. It is produced by Audiological Engineering
Corporation [7]. When it receives an alternating electromagnetic sig-
nal, ”the user feels the vibrations through the case itself”[17]. Many
experiments had been made using this actuator e.g. being attached to
a finger tip.

On the other hand there is the C2 Tactor (see figure 3 right). It is
a voice coil transducer with an explicit contact point through which
the generated vibrations are transmitted to the user. It is produced by
Engineering Acoustics Inc. [23]. Nearly as many experiments were
done with the Tactaid or the C2 Tactor or even both at once. Both can
be assessed as the most established tactile prototyping components yet.
Even though Brown et al.[15] indicate that the C2 Tactor seems to be
more precise than the Tactaid, as results have been more consistent
with the C2 Tactor.

Another example would be the Pin Arrays produced inter alia by
Summers et al.[36], which generally hold great potential in displaying
”very fine cues for surface texture, edges, lines, etc.”[13]. The often
mentioned VirTouch tactile Mouse seems to be vanished into thin air,
as no serious source can be found, except what Brewster [13] wrote.
Furthermore Brewster alludes another example, which was ceased, the
Optacon by TeleSensory Inc. [2]. But other pin array devices like the
dynamic Braille cells are still available [3] with up to 80 pins. These
devices could be diverted from its intended use of presenting Braille
text to display haptic icons in a prototyping context [13].

Vibrotactile belts were used for several experiments by Cholewiak
et al.[45] and lately by McDaniel [55][42]. These belts are very often
just assembled with C2 or Tactaid transducers. Here another example
set up used by McDaniel et al.: ”The belt consists of 7 tactors equidis-
tantly placed in a semi-circle with the first, fourth and seventh tactor
at the users left side, navel, and right side, respectively. Each tactor
consists of a pancake motor of diameter 10mm and length of 3.4mm,
and operates at 170Hz”[42].

Lately some more extensive haptic devices appeared on the con-
sumer market like Mobile Phones, supporting ”vibration patterns,
which accompany midi ringtones”[18]. Especially Motorola [20] and
Nokia are on the forefront of these innovators. But ringtones and
games in mobile phones are enriched also by companies like Immer-
sion [37] with their VibeTonz technology. Immersion even came up
with a CyberTouch Glove [13]. On the other hand Nokia invented
Digital Pens indicating battery status and other alerts with vibration
patterns [4]. Some of these devices could boost the future design of
haptic icons immensely.

Fig. 3. The Tactaid [17] and the C2 Tactor Transducer [23]

3.2 Haptic Icon Design
Enriquez et al.[25] did important spadework in the theory of hap-
tic icons. They examined for example the internal structures of tac-
tile stimuli and haptic icons. Similar to speaking, phonemes can be
namely defined in haptics. The so called haptic phonemes form the
smallest distinguishable building blocks and are therefore the smallest
recombinant module of a physical haptic stimulus to design with. Sub-
sequently Enriquez et al.[25] talk about two combination approaches
(see Figure 4):

• Concatenation: Phonemes are combined serially to create a
word, following an analogy with English word construction.

• Superposition: Phonemes are combined in parallel to create a
word of the same length as the longest original phoneme, fol-
lowing a musical chord analogy.

Fig. 4. Haptic Phonemes - Smallest Building Unit for Haptic Icons [25]

Haptic phonemes are constructed of simple waveforms, specifing the
temporal path of the signal and a frequency, specifing the rate at which
the path is traversed in a certain amplitude. ”These phonemes can be
assigned meanings which, when combined to create haptic words, can
represent increasingly elaborate families of concepts that are related
both semantically and haptically”[25]. They should meet the corre-
lating requirements of being differentiable, easy to learn and easy to
remember.

A further classification was conducted by Brewster and Brown [13]
[14] devising tactons in three groups. First of all there are the com-
pound tactons, which mean the serial combination of small tacton
blocks, composing little messages. This is certainly equivalent to the
concatenation of haptic phonemes by Enriquez et al.[25] mentioned
before. Some tasks in a file system represented by compound tactons
should give a better illustration of how this works. ”The mapping is
abstract; there is no intuitive link between what the user feels and what
it represents”[14]:

• create: increasing high frequency pulse

• delete: decreasing lower frequency pulse

• file: two falling notes

• directory: two rising notes

Thereby the compound message ’create file’ or ’delete directory’ can
be expressed by simply combining the haptic meanings.

This ties in with the representation of file type, creation date and file
size, which could be displayed by so called transformational tactons
introduced by Brewster and Brown in 2004 [14].

• file type: indicated by a certain rhythm

• size: smaller files by high frequencies; bigger files by lower fre-
quencies

• creation date: certain body location tells a relative time

”If two files were of different types but the same size they would be
represented by different rhythms with the same frequency”[14]. Fur-
ther examples would be the already mentioned progress bar widgets
(see 2.2 Fields of Tacton-Application).

Last but not least there is the type called hierarchical tactons [13],
capable of presenting hierarchical data structures. In computer science

53

tree structures are an important and common concept in data struc-
tures. It stands to reason that hierarchical tactons can be very useful in
certain situations of HCI and HIP. Here a possible tactile encoding by
Brewster and Brown [13]:

• Level 1: top tree node is a basic rhythm using a sine wave (family
tacton)

• Level 2: compound tacton build out of the family tacton and
adding to it e.g. as a square wave in a higher frequency

• Level 3: the tempo of the compound tacton from level 2 is
changed

In order to ideally enable a user to complete his/her desired task, a
haptic icon must [54]:

• Function technically (be physiologically perceivable, and relate
to the users preconceived mental models of the task)

• Function socially (fitting into the tasks social and cultural milieu)

3.3 Prototyping Classifications
In this section we want to take a closer look on a selection of haptic
icon prototyping examples. Due to the complex nature of haptic icons
a distinction in horizontal and vertical prototyping seems not very rea-
sonable. Horizontal prototypes would have to demonstrate the whole
spectrum of haptic icon features of an interface, without actually im-
plementing them, which would mean that one can not even feel the
hapticon? This controversy may only be useful in combination with
wizard of oz approaches, which are seperately discussed (see 3.3.1
Low Fidelity Techniques). On the other side vertical prototypes don’t
make sense as well, because as soon as a working haptic feedback
technology is integrated into a prototype, it should be no big deal to
play and test different tactons with it, which brings us more into the
direction of hi-fi prototyping at once.

Latest technological developments are promising an easier proto-
typing in the near future. Cottam and Wray note that ”for designers
to sketch tangible interfaces, their physical-computing toolset should
give them a way to connect a GUI to sensing technology or actua-
tors, preferably with some control over the translation between user
action and interface event.[...] The entry barrier has been slowly low-
ered through the development of higher-level protocols and devices
such as microcontrollers or A/D converters for hobbyists, artists, and
designers”[22]. One of the first successful protocols for controlling
hardware was MIDI in 1983. ”Toward the end of the 1990s, other
microcontrollers and physical-computing toolkits entered the market,
including Easy IO, Teleo, Phidgets, and Arduino”[22].

According to Swindells et al.[54] an ideal set of HIP tools should
support:

• All haptic types (kinesthetic & tactile) and affected parameters

• Interaction between all degrees-of-freedom (horizontal) and
many levels-of-detail (vertical)

• Rapid iterations between various static & dynamic behaviors and
reactions

• Completely representing the psychophysical capabilities of the
user (ergonomics) via a standard set of mathematical relations

• Having easy-to-understand mental mappings between the under-
lying mathematical representations, the interaction widgets, and
the final haptic renderings

• Providing usable interaction widgets for designers to effectively
create and modify haptic renderings

• Integrating seamlessly with other haptic development tools, and
development tools for other sensory modalities (vision, hearing,
smell and taste)

”A designer rarely has a clear idea of the perfect, finished hap-
tic behavior before starting the design [and] needs to be able to cre-
ate several possible behaviors, [being] able to rapidly compare these
behaviors”[54]. Hi-fi prototypes typically offer higher fidelity and bet-
ter contextualization support, than low-fi prototyping who offer more
flexible brainstorming options. But depending on the stage of an eval-
uated project, the right kind of prototype has to be defined, which is
called ’appropriate prototyping’ [19]. ”There can be a tendency to
try to build the most complicated prototype possible where a much
simpler one will actually better communicate the design through the
maintenance of ambiguity”[59]. Apparently there is a great need for
fast iterating, low-fi prototyping techniques in haptic interface design,
that’s why we straight head for it now.

3.3.1 Low Fidelity Techniques
In HCI paper protoyting is a well established low-fi prototyping
method for visual based interfaces. However, an effective prototyp-
ing substitution for the field of haptics is missing. Especially if haptic
stimuli are used as a major information sources [19]. As we already
now (from section 2.1 Definitions), haptic icons do communicate ab-
stract informations, which obviously stands in direct contradiction to
the limited expressiveness of low-fi prototypes.

Nearly all referenced works speak about the importance of early
impressions and free (simple, inexpensive) explorations in the design
process of haptic interfaces. ”As polished and realistic as a virtual
rendering of a physical product might be, it can never fully express or
explore the designs most important aspect: How the products users in-
teract with it? How do they hold it in their hand? How does it rest if its
lying on a table? How do they pick it up? A quick physical sketch of
a product, however, is quite useful for the design process”[22]. When
the designers’ imagination for useful features meet ergonomics and be-
haviors in daily routines and surroundings, it is this inter-coordinated
experience of situations and requirements, which really originates cre-
ative solutions for enhanced user support and improved usability in the
end. ”The ability to produce early prototypes is needed not only for
the exploration and evolution of the design space, but also for mak-
ing it possible to build the necessary bridge between users and design
early in the process”[19].

Fig. 5. Low-fi Sketching Materials used at the NordiCHI Workshop, Low-
fi Haptic Prototyping Example, Low-fi Wizard of Oz Example [12]

Low-fi prototypes ”are sketches because they can be rapidly
created and iterated [serving] only as useful approximations of the

54

final product. They are accurate where they need to be to inform the
design, and are ’duct-taped’ everywhere else”[22]. Right from the
outset low-fi prototyping implies these aspects of experience, being
uninfluenced of theoretical concepts, which often pinpoints fresh
approaches to a problem. Thus the granted relevance for low-fi haptic
prototyping seems justified, so let’s discuss a few ways of them in the
ongoing section.

Results of the NordiCHI 2008 Workshop [19]: A group of 16
people from academia and corporations like Nokia participated with
the aim to share their knowledge in low-fi haptic prototyping. ”The
success of the Wii and the iPhone together with the development of
low-cost force feedback devices have put haptic feedback within the
scope of the individual user. Hence, there is an increased need to
develop heuristics, guidelines and standards for its use”[19]. The
participants playfully got their hands on rapid prototypes, made of
everyday materials (see figure 5 upper left). Therefore a big selection
of materials purchased in ordinary department, hobby and toy shops
was available to them. Still during the workshop some things emerged
to be missing and give good advice for future strategies of low-fi
haptic prototyping. The missing materials have been fast glue, velcro,
more particles, stronger metal wires, more sounding stuff, small active
things like vibrators or sound sources, everyday objects, materials
that behave in weird ways and second hand shop things like cheap
electric machines etc.. Strong magnets especially turned out to be a
very convenient item to play out rapid prototypes.

The workshop spawned haptic prototypes like the ’walk with the
wind navigator’, the iBall for throwing music, emotional interfaces
(mobile and stationary), a navigation ball, an eyes free music player
and haptic breadcrumbs, which unfortunately all did not receive a sep-
arate explanation. But their main conclusion of this workshop cer-
tainly is that low-fi haptic prototyping needs sophisticated scenarios to
gain a qualitative meaningful contribution to the design process. The
following guidelines sum their experiences made during the workshop:

• Have a clear idea about the goals of your prototyping and think
about what kind of responses you want (the level of polish
changes the feedback)

• Use as many materials as possible and build up a wide collection
of materials

• Get together a good mix of people

• Put effort into making good scenarios

• Use wizard of Oz to prototype advanced functionality

• Have fun!

Some more remarks on the use of Wizard of Oz for haptic icon pro-
totyping (see figure 5 bottom). The texture of haptic icons are of subtle
nature, dependent of a big variety of attributes. The ranges in which
humans are able to perceive them had been discussed before (see 2.5
Technical Parameters of Haptic Icons), but this not immediately means
that these parameters can be created by humans within a Wizard of Oz
experiment. Furthermore even rough approximations of haptic icons
can probably not be recreated 100% in different test cases. This once
again clarifies the limits of low-fi prototyping, which have to be con-
sidered with well-informed caution. Hence, low-fi haptic prototyping
with Wizard of Oz better supports horizontal prototyping approaches
than vertical prototyping, as it is in fact possible to represent a great
variety of haptic icons, but only in a rough guise.

Even with sketching materials used in the ’NordiCHI 2008 Work-
shop’ it stays difficult to mimick realistic digital reactions [22]. But
without appropriate sketching materials for haptic interaction, many
design issues ”will be experienced for the first time only after a costly
prototyping phase requiring engineer input and the creation of a pro-
totype built with nondisposable materials that are difficult to use itera-
tively.[...] Designers should be able to work with physical-computing
materials quickly, iteratively, and as fluidly as possible.”[22]. Some

approaches coming close to solve these demands, will be presented in
the next section.

3.3.2 High Fidelity Techniques
In this section hi-fi prototyping examples will be viewed, even though
some of them also claim to be the equivalent to the low-fi technique
’paper prototyping’ [54], they still all use complex hardware set ups
and elaborated software and that’s why they were classified as hi-fi
prototyping techniques within this work. Positive aspects of hi-fi
prototypes are an extended degree-of-freedom, supporting horizontal
and vertical design issues as well as different levels-of-detail for
concept visualization and mental models of the planned device. This
results in pretty realistic user impressions at the expense of financial
investments in specialized sketching technology or the cost of many
hi-fi prototypes.

Tactile Handheld Miniature Bimodal (THMB)[44]: The THMB
is held with the left hand, having the thumb located at the upper left
side of the device. A small visual display kindly reminds of how
a PDA is constructed. ”The tactile display consists of a stack of
eight piezoelectric benders (see Figure 6 upper right) intercalated
between brass rods, which protrudes slightly through a narrow slit.”
This array of piezoelectric actuators arouses the thumb tip’s skin by
bending. The amplitude of a piezoelectric actuator depends on the
voltage applied across its electrodes, which is controlled by a PC host
running Linux. Intermediate electronics filter and amplify the control
signals, generating control voltages from +/-50V with a sample rate
of 3125 samples per second. ”They are encoded with a single byte
and therefore can only take 256 different values.” With the THMB
miscellaneous tactons can be induced and examined in conjunction of
a visual modality.

BubbleWrap: a textile-based electromagnetic haptic display [8]:
A very recent example is the BubbleWrap (see Figure 6 bottom
left), ”a matrix of electromagnetic actuators, enclosed in fabric, with
individually controllable cells that expand and contract.” Information
is either display by vibrations or by shape and firmness. Unfortunately
there is no information about the back-end and the control system of
the BubbleWrap. But this might be still a very useful prototyping tool
for haptic stimuli in wearable devices or an armrest of a chair.

Fig. 6. The Haptic Knob [54], the THMB device and a close up of its
tactile display [44], the BubbleWrap [8] and the NADA [22]

Haptic Knob with the Haptic Icon Editor Software [54]: Swindells et
al. software follows a tile concept, in which one can design haptic
icons via drag&drop. It is divided into three interaction regions:
a waveform editor, a tile palette (position, velocity, acceleration
tiles) and a tile pane. They accentuate that ”organizing and editing
collections of haptic tiles into more sophisticated haptic behaviors

55

is important because prototyping is typically an iterative learning
process.” Based on a set of mathematical equations, they actually
calculated spatial and temporal representations for haptic icons,
which their haptic knob (see Figure 6 upper left) is able to display.
”The knob operates with an update rate of 10kHz, 0.001 ˚ positional
accuracy, and 180 mNm maximum continuous torque” and is con-
trolled by a ”custom real-time platform middleware infrastructure”,
which again is simply a real-time Linux PC attached to an I/O board.
The best thing about this workflow is that a haptic icon designer
gets appropriate and fast mental mappings, as all template like
haptic modules or tiles can immediately be felt and visually viewed.
The limitation is the single degree-of-freedom of this prototyping tool.

Sketchstools Network Analog and Digital Adapter (NADA)[22]:
This is an open source hardware and software toolkit consisting of
a Java application, a microcontroller (A/D converter) and a custom
circuit board, integrating additional sensors (heat, motion, force, etc.)
and actuators (light, motors, fans, etc.). The innovation lies in the
possibility to simply connect these sensor and actuator components
directly into the headphone jack of an iPhone or iPod interacting with
e.g. a Flash application (see Figure 6 bottom right). ”Our goal in
developing these tools isn’t to extend iPhone or iPod functionality.
These devices simply happen to be well-qualified bases for our
sketching platform because of their multitouch capabilities, software
development kit, and large high-resolution display (relative to that of
other mobile devices).” Their intention is vividly exemplified by this
slogan: ”We’ll continue to strive to create tools that make sketching
in hardware as simple as putting pen to paper.” And indeed this
really seems to be a powerful way of fast and iterative prototyping,
incorporating a wide range of HCIs through the compatible selection
of sensors and actuators, thereunder also ones supporting haptic
feedback.

3.4 Haptic Prototyping Data Analyses

During prototyping most of the times a huge amount of data about
the user performance is recorded. In this section useful analyzing
methods for HIP data are disclosed briefly.

Analysis of Variance (ANOVA): This is a collection of statistical
models, testing whether the means of several groups of a variable
are all equal. This informs us about significant differences of user
studies and therefore leads to error rates of a test case. Hoggan and
Brewster for example used a ”standard two tailed one factor ANOVA
analysis, based on the critical values of the F distribution, with
alpha=0.05”[32]. Also Brown et al.[15] [18] used ANOVA analysis
to successfully proof their hypotheses. If there are more variables,
what often can be the case in HIP due to the amount of affected
parameters, it is maybe more suitable to use a specialized version of
the ANOVA called Multivariate Analysis of Variance (MANOVA).
McDaniel et al.[42] demonstrate the handling of ANOVAs. ”The
reported ANAOVA results are from a two-way ANOVA on complete
tacton recognition accuracy through location and rhythm”.

Tukey’s Honestly Significant Difference (HSD) Test: This is a
statistical test in the form of a single-step multiple comparison, also
matching all possible pairs of means. That’s why the Tukey’s HSD
Test is often used post hoc in conjunction with previous ANOVA
analysis, emphasizing or confuting each others’ results [17]. For
example did ”post hoc Tukey HSD tests not show any differences in
the individual pairs” of an experiment by Brown et al.[17].

Multidimension Scaling (MDS) Plot: A MDS plot is capable to
sort common clusters in data structures, which can be visualized most
of the times in 2D or 3D graphs. A pairwise comparison in a given
dissimilarity matrix assigns locations for each item in a N-dimensional
space (see figure 7). Thereby complex large dimensional matrices are
reduced to N-dimensions, maximizing the variance of the examined
data. For instance, this can show ”how users perceptually organize a
set of stimuli”[53]. Enriquez et al.[24] used ”2D multidimensional

scaling plots to quantitatively show perceptual differences between
several haptic icons”. Hollins et al.[41] even succeeded to determine
”dimensions such as hard/soft and slippery/sticky for real tactile
surface textures”[53] in MDS plots.

Fig. 7. A Cluster Sorted Multidimensional Scaling Plot Example [44]

A very detailed examinations of the MDS plotting methods usabil-
ity for haptic icons were done by Pasquero et al.[44] and Luk et al.
[40], verifying that MDS plots are robust against noise across the dis-
similarity matrix. This states that ”it can be a valuable tool to evaluate
the expressive capability of haptic devices”. Furthermore Pasquero et
al. found that ”hidden patterns in the resulting plot of a MDS analysis
carried out on the entire stimuli set can become apparent when se-
lected submatrices of the full dissimilarity matrix are submitted to the
same MDS algorithm. This tends to indicate that the cluster-sorting
technique also captures detailed information about sub-level of stim-
uli distinction that are not visible by sole inspection of the global MDS
plot”[44].

Further methods include examination tools like Matlab Simulink
[5], step by step supporting shared analysis of common data structures,
as demanded by Swindells et al.[54]. Another user study classic the 7-
10 level Likert scale might frequently be useful to generate and analyse
data, too [42].

3.5 Summary of Technical Expertises
In this section a summary of relevant results for HIP and haptic icon
design are brought together.

Designers of haptic feedback should always be aware of the given
fact that after a first contact on the skin, the further sensation of super-
ficial structures require relative motion between each other [53]. En-
riquez et al.[25] hypothesized about the possibility of ’haptic numb-
ness’, which should be taken into account when evaluating perfor-
mances on haptic interfaces. ”In the same manner that 10% of the
population is color-blind, there may be a naturally-occurring difficulty
in learning haptic stimuli associations”[25].

Apart from that Swerdfeger et al.[53] suggest in their design
heuristics for family based design of melodic haptic icons that non-
syncopated rhythms should be used primarily, because rhythmic
changes dominated other distinctions and where grouped even if am-
plitude or frequency had been different. Though amplitude and fre-
quency should be used as secondary design parameters. The similar
number of perceived notes is an important grouping factor to users,
especially groups of rapid eighth notes showed a unique recognition
value in rhythm design. But this effect lost distinctiveness even lead-
ing to confusion of users, if several haptic icon families used the rapid
eighth notes. ”As long as they are not emphasized, quarter notes can

56

be replaced with two eighth notes for within-group variation”[53]. A
similar relation like that between rhythm and amplitude/frequency was
found by Hoggan and Brewster between waveform (recognition rate of
94.2% [32]) and amplitude/frequency, stating that rhythm and wave-
form are very important haptic icon design parameters. For mobile de-
vices it turned out to be rhythm and amplitude, which are best suited
for distinctive haptic icon design [18]. Furthermore a perceptual seg-
regation of abrupt and ’rolling’ rhythms assured a meaningful base for
one haptic icon family [53].

Tactile dynamics can be achieved by linear and exponential (de-
) crescendos (de-/increasing amplitude) and could be used for haptic
icon design as a wise means due to recognition rates of 92-100% [17].
Another musical technique, sforzandos (high intensity accents) thus
perpetrated confusion and should not be used in tacton design at the
moment.

The training aspects in HIP highly effected the results in many stud-
ies. Though training for sforzandos could also sensibilize for such a
haptic icon stimuli [17]. Enriquez et al.[25] allowed ”participants to
return to the self-guided learning interface when consistent mistakes in
the enforced learning phase have been detected”, with positive influ-
ence on the over all results. Another positive effect of training showed
the results by Hoggan and Brewster, with crossmodal recognition rates
of 85% between Earcons and Tactons. With only three further training
sessions participants recognized tactons with rates of 90% or above
[31].

A final helpful advice for HIP comes from a comment by Swindells
et al.[54]: ”Although perceptual sensitivity would be a useful addition
to a haptic prototyper, there are many unknowns within the percep-
tual limitations of haptic behaviors. So, currently, the best approach
for haptic prototype design is to perform perceptual user studies to
compare several designed haptic behaviors after they have been devel-
oped.”

4 FUTURE PERSPECTIVES

In this section open questions are summed and some inspirational
ideas are given in the outlook of unexplored haptic icon feedback tech-
nologies.

4.1 Open Questions
Until today scientist have defined the affected parameters of tactons,
but still investigate how they interfere with each other. ”Parameters
which work well alone may not work well when combined with others
into a tacton. For example, one parameter may mask another”[13]. So
there is a knowledge base about the tactile fundamentals, but the actual
composition of haptic icons still needs further research.

The ”number and complexity of required haptic syllables” is still
questionable say Enriquez et al.[25]. They also assume that avoiding
mid-values in hatpic phoneme sets would ”sufficiently improve iden-
tification performance to justify additional dimensions to increase set
size”. It then would be easier for people to distinguish haptic icon
sets with 3 dimensions with 2 values on each (23=8) rather than 2
dimensions with 3 values (32=9) [25]. Also, how ”temporal informa-
tion affects absolute identfication of tactile rhythm”[42] needs further
scientific evidence. ”In addition, future studies could investigate the
perception of more complex amplitude changes”(parabolic shapes), as
much as, how other musical techniques like the (de-)crescendos can be
applied to the field of hatpic icon design [17]. Identification of haptic
icons encoded by roughness and containing short notes turned out dif-
ficult, due to the short time to identify roughness. It will need future
Work to define the minimum duration of notes at which a roughness
parameter can still be identified, so ”rhythms could then be designed
around these results”[15], even though roughness is not a suitable tac-
ton parameter ”when using mobile phone vibration motors”[18].

”The concurrent presentation of multiple tactons must also be stud-
ied. These studies will answer some of the main questions regard-
ing the usability of tactons and a good understanding of their design
and usability will have been achieved”[13]. According to the underly-
ing data structures, Swindells et al.[54] ask for ”more explicit shared
data structures and handles for integration with other modalities, such

as video and audio”. This would support the development of tightly
pleached multimedia devices a lot.

4.2 Unexploered Haptic Icon Feedback Technologies

As much as the technical parameter ’temperature’ (see 2.5 Technical
Parameters of Haptic Icons) hasn’t been used yet, there are some more
ways of creating haptic icon effects, no one in the studied works has
thought off. For instance, one would be an adjusted massage recliner
chair used as sketching hardware for drawing spatial haptic patterns
over user bodies.

Another one is only lightly mentioned by Swindells et al.[54], who
say that ”one could use surfaces of silk, wood, sandpaper, and metal to
express how a mechatronic tactile system might feel when in particular
system states”[54]. Unfortunately material state or surface metamor-
phosis hardly exists so far, especially for electronic devices. Chimeras
like that would need strong team work of chemists, electronic engi-
neers, computer scientists etc., to find out about the potential benefits.
Only something like ferrofluids come close to those characteristics.
This is a fluid mixture which can be produced out of motor oil and
toner of a laser printer. The amazing characteristic of being liquid and
magnetic allows to control the ferrofluid. This originally was invented
by the NASA to control fluids and fuels in zero gravity. One could
maybe think of a slight film of ferrofluid being in front of a touch-
screen. The ferrofluid then is converged by magnetic fields to give a
haptic feedback directly at the position on the surface of the touch-
screen, where it is needed. This should just give some inspiration and
encouragement for future technologies, maybe being useful to repre-
sent haptic icon effects.

5 CONCLUSION

In the young time tactons have been in the spotlight of research for
haptic feedback and user interfaces, they could already present their
positive impacts on a big range of HCIs. Several hi-fi and lo-fi proto-
typing methods showed that they are useful techniques in prototyping
haptic icons. The proven concepts of icons in visual and auditory HCI
is a central theme through all literature and papers of haptic icons,
telling us once more that the reusability of successful realized tech-
niques help a lot to explore new fields. With the expected improve-
ment in hapitc icon prototyping, also the designers in electronic com-
panies will be strengthened to justify the effort in creating new ways
of transmitting informations to the users. The advantages of balancing
informations on multiple cognitive human channels, will have two as-
pects. First of all it hopefully results in greater satisfaction of handling
future technological devices, providing for example that also disabled
people have more ways to communicate. On the other side complex
coherencies, like creating certain feelings for entertainment purposes,
maybe only get perceivable by the simultaneous perception through all
sensory channels at once.

A main question in HIP definitely is, if it is more suitable to proto-
type haptic stimuli and their contextual device in which they are dis-
played separately. At which point of testing should designers proto-
type them together? Since the beginning? These questions have a
great impact on budget and time schedules, depending really on the
specific prototyping case. Some punchy tactons might not have the
same expressiveness when played under likely conditions. Therefore
testing hatpic icons should primarily be done in the most realistic cir-
cumstances in my opinion.

In the end Cottam and Wray phrased the best final appreciation for
the current state of HIP research aspects: ”Tangible interfaces can be
more natural, intuitive, and efficient than the way we currently interact
with digital devices and interfaces. The key to developing these inno-
vations is the ability to use physical-computing materials early during
sketching. To innovate new methods of interaction between analog and
digital interfaces, we must be able to not only imagine them but also
explore, observe, and demonstrate them. Besides the advantages of ob-
serving an interaction in a physically real context, there’s undeniable
benefit in the ability to show tangible-interface concepts and technolo-
gies to others, rather than just describing them”[22]. The summary

57

in this work tries to contribute its part in the development of suitable
haptic icon prototyping techniques and guidelines.

REFERENCES

[1] http://www.naturstudiendesign.de/bilder/Der_
Mensch/70_Haut/37_Tastsinn.JPG. visited 03.01.2010.

[2] http://en.wikipedia.org/wiki/Optacon. visited
03.01.2010.

[3] www.tiresias.org. visited 03.01.2010.
[4] Manual Nokia Digitalpen (SU-27W). http://nds1.nokia.com/

phones/files/main_page/Nokia_SU-27W_UG_de.pdf. vis-
ited 03.01.2010.

[5] The mathworks matlab and simulink. http://www.mathworks.
com. visited 11.01.2010.

[6] A. Chan, K. MacLean, and J. McGrenere. Learning and identifying haptic
icons under workload. WHC, 2005. pages 432-439.

[7] Audiological Engineering Corporation. http://www.tactaid.
com/. visited 03.01.2010.

[8] O. Bau, U. Petrevski, and W. Mackay. Bubblewrap: a textile-based elec-
tromagnetic haptic display. In CHI EA ’09: Proceedings of the 27th inter-
national conference extended abstracts on Human factors in computing
systems, pages 3607–3612, New York, NY, USA, 2009. ACM. good doc-
umentary QuickTime Video available, visited 20.11.2009.

[9] S. Biggs and M. Srinivasan. Haptic interfaces. Handbook of Virtual
Environments: Design, Implementation, and Applications, K.M. Stanney,
ed.,Lawrence Erlbaum:93–115, 2002.

[10] H. V. Bjelland and K. Tangeland. User-centered design proposals for
prototyping haptic user interfaces. http://www.springerlink.
com/content/4vu1127kg1g48569/fulltext.pdf?
page=1 http://www.springerlink.com/content/
4vu1127kg1g48569/fulltext.pdf?page=2 http:
//www.springerlink.com/content/4vu1127kg1g48569/
fulltext.pdf?page=3, 2007. 3 pages as preview available, visited
20.11.2009.

[11] M. M. Blattner, D. A. Sumikawa, and R. M. Greenberg. Earcons and
icons: Their structure and common design principles (abstract only).
SIGCHI Bull., 21(1):123–124, 1989.

[12] S. Brewster. Flickr set of the nordichi 08 workshop on lo-fi haptic pro-
totyping. http://www.flickr.com/photos/24420490@N08/
sets/72157608986634676/. visited 21.12.2009.

[13] S. Brewster and L. M. Brown. Tactons: structured tactile messages for
non-visual information display. In AUIC ’04: Proceedings of the fifth
conference on Australasian user interface, pages 15–23, Darlinghurst,
Australia, Australia, 2004. Australian Computer Society, Inc.

[14] S. A. Brewster and L. M. Brown. Non-visual information display using
tactons. In CHI ’04: CHI ’04 extended abstracts on Human factors in
computing systems, pages 787–788, New York, NY, USA, 2004. ACM.

[15] L. M. Brown, S. A. Brewster, and H. C. Purchase. A first investigation
into the effectiveness of tactons. In WHC ’05: Proceedings of the First
Joint Eurohaptics Conference and Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, pages 167–176, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[16] L. M. Brown, S. A. Brewster, and H. C. Purchase. Multidimensional tac-
tons for non-visual information presentation in mobile devices. In Mo-
bileHCI ’06: Proceedings of the 8th conference on Human-computer in-
teraction with mobile devices and services, pages 231–238, New York,
NY, USA, 2006. ACM.

[17] L. M. Brown, S. A. Brewster, and H. C. Purchase. Tactile crescendos and
sforzandos: applying musical techniques to tactile icon design. In CHI
’06: CHI ’06 extended abstracts on Human factors in computing systems,
pages 610–615, New York, NY, USA, 2006. ACM.

[18] L. M. Brown and T. Kaaresoja. Feel who’s talking: using tactons for
mobile phone alerts. In CHI ’06: CHI ’06 extended abstracts on Hu-
man factors in computing systems, pages 604–609, New York, NY, USA,
2006. ACM.

[19] C. Magnusson, S. Brewster. Nordichi 2008 workshop: Guidelines for
haptic lo-fi prototyping. http://www.english.certec.lth.
se/haptics/lo_fi_nordichi_2008.htm, October 2008. vis-
ited 21.12.2009.

[20] A. Chang and C. O’Sullivan. Audio-haptic feedback in mobile phones.
In CHI ’05: CHI ’05 extended abstracts on Human factors in computing
systems, pages 1264–1267, New York, NY, USA, 2005. ACM.

[21] R. Cholewiak and M. Wollowitz. The design of vibrotactile transducers.
Tactile Aids for the Hearing Impaired, Whurr Publishers Ltd: London, I.
Summers, ed:57–82, 1992.

[22] M. Cottam and K. Wray. Sketching tangible interfaces: Creating an elec-
tronic palette for the design community. IEEE Comput. Graph. Appl.,
29(3):90–95, 2009.

[23] Engineering Acoustics Inc. Tactor products. http://www.eaiinfo.
com/Tactor%20Products.htm. visited 03.01.2010.

[24] M. Enriquez. Perceptual design of haptic icons. EuroHaptics, 2003.
[25] M. Enriquez, K. MacLean, and C. Chita. Haptic phonemes: basic build-

ing blocks of haptic communication. In ICMI ’06: Proceedings of the 8th
international conference on Multimodal interfaces, pages 302–309, New
York, NY, USA, 2006. ACM. visited 20.11.2009.

[26] M. J. Enriquez and K. E. MacLean. The hapticon editor: A tool in support
of haptic communication research. In HAPTICS ’03: Proceedings of
the 11th Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems (HAPTICS’03), page 356, Washington, DC, USA,
2003. IEEE Computer Society.

[27] J. Gill. Guidelines: Pictograms, icons and symbols. Royal National Insti-
tute of the Blind, UK, 2003. Available at http://www.tiresias.
org/research/guidelines/index.htm, visited 10.01.2010.

[28] D. G. Gunther, E. and S. O’Modhrain. Cutaneous grooves: Composing
for the sense of touch. In Proceedings of Conference on New Instruments
for Musical Expression, Dublin, IR, 1-6, 2002.

[29] E. S. Gunther. A tool for composition in the tactile modality. Master’s
thesis, Department of Electrical Engineering, MIT, Boston, MA, 2001.

[30] K. S. Hale and K. M. Stanney. Deriving haptic design guidelines from hu-
man physiological, psychophysical, and neurological foundations. IEEE
Comput. Graph. Appl., 24(2):33–39, 2004.

[31] E. Hoggan and S. Brewster. Designing audio and tactile crossmodal icons
for mobile devices. In ICMI ’07: Proceedings of the 9th international
conference on Multimodal interfaces, pages 162–169, New York, NY,
USA, 2007. ACM.

[32] E. Hoggan and S. Brewster. New parameters for tacton design. In CHI
’07: CHI ’07 extended abstracts on Human factors in computing systems,
pages 2417–2422, New York, NY, USA, 2007. ACM.

[33] E. Hoggan, A. Crossan, S. A. Brewster, and T. Kaaresoja. Audio or tactile
feedback: which modality when? In CHI ’09: Proceedings of the 27th
international conference on Human factors in computing systems, pages
2253–2256, New York, NY, USA, 2009. ACM.

[34] E. E. Hoggan and S. A. Brewster. Crossmodal icons for information dis-
play. In CHI ’06: CHI ’06 extended abstracts on Human factors in com-
puting systems, pages 857–862, New York, NY, USA, 2006. ACM.

[35] H.Z. Tan, N. I. Durlach, W.M. Rabinowitz, C.M. Reed. Information trans-
mission with multi-finger tactual display. Research Laboratory of Elec-
tronics, Masachusetts Institute of Technology, Cambridge, MA, USA,
1997.

[36] I. R. Summers, C. M. Chanter, A. L. Southall and A. C. Brady. Results
from a tactile array on the fingertip. In Proceedings of Eurohaptics 2001,
Birmingham, pages 26–28. University of Birmingham, UK, 2001.

[37] Immersion VibeTonz System. http://www.immersion.com/
markets/mobile/index.html. visited 09.01.2010.

[38] M. Kretz. Article about thermoreception. http://www.
studentenlabor.de/ss04block/thermorezeption.htm,
2004. visited 13.01.2010.

[39] D. J. Lewkowicz. The development of intersensory temporal perception:
An epigenetic systems/limitations view. Psychological Bulletin, 126:130
–155, 2000.

[40] J. Luk, J. Pasquero, S. Little, K. MacLean, V. Levesque, and V. Hayward.
A role for haptics in mobile interaction: initial design using a handheld
tactile display prototype. In CHI ’06: Proceedings of the SIGCHI con-
ference on Human Factors in computing systems, pages 171–180, New
York, NY, USA, 2006. ACM.

[41] M. Hollins, R. Faldowski, S. Rao, F. Young. Perceptual dimensions of
tactile surface textures: A multidimensional scaling analysis. Perception
& Psychophysics, 54 (6):697–705, 1993.

[42] T. L. McDaniel, S. Krishna, D. Colbry, and S. Panchanathan. Using
tactile rhythm to convey interpersonal distances to individuals who are
blind. In CHI EA ’09: Proceedings of the 27th international conference
extended abstracts on Human factors in computing systems, pages 4669–
4674, New York, NY, USA, 2009. ACM.

[43] D. K. McGookin and S. A. Brewster. Understanding concurrent earcons:
Applying auditory scene analysis principles to concurrent earcon recog-

58

nition. ACM Trans. Appl. Percept., 1(2):130–155, 2004.
[44] J. Pasquero, J. Luk, S. Little, and K. MacLean. Perceptual analysis of hap-

tic icons: an investigation into the validity of cluster sorted mds. Haptic
Interfaces for Virtual Environment and Teleoperator Systems, Interna-
tional Symposium on, 0:67, 2006.

[45] R. W. Cholewiak, J. C. Brill, A. Schwab. Vibrotactile localization on the
abdomen: effects of place and space. Perception and Psychophysics, vol.
66:970–987, 2004.

[46] J. Rovan and V. Hayward. Typology of tactile sounds and their synthe-
sis in gesture-driven computer music performance. Trends in Gestural
Control of Music, pages 297 – 320, 2000.

[47] A. Rupert. Tactile situation awareness system: proprioceptive prostheses
for sensory deficiencies. Aviation, Space and Environmental Medicine,
71:92–99, 2000.

[48] S. E. Newman, A. D. Hall, D. J. Foster, and V. Gupta. Learning as a
function of haptic discriminability among items. The American Journal
of Psychology, 97(3):359372, 1984.

[49] C. Sherrick. A scale for rate of tactual vibration. Journal of the Acoustical
Society of America, 78, 1985.

[50] C. Sherrick and R. Cholewiak. Cutaneous sensitivity. Handbook of Per-
ception and Human Performance: Sensory Processes and Perception, v.1,
1986. K. Boff, L. Kaufman, and J. Thomas, eds., John Wiley & Sons.

[51] C. M. Smith. Human factors in haptic interfaces. Crossroads, 3(3):14–16,
1997.

[52] I. Summers. Single channel information transfer through the skin: Lim-
itations and possibilities. In Proceedings of ISAC 2000. University of
Exeter, UK, 2000.

[53] B. A. Swerdfeger, J. Fernquist, T. W. Hazelton, and K. E. MacLean. Ex-
ploring melodic variance in rhythmic haptic stimulus design. In GI ’09:
Proceedings of Graphics Interface 2009, pages 133–140, Toronto, Ont.,
Canada, Canada, 2009. Canadian Information Processing Society.

[54] Swindells, Colin and Maksakov, Evgeny and MacLean, Karon E. The
role of prototyping tools for haptic behavior design. In VR ’06: Proceed-
ings of the IEEE conference on Virtual Reality, page 90, Washington, DC,
USA, 2006. IEEE Computer Society.

[55] T. McDaniel, S. Krishna, V. Balasubramanian, D. Colbry and S. Pan-
chanathan. Using a haptic belt to convey non-verbal communication cues
during social interactions to individuals who are blind. HAVE, pages 13–
18, 2008.

[56] J. van Erp and M. Spapé. Distilling the underlying dimensions of tactile
melodies. In Proceedings of Eurohaptics 2003, pages 111–120, 2003.

[57] H. v. Veen and J. van Erp. Tactile information presentation in the cockpit.
In Proceedings of the First International Workshop on Haptic Human-
Computer Interaction, pages 174–181, London, UK, 2001. Springer-
Verlag.

[58] R. T. Verrillo and G. A. Gescheider. Perception via the sense of touch.
Tactile Aids for the Hearing Impaired, I.R. Summers (Ed.):1–32, 1992.

[59] S. B. William W. Gaver, Jacob Beaver. Ambiguity as a resource for de-
sign. In Proceedings of the SIGCHI conference on Human factors in
computing systems, April 2003. Ft. Lauderdale, Florida, USA.

59

Prototyping of Interactive Surfaces

Martin Hommer

Abstract— Interactive surfaces like tabletops, wall-mounted screens or mobile touch displays, are not just an affair of the research
anymore but now appear numerously in our daily life and thus are being used by more and more people. This entails that research
must not only concentrate on exploring new sophisticated features but also may well design systems with less functionality and in
return as much more usability. This is the motivation for this paper or, more precisely: how can prototyping help designers of an
interactive surface to work more user-oriented and furthermore does it help them to make the design process more efficient? This
work will introduce the topic from a general point of view, go into details of prototyping tools which are applicable for this topic and
describe how prototyping has been used in recent research projects, which are dealing with interactive surfaces or corresponding
interaction techniques. Thus, this paper provides an overview of related research work as well as a discussion about their proceedings,
in order to analyze what they did well and where potential improvements can be made.

Index Terms—Prototyping, Interactive Surface, Display, Interactions, User-Centered Design, Iterative Design, User Study, Evaluation

1 INTRODUCTION

As they became smaller and their technology smarter, displays got
out of standard computer monitor cases and are spreading into our
daily environment and now support the vision of ubiquitous comput-
ing. They are found at office doors, in coffee tables, in cars and among
a lot other places and objects, also in mobile phones. Frankly, a phone
is equipped with a small screen not only since yesterday, but with de-
vices such as the iPhone [1], a new way of interaction has become om-
nipresent: direct touch. This input method allows a more natural way
of utilization than using a mouse or a touchpad. However, this is just
the tip of the iceberg and new means of man-machine-communication
have been researched [31, 32, 8] (see figure 1b for an example) and a
lot more are about to be.

Thus, the requirements on these displays and the corresponding in-
teraction techniques as well as the freedom of design are huge, but
so are the mistakes a designer can make. A technically sophisticated
design is futile, if a user has difficulties to handle it, because its way
of usage is unnatural. So, the design process of an interactive system
should integrate the user to get early feedback. This is one of the goals
of prototyping.

1.1 What is Prototyping?
This work deals with the examination of prototyping techniques for
interactive surfaces, but before, the terms prototyping and interactive
surface should be regarded in principle. When hearing the word pro-
totype, one often thinks of a product being nearly finished and ready to
be reproduced several times. But actually this is only half the truth as
a prototype can as well be a model in an earlier design phase [5] which
solely provides a subset of the subsequent functions. Thus, from this
definition the term prototyping can be reasoned as the process of de-
signing and evaluating prototypes throughout several design phases
and integrate the particular results in new prototypes.

Prototyping is widespread in the field of HCI and helps designers
of both software and hardware to evaluate their products during the
development process. However, a common mistake is to believe that
everything prototyping is about is testing a system’s usability, for ex-
ample in a user study, in order to reveal failings [21]. Though this is
one of its most important objectives, far more time is spent with proto-
typing to build a basis for designers to ”organically and evolutionarily
learn, discover, generate, and refine designs” [21]. Thus, a construc-
tive reconsideration of a design can be stimulated by prototyping and

• Martin Hommer is studying Media Informatics at the University of
Munich, Germany, E-mail: martin.hommer@gmx.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/10

so, finding new features can be controlled instead of left to chance.
Because prototypes are apprehensible and concrete, whether they are
a real tangible object or a piece of software, it is easier to discuss on
them within a project team and it is more likely that new solutions
or ideas for novel features arise (like in [9, 19]). Moreover, compar-
ing and choosing between different designs is easier when you have
presentable alternatives than merely a rough vision in your mind.

However, prototyping in association with user experiences is also a
very important part of the design procedure, because integrating user
feedback in early stages of a process reveals usability and acceptability
issues, which then can be corrected in good time. In addition, develop-
ers can estimate whether vital or sophisticated features are persuasive
and aside from that, the user might be encouraged to think about new
ones. Benefits from an economic point of view are also existent, as for
one thing prototyping reduces development costs, for example when
using rapid prototyping (see figure 1a). For another thing, prototypes
can be used to better convince a possible investor or a principal - for
the same reason as arguing within the project team is improved: tan-
gibility and demonstration.

Fig. 1. a) Rapid prototyping of a multi-touch interactive surface [14]. b)
New ways of interaction are being explored [31].

1.2 What are Interactive Surfaces?
The term interactive surface includes not only displays in the narrower
sense, but also non-digital surfaces, like a wall or a desk, where images
are projected on. They will be described as displays as well.

As mentioned before, they appear in various shapes. The most com-
mon ones are tabletops, where the screen is mounted horizontally and
which can usually be reached from all sides. Normally, their height is
comparable to the one of a coffee table (like the Microsoft Surface [2])
or a desk (like EnhancedDesk [19]), depending on the desired use.
Next to tabletops, there are also vertically mounted displays. They
have basically different characteristics which are to be heeded. For
example, because horizontal surfaces have no upper side, the orienta-
tion of the content depends on each user’s position and thus is often
upside down for other viewers. A wall mounted screen does not need
to deal with it. In contrast, hanging displays sometimes suffers from
a bad attainability, if they are too large, so that their total height can’t

60

be reached, or too small and thus only a few people can physically ac-
cess them at a time. Also the ergonomic challenges diverge: While a
person interacting with a wall mounted display is likely to suffer from
physical fatigue in his arm, a tabletop might cause its user neck strain
when looking down on it. In a field study [26], which explored the use
of touch displays in offices (both horizontally and vertically) for one
month, seven of eight participants preferred the vertical ones. They
claimed that leaning over the level screen was uncomfortable, espe-
cially when reading text. This result seems comprehensible because in
this case, the vertical screens were standing on the desk like normal flat
screen monitors so that elbows could be rested on the table, which thus
prevents arm fatigue. Though this is only a small exemplary compar-
ison, it shows that a lot of factors have to be taken into account when
designing an interactive system, to avoid significant limitations of use.

As mentioned above, direct touch is a widespread way of communi-
cating with an interactive system. Due to the shared device for in- and
output, the interaction is more natural. A direct-touch interface can
also be a multi-touch and multi-user interface. Multi-touch means that
more than one input can be recognized at a time - for example press-
ing two buttons simultaneously. Beyond that, a multi-user system is
able to assign each input to the respective user. But aside from direct
touch, there are far more ways of input which have been explored in
recent research and novel ones are about to follow. A few existing
examples for interaction technologies are Tangibles [28, 35, 31], in-
tegrating paper and touch on a tabletop [19] or embodied interaction,
where the location and orientation of a human body, as well as its head
orientation is used [36].

Thus, a research targeting the prototyping of interactive surfaces
should not stop at their design but ought to deal with the respective
interaction technique as well. Hence, this paper targets both subjects.
What this work is particularly not aiming for is the design of graphical
user interfaces for interactive displays, since this is a distinctly dif-
ferent research topic, where clearly differing prototyping techniques
come into play. After this introduction, prototyping will be examined
in more detail, by presenting common prototyping techniques and key
characteristics. Subsequently, some existing prototyping tools are in-
troduced, which can possibly be integrated in a particular design pro-
cess. Afterwards, the usage of prototyping in practice will be exam-
ined and thus several recent research projects are presented and inves-
tigated to figure out whether, how, why or why not prototyping has
been used, as well as possible accompanying benefits or problems. In
the end, the main findings will be discussed, followed by the conclu-
sion.

2 PROTOTYPING IN DETAIL

Various types of prototyping techniques exist, however some are very
specific. This section provides an introduction to the different char-
acteristics of prototypes as well as common prototyping methods. Fi-
nally, a classification of these methods is given, regarding their suit-
ability for interactive surfaces.

2.1 Characteristics of Prototypes
There are many kinds of prototypes which can appear in a design pro-
cess. To better differentiate them from another, some general charac-
teristics can be determined.

Fidelity. The fidelity predicates the degree of similarity of a proto-
type and the finished product. Thus a low-fidelity prototype has less in
common with the final version than a high-fidelity exemplar. To take
an example, some rough sketches of an interaction possibility would
have a low fidelity whereas an implemented version of that interface
which is able to be used, has a higher one. Certainly both have ad-
vantages: prototypes with less details are much quicker to build and
thus are cheap. Therefore they are more applicable for early stages
of the design process since more different ideas are created and evalu-
ated fast. High-fidelity prototypes are rich in detail and thus have more
in common with the later product. This leads to more qualitative re-
sults but adaptions are harder to realize. If possible, an optimal design
process should integrate a couple of prototypes, starting with a lower
fidelity which is increased incrementally.

Level of detail. Another characteristic to be mentioned, is whether
the technique is concentrated in a vertical or horizontal level of detail.
This means that a horizontal prototype has the same amount of features
as the future product (quantitative conformity) but each of these is not
fully implemented and thus does not provide the full functionality. The
other alternative implies just a few of the desired functions but these
are completely attached (qualitative conformity). Again, both options
have benefits: If you want to present all the desired capabilities, though
only in outlines, horizontal prototyping is appropriate. The other alter-
native is chosen if only a subset of features should be explored - these
however with the later functionality.

Utilization in the design process. Prototypes have different uses in
the whole development process: First, there are throw-away prototypes
which - as the name implies - will be discarded after their evaluation.
Next are incremental prototypes, being used when the final product is
divided into smaller parts which are developed separately and at last,
when employing evolutionary prototypes, each one serves as a basis
for the next one, whereas every single one is not thrown away [10].

2.2 Methods of Prototyping

There are several methods of prototyping existing, the most common
ones should probably be paper prototyping, mock-up prototyping, wiz-
ard of Oz prototyping and video prototyping [20].

Paper prototyping. A paper prototype visualizes the look and/or
the content of the possible system by means of paper. It is often uti-
lized when designing user interfaces, because some example pages of
the system can be made easily and by cutting the sketches in parts, the
interface can be rearranged very quick.

Mock-up prototyping. The next practice is mock-up prototyping
where, as well as with paper prototyping, a low-detail copy is used,
which can consist for example of polystyrene. An example for the
use of mock-up prototyping is when designing a mobile phone, where
its size should be evaluated and thus no working functionalities are
needed. If such small to medium sized hardware should be proto-
typed, also the use of a 3D printer is appropriate due to its possibility
of rapidly building dummies which are looking very much like the
finished product.

Wizard of Oz prototyping. When some of a system’s core func-
tionalities are not implemented but taken over by a person, without
the test subject knowing about it, it is called Wizard of Oz prototyping.
A common example scenario is an event handler of a user interface
which normally reacts on a user’s input and updates the interface’s
content, but in this case, this job is done by an assistant who manu-
ally does the updating. This process can be deployed whenever some
switches and levers can be shifted by a human to avoid a complex and
time-consuming implementation in earlier stages.

Video prototyping. When doing video prototyping, an example
usage of a system is filmed. Test subjects can not interact with this
prototype but they can give their opinions as they can see the desig-
nated use of the system. This kind of prototyping can be combined
with mock-ups, as the objects used in the video can absolutely be fake
and unfinished1.

For the design and development of interactive surfaces, some of
these techniques are particularly suitable. For testing proper finger
recognition of a system, one should use a prototype with a higher fi-
delity which probably does not support the whole set of features but
one or two, however these in high details (vertical prototyping). More-
over, that prototype should be in a well-engineered form to enable
qualitative exploration. In earlier stages, when parameters like the size
or the orientation of a display are to be determined, low-fidelity proto-
types like paper or mock-ups are advisable, because their use is cheap
and they can quickly be adapted. Methods like Wizard of Oz or video
prototyping are rather targeting areas concerning user interfaces. They
are less applicable for the interactive surface itself but as much more
for prototyping interaction techniques.

1More information about video prototyping and an example usage can be
found in Tognazzini’s ”starfire” project [34].

61

3 PROTOTYPING TOOLS

This section introduces some examples of existing prototyping tools,
which are mainly targeting the design of interactive surfaces or pure
interaction techniques. Since there is basically no allround prototyping
tool for these topics, different ones will be presented from the particu-
lar related fields.

Fig. 2. Technical concept of the Malleable Interactive Surface [14].
When pressing the white latex, black ink is pushed away so that a cam-
era beneath recognizes the appearing white spot as the touch of a fin-
ger.

3.1 Malleable Interactive Surfaces

Hilliges et al. [14] have introduced an approach for rapidly prototyp-
ing surfaces which are capable of sensing both multi-touch and ob-
jects. In their paper, they describe a simple but efficient technique
to achieve this, which copes without complicated electronics but in-
stead uses off-the-shelf hardware. It is based on a white latex sheet,
a (plexi)glass plate and black ink poured in the space between these
two surfaces. Input works via pressing the malleable latex which then
pushes away the liquid beneath and reveals its white color to the cam-
era below the glass plane (see figure 2). Thus, a touch itself as well
as its strength is recognized by the brightness of one or several spots
in the captured image. The content the user sees, is projected on the
textile from above (front-projection). This technique allows a quick
building of an interactive surface prototype (due to the gravity limited
to a horizontal use). It can be utilized for various purposes and stages
in the design process, like prototyping gestures, exploring different
dimensions for a tabletop and their extent for usage or as a testing
environment for interactive applications.

3.2 OIDE

The OIDE (Open Interface Development Environment) is part of the
OI (OpenInterface) and offers a platform for prototyping multi-modal
interaction [25]. The OI project’s website [3] provides some example
videos about the system’s various uses. OIDE can be used by design-
ers, who want to test and examine different interaction methods during
the design process. This system provides a graphical drag-and-drop
interface where different devices and actions can quickly be arranged
and thus an individual interaction technique can be created. For ex-
ample, an accelerometer of a device is connected to a slideshow and
thus controlling the presentation is done via moving the remote gadget.
There are many common devices supported, like Apple’s iPhone [1],
the Wiimote (the controller of Nintendo’s Wii [4]) or mobile phones.
The OpenInterface Framework is an open source platform supporting
an iterative user-centered design process. It comprises a kernel, which
links pre-coded components to an application, a repository, consist-
ing of component descriptions, interaction techniques and application
configurations, a Forge, which hosts the software, and the OIDE, the
graphical tool to link components and applications. Hence, OIDE is
a tool to build early prototypes, evaluate them and alter quickly their
design options or functionalities.

3.3 DisplayObjects
DisplayObjects is a method to enrich physical gadgets with displaying
capabilities in order to prototype appropriate devices [6]. This system
tracks three-dimensional objects, maps an image, which the object’s
faked display should show, on the virtual replica and then projects this
texture back onto the original surface. Thus, a non-digital mock-up
can easily be switched into a display to support rapid prototyping.

Fig. 3. ARdesk [27]. By detecting markers with a camera as well as
processing data from physical interface components, mockups are en-
riched with functionality. Thus both design and use can be evaluated.

3.4 ARdesk
Related but more extensive is the approach of ARdesk [27], where sim-
ilar to the last mentioned project, physical mock-ups are extended with
a fake display by using front-projection. Here, the tracking is done via
Augmented Reality markers which are stuck onto the objects. More-
over, with the aid of a set of physical user interface components (like
for example buttons) and a software toolkit, which can be connected to
these input elements and reacts on their events, the product dummies
can be enhanced with functionality. On an Augmented Reality Desk,
the mock-ups are being augmented by a camera and a projector from
above and also the desk itself is interactive, due to a projection from
behind and the camera above (see figure 3 for an overview). This kind
of prototyping tool is mostly applicable for the evaluation of the de-
sign and dimensions of interactive objects and only rudimentarily of
its functionality.

Fig. 4. d.tools [13]. The basic design process possible with d.tools.
Starting with the design of a low- or high-fidelity prototype, developers
are then able to run a video-recorded test, which can be analyzed af-
terwards. Based on findings, the prototype can be redesigned and the
cycle starts again.

3.5 d.tools
More regards for the functionality of a prototype has d.tools [13]
which is a design toolkit software as well as a hardware interface,
which links physical components to the software. In the device de-
signer, a device can be built virtually out of controllers (like buttons

62

or sliders), sensors (like accelerometers or compasses), displays and
speakers. The statechart editor extends the virtual prototype with func-
tionality by giving the opportunity to add states and content to the
particular components. To expand this to a high-fidelity prototype,
physical counterparts of the elements are attached to a mock-up and
connected to the hardware interface. Thus, the tangible prefiguration
can be executed and evaluated, controlled by the assembled applica-
tion on the computer. Moreover, d.tools provides an analysis tool,
where recorded video clips from one or more testing phases can be
reviewed, organized and evaluated. Therefore, this system supports an
interactive and design-centered development process (see figure 4) and
is suitable for high- and low-fidelity prototyping.

3.6 $ 1 Recognizer
One section which is often part of the development of interactive sur-
faces is the recognition of gestures. To rapidly integrate gestures into
an application in order to test interactive systems, the $ 1 Recognizer
[40] can be used. It consists of about 100 lines of code and processes
captured images in order to recognize gesture patterns. In their cur-
rent version, a set of 16 different patterns can be identified. Thus,
a designer of an interactive system can quickly integrate interaction
through gestures without spending much time for implementing the
recognizing technology on his own. In later process stages, either a
whole new detection system can be implemented or the $ 1 Recognizer
can be adapted to the specific needs. The usage of existing components
when developing a system can often be valuable, though the regarded
piece can hardly be adopted to the particular needs. But when major
design or interaction issues are not settled yet, implementing further
parts which are based on uncertain solution can be a waste of time if
these decisions are overturned later.

4 PROTOTYPING IN PRACTICE

This section provides a closer look to the application of prototyping
in recent research projects or in other words: how did their design
process look like? This paragraph is divided in the consideration of the
design of interactive surfaces on the whole as well as of projects which
primarily dealt with the exploration of interactions with appropriate
surfaces.

4.1 Prototyping Interactive Surfaces
A lot of work in the research dealt with interactive surfaces. However,
not many really did employ prototyping techniques in their design pro-
cess. The following introduces those projects, where prototyping has
been used and presents how they utilized it as well as the resulting
consequences.

4.1.1 DiamondTouch
In 2003, Dietz and Leigh from Mitsubishi Electronic Research Labo-
ratories (MERL) have presented DiamondTouch [9], a capacitive touch
technology, which is not only able to detect multi-touch but also multi-
user. This is achieved through receivers, one connected to each user’s
chair, to assign a contact with the surface to the appropriate user.

In the context of a research on a different project at the MERL,
some collaborative meetings have been held with a ceiling-mounted
projector displaying content on a table and a single wireless mouse
being passed around for interaction. Due to the limitations and the
low usability the researchers have noticed while working therewith,
they decided to build an interactive surface, which should support si-
multaneous and also direct input. At first, they drew up requirements
their system should meet and afterwards searched for the suitable hard-
ware. Based on these findings, they built a prototype out of off-the-
shelf components, which has not nearly the size of a collaborative table
(20 x 20 cm), but serves as a basis to evaluate the implemented hard-
and software. With the aid of this high-fidelity prototype, they were
able to test whether their demands were assembled well or if there
were shortcomings (see figure 5). During the evaluation, they found
an issue regarding false detection of a touch signal, caused by vary-
ing noise levels and interferences when chairs are dragged. Moreover,
they learned that objects being placed on the surface do not affect the

sensing, even if they are of metal. Thus, they came across to ponder
whether to build objects in the future which do influence the table.

This project is an example for the use of prototyping for an internal
purpose and not for the integration of the user. However - and due to
the fact that a lot of projects have used the DiamondTouch technology -
it may be assumed that they considered users’ opinions in later process
stages.

Fig. 5. DiamondTouch [9]. Photographs of experiments with the first
high-fidelity prototype of the DiamondTouch technology, showing a) the
multi-user support and b) the resistance against conductive objects.

4.1.2 EnhancedDesk
Next to capacitive sensing, as it is employed in DiamondTouch, an-
other common method to recognize user input is via image processing,
where a computer tries to detect fingertips or palms from a captured
video frame. This technique was utilized in the EnhancedDesk project
[17, 19], where besides a human hand also paper sheets equipped with
markers are identified. The goal was to build an office desk on which
analogue and digital media is smoothly integrated and where digital
media can be directly manipulated with the finger or hand.

The first prototype was built in 1998 [17], referring to Wellner’s
DigitalDesk (1993) [38]. This was similar in its hardware configura-
tion, consisting of a CCD2 camera above a white desk and a video
projector. By experimenting with this prototype, Koike et al. have no-
ticed three main issues [19]: for one thing, the detection of a hand of-
ten fails, because the image projection from above implicates a change
in color of both the skin and the background so that color differentia-
tion is unreliable. For another thing, finger recognition is not done in
real-time and causes lags. However, in order to replace mouse input by
fingers, the response time should be drastically lowered. Additionally,
the marker on the paper, which the system uses for detection, has to be
very large due to the low resolution of the video camera.

Based on these findings, a second prototype has been developed in
2001, differing in the technology of the camera and the image process-
ing software. For the detection of hand and fingers, an infrared camera
is used now, which provides thermal images and thus the recognition is
not disturbed by overlay projections. The necessary size of a marker’s
surface has been reduced by 84% due to a pan-tilt camera, which can
zoom in to the paper. Also the input responses are nearly done in real-
time now.

Thus, the EnhancedDesk is another example for the internal usage
of prototyping to help designers discover problems during the design
process, so that they can be eradicated in the subsequent implementa-
tion. This is emphasized by an anecdote: ”In our first prototype we
also experienced that the system worked properly in the morning, but
did not in the evening.” [19]

4.1.3 Hermes, SPAM
As mentioned earlier, an important use of prototyping is to integrate
the user in the design process of interactive systems. This has been
done multiply in the development procedure of Hermes 1, Hermes 2
and SPAM [11]. During their work, the involved researchers found out
that not only technical feasibility should be evaluated but ”it’s often
equally important to investigate factors such as use and appropriation
and that in some cases, without user studies, technical feasibility can
be meaningless” [11].

2Charge-Coupled Device.
63

Hermes is a set of interactive office door displays where digital mes-
sages can be left or sent to another screen. For their first approach,
Hermes 1, they split their development process in several phases, each
one applying iterative prototyping. They decided to implement only
a small set of features (vertical prototyping) and to run the test over
a longer period (with each phase lasting about four months). The
first phase targeted core functionalities and has been evaluated by the
project’s staff itself, in a real scenario outside their laboratory. This
trial revealed the significant error of humans blocking wireless net-
work signals, a typical case of an issue not being apparent before a
test run. Their next two phases implied an increase in the amount of
screens as well as a stronger reliability and more means of interaction.
Moreover, displays were given to external people to get more quali-
tative user feedback. Their overall testing period lasted nearly three
years, with continuous further improvements. Remarkably is that they
split up each single phase into prototyping cycles which allowed them
to redesign and evaluate their prototypes on and on.

Subsequently, SPAM (SMS Public Asynchronous Messenger) was
developed, supporting messaging between displays and/or mobile
phones over a longer distance, based on the common short message
service. In an initial design workshop, they encouraged possible users
to discuss requirements and solutions, by giving them pre-defined sce-
narios and props (like the Hermes 1 display). Based on the work-
shop’s results, they quickly built a prototype using off-the-shelf hard-
and software, followed by testing. Finally, they deployed it in two
locations for user evaluations.

After developing Hermes 1 and SPAM and gaining a lot of knowl-
edge about user needs, the researchers aimed to design a second ver-
sion of Hermes up from the bottom. Thus, they wanted to define basic
characteristics completely new, namely the physical form factor and
the display configuration. Again, they used off-the-shelf hard- and
software to rapidly prototype several alternatives.

Using standard products for rapid prototyping has great benefits
like quick and cheap development and proven reliability. However,
as these technologies are often targeting a different use, they have to
be tailored. Thus, enormous investigations and testing have to be made
resulting in a drastically decrease in rapidity.

4.1.4 ColorTable

The ColorTable [22] is another good example of a well thought-out
design process, consisting of workshops proceeding in an iterative
design-evaluation-feedback-redesign procedure. This project aims at
supporting urban planners by means of TUIs3 and a mixed-reality en-
vironment. Users should be able to select and position objects on a
real map and see a video of that place with the desired object rendered
into it.

In total, three prototypes have been built, each one being high-
fidelity and fully usable. After each evaluation, they were able to spot
the shortcomings of their current prototype as well as features which
were be nice to have. For example, when testing the first version, peo-
ple stated that they are desirous of moving the viewport. This led to a
redesign of the surface and an implementation of a rotating table.

The researchers focused on deploying prototypes with a higher fi-
delity and thus can profit from more qualitative evaluation results. But
in contrast, this results in a longer time of production and especially
in early stages, where basic ideas are likely to be discarded (as the
introduction of the rotating table shows), this is ineffective.

4.1.5 Curve, BendDesk

When designing interactive surfaces, also ergonomic aspects should
not be disregarded. Two current projects are dealing with developing
an ergonomic tabletop including both a vertical and a horizontal screen
which are combined to one curved display. It is argued that both orien-
tations have advantages and thus a combination of them would make it
possible to benefit from both [39]. Long-term studies about the use of
horizontal and vertical displays confirm the ergonomic impact of the
screen’s orientation. From a survey of 58 tabletop researchers emerged

3Tangible User Interface.

that purely horizontal use causes back and neck strain [15] and also
a field study revealed similar results, where normal offices were en-
riched with horizontal or vertical displays to explore their benefits and
problems [26]. One person even stated that it would be ideal if ”you
could switch between horizontal and vertical positions depending what
you’re doing” [26].

The Curve project [39] (see figure 6a) figured out that important
ergonomic factors are the table’s dimensions (height, width, depth),
the radius of the curve and the backward inclination. After compre-
hending general ergonomic requirements, they conducted a user study
using mock-up and paper prototyping where they tested several com-
binations of the different input factors resulting in 18 prototype alter-
natives (see figure 6c and d). The test persons had to solve task on
each option and rate them afterwards. Then, the three best prototypes
had to be tested again to find out each participant’s favored combi-
nation. Thus, the optimal values of the influencing factors could be
determined.

Interestingly, the related venture named BendDesk [37], which has
similar aims (see figure 6b), uses different values concerning the ver-
tical display’s height and especially its inclination (actually none). In
their paper, they claim that these were obtained by a preliminary user
study, without giving further details about the procedure. However,
the extensive testing within the Curve project showed that especially
having a backward inclination, and thus not a fully vertical display, is
essential for comfortable ergonomic working. A curve of 90 degrees,
as being used in BendDesk, is much more tiring for the arms and harder
to be driven along with a finger, as a tilted screen. Another difference
between these two projects is the screen resolution: the BendDesk pro-
vides only 26 dpi4 whereas the Curve will employ four high definition
projectors5 and thus will be able to attain a resolution of 81 dpi. For
optimal ergonomic text reading, about 90 dpi are advisable (according
to Ziefle [41])! Thus, reading text on the BendDesk will assumingly
be a bother.

Unfortunately, the BendDesk team did not release any more infor-
mation about their preceding study so far and thus it remains unclear,
why they think a fully vertical display might be optimal.

Fig. 6. Curve vs. BendDesk. a) Design of the Curve table [39]. b)
Design of BendDesk [37]. d) Similar to BendDesk, the initial concept of
Curve comprised also an angle of 90 degrees. c) The usability of that
angle was later disproved in a extensive user study. BendDesk stuck to
that value. (Images c) and d) have thankfully been provided by a Curve staff.)

4.1.6 Interactive System for Group Learning Support

In a project where user-centered design is mandatory, researchers built
an interactive system, which focused on supporting group learning in
elementary schools [33]. It deals with the physical construction of a
town model, which is digitally augmented to give the children feed-
back to their constructions.

4Dots Per Inch.
5currently two projectors are employed, four are planned for the future.

64

They started their design process with researching appropriate hard-
ware as well as discussing with teachers, to gain content-related needs.
Based upon this, the authors thought out the system’s key facts and
formed an initial idea. Instead of implementing their concept, they
preferred building and evaluating a prototype to include user opinions.
The board, where the model should be constructed on, was made of pa-
per, as well as the objects themselves. The later system should identify
the arrangement of the model but since this was a low-fidelity proto-
type, experimenters manually entered the particular locations (Wizard
of Oz prototyping). Based on their observations, they could define
their concept more precisely and learned important mistakes which
were not to be made. After this, they implemented the first version of
the system, evaluated it in a second user study and due to recommen-
dations concerning the user interface, re-designed it afterwards.

Initially conducting a user study was highly advantageous as the
project mainly targets children, whose behavior often differs from the
one of an adult and thus problems could be revealed, which designers
never have thought of.

4.2 Prototyping Interaction Techniques

The previous paragraph gave insights into the practical usage of pro-
totyping in association with various types of interactive surfaces. This
section deals with projects which focused on interaction techniques.

4.2.1 Whiteboard-based Interactions

A different way of approaching a development process, than the ones
before, is by initially examine existing products and deduce significant
errors from using them. The project idea arises afterwards, with these
findings in mind. That way, Rekimoto began his work which dealt
with a digital whiteboard and proper interaction techniques [29]. He
and his scientists planed to support informal meetings with a digital
whiteboard and started off with installing an existing whiteboard and
a projector, and tested them using various emulation systems and GUI
applications. They ”immediately noticed a number of limitations that
hamper effective collaborative activities” and then figured out the key
problems: ”Text entry is difficult”, ”Handling of existing data is prob-
lematic”, ”Large displays size makes current GUI design ineffective”
and ”Interactions with the whiteboard become a bottleneck” [29].

Based on these findings, they worked out a multi-device approach,
where handheld devices are integrated in that scenario, which solve
some of these issues, like text entry or handling existing data. The
interaction is done via picking an object with a stylus on one display
and releasing it on another. After the implementation, the researchers
evaluated the system in a user study and got most widely positive feed-
back. However, one slight shortcoming became clear during the test:
the weight of the palmtop device was too heavy.

They have developed a second version, where they claimed that the
handheld has got lighter, but to avoid this mistake even already in the
first generation design, they should have evaluated a prototype before
the implementation, which could have had the final hardware parts, but
only with paper prototypes for the screen’s content. Aside from this
issue, they did well to examine and evaluate existing products first, so
that they were able to begin where others broke off.

4.2.2 ShapeTouch

Also ShapeTouch [7] started off from a point where real conditions
were examined. They attended to fundamentally modify the way of
interacting with an interactive surface, by abandoning the idea of us-
ing the finger as a mouse. Because direct manipulation of an object
is possible, the means of interacting with a real object should be the
template for designers instead, and not a desktop computer metaphor.
Thus, they began their research by examining how we handle physical
objects, like for example how we grab them, how we move them in
the whole and how we perform tasks on them, from which they then
deduced a set of important gestures (see figure 7 for both, the pattern
from the real world and the virtual gesture). Moreover, they noticed
that the shape and size of the contact regions are important for the ges-
ture determination and that they can profit from the fact that a lot of

existing interactive surfaces already detect the shape of the area which
is touching them.

They implemented their gesture recognizing algorithm and tested
it on a tabletop, which sensed input via an infrared camera beneath.
Thus, the shape of fingers, hands or objects laid on the surface could
be determined. The software has been implemented relatively sim-
ple to allow rapid prototyping, in order to test and evaluate the basic
handling of the interaction techniques together with users, without ex-
tremely stressing performance optimization. In a user study, the test
subjects could freely explore the prototype for a few minutes, before
they were given the basic instructions about the input methods bit by
bit, including time to experiment around again. One of the findings
was that the desktop metaphor was prevailing, rather than the way how
they handle objects in reality. Thus, participants initially tried to con-
trol the objects like with a mouse, before they were given hints to try
more realistic options. A problem which arose, was the lack of visual
feedback about the virtual force, which virtually represents the pres-
sure when touching a real object through the amount of fingers laid on
a synthetic one. Also significant performance issues emerged, which
were effects of the more rapid than rapidness-orientated implementa-
tion.

However, they say that it was favorable to evaluate a prototype with
only basic functionalities, in order to get intermediate feedback which
can be used to build further versions.

Fig. 7. ShapeTouch [7]. a) Pattern from the real world have been used
as starting point to devise b) appropriate virtual counterparts.

4.2.3 Dynamo
A very long and extensive development process has been undertaken
as Dynamo [16] was designed. Izadi et al. wanted to integrate inter-
active displays in large sociable spaces, like break rooms in schools or
cafes in universities, to enable or trigger social interaction and support
displaying and sharing of brought-in information. The total develop-
ment lasted about three years and was divided into several phases.

The first one was concerned with ethnographic research about
shared spaces, the behavior of people in them and how collaboration
with personal devices takes places in there. This studies revealed the
issue that mobile phone displays are too small to be apparent for a
larger group and public screens, in contrast, are not able to support col-
laboration. Thus they derived the goal of enriching communal places
with interactive displays to support mainly but not only collaboration
and data exchange. Next, they conducted lab studies to explore the de-
sign space, as they call it. Using low-fidelity prototypes, they figured
out the key design factors, namely whether single- or multi-user to be
supported, the means of input and the physical orientation. They de-
cided to use a vertical display (due to better visibility) and multi-user
capabilities (because this supports a better collaboration). Moreover,
a mouse- and keyboard-based instead of a pen-based interaction has
been chosen, due to feelings of social embarrassment for a single per-
son when having to stand in front of a crowd to reach the display with
the pen. Each of these parameters were derived from a separate user
study.

After these studies, a prototype has been implemented, including
these mentioned features and additionally a device hub, were people
can connect their own brought-in devices to, and thus are able to ex-
change or present their data with or to others. This prototype has been
evaluated in a hotel’s foyer and a conference center. Problems emerged
during these tests like privacy and security concerns regarding the per-
sonal data and it became clear that some limitations in the usage are
needed, to avoid occasional intrusions. Thus, Dynamo was altered

65

and the ways of interaction were refined. Subsequently, the develop-
ers wanted to evaluate their prototype in the longer run and in a real
scenario. Thus, they decided to install it in a common room in a high
school for ten days and observed how it was used and whether it was
accepted.

This project shows a paradigmatic process of development. This
can be linked to following aspects:

• Prototyping has been used, with a lower fidelity in the beginning,
where the the final idea was uncertain and alternatives were ex-
istent, and an incremental raise during the phases,

• both main advantages of prototyping have been leveraged: pro-
totypes as decision support within the research group as well as
a method to gain user feedback, and

• at first, key factors of the design have been evaluated separately
to avoid mutual influence, and after clarifying all parameters, the
system as a whole has been tested.

4.2.4 Fighting for Control
Related to the mentioned project which dealt with group learning sup-
port, also the work of Marhsall et al. focuses on children’s behavior
when using a tabletop, though this time more emphasize is put on their
way of interacting by itself and less on the system design [23]. In a
study, participants (at about seven years of age) were asked to build
a classroom seating plan and therefore were arranged in groups of 3
pupils. Some groups had to solve this task by using a paper proto-
type, where the objects (tables and the children’s names) were small
cardboard tokens, being able to be moved around and organized freely.
Others should handle the work on an interactive tabletop (Diamond-
Touch [9]), where the items were available only in digital form. Addi-
tionally, one group should use both.

Besides the way how the children behave when solving the task,
and not at least how they treat each other, the researchers also wanted
to see whether there is a difference between the pupils’ bearing when
using the paper prototype or the tabletop. In fact, there were differ-
ences: because infants often fight over things like toys, they did the
same when moving the tables or the names around to arrange a room
plan. But a paper item can be drawn off and protected against others,
whereas virtual objects could only been dragged within the display’s
boundaries. Thus, the children had to find other ways of limiting the
access to an item, which resulted in physically pushing away the other
person or at least his or her arm. This happened constantly during the
sessions with the tabletop and in contrast, only one time with the paper
prototype.

This result shows that when developing an interactive system where
kids are involved, other factors come into play which affect the deci-
sion what prototype to take. Designers should be aware of this.

5 DISCUSSION

The previous paragraphs showed that the integration of prototyping in
the development process of interactive surfaces has many advantages.
Some of these cover benefits within the design team, to reveal short-
comings on the one hand and new features on the other hand (like
the technical interferences when testing DiamondTouch [9] or the new
idea of designing objects to influence the sensing technology). They
also simply uncover hardly predictable issues, like the dependency of
the system’s functionality on the time of day [19]. Other benefits are
resulting from evaluating prototypes by users, because the way how
they utilize a system can practically never be prognosticated certainly,
especially when people are totally new to this are or when they are
children [33]. Besides the retrieving of usability issues [29], partici-
pants of a user study can also be valuable when they are able to give
hints for new design features [22].

However, some aspects which are to be heeded and even some dis-
advantages of prototyping, are still to be mentioned. For one thing,
prototypes are likely to be overloaded with features, because often
only a few user studies are conducted and thus as much as possible
is tried to be evaluated in them. This leads to an overload of the test

person and thus in total, less is figured out. A better approach has
been made with Hermes [11], where a lot of short and iterative pro-
totyping cycles have been used and each time, only few things have
been changed. Thus, more qualitative results were the outcome, how-
ever suffering losses in time. This can be mentioned as another prob-
lem: When applying prototyping wrong, it can cost a lot of time while
producing no benefit. This challenge is further aggravated, as the pro-
cess of prototyping is often not easy to manage and thus a lot previous
knowledge is needed to integrate it efficiently. Another drawback is
that the level of detail is often limited either in vertical or horizon-
tal direction. When designers fail to clarify this, the feedback of test
subjects might be influenced negatively by the lacking details.

As one main goal of prototyping is to reveal possible deficiencies as
soon as possible, for some projects the question arises, whether they
could have prevented later failings if they would have applied proto-
typing. This question is even more interesting, as this work deals with
interactive surfaces, where subsequent adjustments can be extremely
expensive, because a lot of high-priced hardware is used. The Bend-
Desk [37] is such a project, though there are no known problems yet.
It is conceivable that they might suffer from insufficient prototyping
afterwards, if the Curve [39] researchers are right and an angle of 75
degrees is the absolute maximum for the vertical display (compared to
90 degrees in the case of BendDesk). In other research cases, proto-
types are not built for an iterative or user-centered design process, but
only for a final evaluation of the project [18, 12, 30, 24]. To stick to
the prior question, EnhancedTable [18] is another example: a CSCW6

system was built to augment group meetings by enabling participators
to share and view documents on a table. The interaction is done by
using the fingers for direct touch - the most common input method on
an interactive surface. However, the user study they conducted after
their implementation showed that the people did not want to use this
common way of input but rather one which is pen-based - because dur-
ing a meeting, they usually hold a pen in their hands (see figure 8). By
integrating a study earlier in the development process, this issue had
been detected in due course of time and could have been considered
during their implementation.

However, it must be remarked that it is often hard to make a clear
statement about whether and how particular projects have used proto-
typing, because in many cases, the whole design process is not really
laid bare in their reports - as barely as subsequent mistakes are.

Fig. 8. EnhancedTable [18]. Interaction is done via the common way of
directly touching the surface with a finger. However, a final user study
revealed that a pen-based input would have been the favored method.

6 CONCLUSION

This work delved into exploring how prototyping was used and can be
used when designing interactive surfaces and corresponding interac-
tion techniques. The subject prototyping was regarded from a general
point of view, together with a classification for this specific topic in-
teractive surfaces. Various related prototyping tools were introduced,
each one targeting different purposes within the subject. Moreover,
recent research projects were presented, dealing with the design of in-
teractive surfaces or special techniques for interacting with them. In
summary, it can be stated that prototyping supports effective collabo-
ration within development groups and takes user needs into account of
the design process.

6Computer Supported Cooperative Work.
66

Today, only 24%7 would use a tabletop instead of a standard pc
(as claimed in a survey), mostly due to lacking means of text entry,
standard applications and ergonomics [15]. This shows that the cur-
rent state-of-the-art still has enough to improve, especially in terms
of usability, whereby the use of prototyping can be of great value. In
addition, a lot of research focuses on multi-touch but completely disre-
gards proper and ergonomic means for text entry. So, broken down to
this survey, would you trade multiple mice for your desktop keyboard?

REFERENCES

[1] Apple - iPhone, http://www.apple.com/iphone/, requested on: 2010-01-
10.

[2] Microsoft - Surface, http://www.microsoft.com/surface/, requested on:
2010-01-10.

[3] The OpenInterface Project, http://www.oi-project.org/, requested on:
2010-01-10.

[4] Nintendo - Wii, http://www.nintendo.com/wii/, requested on: 2010-01-
10.

[5] Definition of prototyping from the online dictionary ”dictionary.com”.
http://dictionary.reference.com/browse/prototyping, requested on: 2010-
01-12.

[6] E. Akaoka and R. Vertegaal. Displayobjects: functional prototyping on
real objects. In D. R. O. Jr., R. B. Arthur, K. Hinckley, M. R. Morris,
S. E. Hudson, and S. Greenberg, editors, CHI Extended Abstracts, pages
3507–3508. ACM, 2009.

[7] X. Cao, A. D. Wilson, R. Balakrishnan, K. Hinckley, and S. E. Hudson.
Shapetouch: Leveraging contact shape on interactive surfaces. In Table-
top, pages 129–136. IEEE, 2008.

[8] J. Davis and X. Chen. Lumipoint: multi-user laser-based interaction on
large tiled displays. Displays, 23(5):205 – 211, 2002.

[9] P. H. Dietz and D. Leigh. Diamondtouch: a multi-user touch technology.
In UIST, pages 219–226, 2001.

[10] A. J. Dix, J. Finley, G. D. Abowd, and R. Beale. Human-Computer Inter-
action (3rd ed.). Prentice Hall, New York, 2004.

[11] D. Fitton, K. Cheverst, C. Kray, A. Dix, M. Rouncefield, and G. Saslis-
Lagoudakis. Rapid prototyping and user-centered design of interactive
display-based systems. IEEE Pervasive Computing, 4(4):58–66, 2005.

[12] T. Gross, M. Fetter, and S. Liebsch. The cuetable: cooperative and com-
petitive multi-touch interaction on a tabletop. In M. Czerwinski, A. M.
Lund, and D. S. Tan, editors, CHI Extended Abstracts, pages 3465–3470.
ACM, 2008.

[13] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B. Burr,
A. Robinson-Mosher, and J. Gee. Reflective physical prototyping through
integrated design, test, and analysis. In P. Wellner and K. Hinckley, edi-
tors, UIST, pages 299–308. ACM, 2006.

[14] O. Hilliges, D. Kim, and S. Izadi. Creating malleable interactive surfaces
using liquid displacement sensing. In Tabletop, pages 157–160. IEEE,
2008.

[15] A. B. B. A. D. W. Hrvoje Benko, Meredith Ringel Morris. Insights on
interactive tabletops: A survey of researchers and developers. 2009.

[16] S. Izadi, G. Fitzpatrick, T. Rodden, H. Brignull, Y. Rogers, and S. Lindley.
The iterative design and study of a large display for shared and sociable
spaces. In Proceedings of the 2005 conference on Designing for User
eXperience, 2005.

[17] H. Koike and M. Kobayashi. Enhanceddesk: Integrating paper documents
and digital documents. In APCHI, pages 57–62. IEEE Computer Society,
1998.

[18] H. Koike, S. Nagashima, Y. Nakanishi, and Y. Sato. Enhancedtable: Sup-
porting a small meeting in ubiquitous and augmented environment. In
K. Aizawa, Y. Nakamura, and S. Satoh, editors, PCM (1), volume 3331
of Lecture Notes in Computer Science, pages 97–104. Springer, 2004.

[19] H. Koike, Y. Sato, and Y. Kobayashi. Integrating paper and digital in-
formation on enhanceddesk: a method for realtime finger tracking on an
augmented desk system. ACM Trans. Comput.-Hum. Interact., 8(4):307–
322, 2001.

[20] M. Kranz and A. Schmidt. Prototyping smart objects for ubiquitous com-
puting. In In Proceedings of the International Workshop on Smart Ob-
ject Systems in Conjunction with the Seventh International Conference on
Ubiquitous Computing, September 2005.

7of 58 interviewees, most of them involved in tabletop research and thus not
foreign to the topic. Status: March 2009.

[21] Y.-K. Lim, E. Stolterman, and J. Tenenberg. The anatomy of prototypes:
Prototypes as filters, prototypes as manifestations of design ideas. ACM
Trans. Comput.-Hum. Interact., 15(2):1–27, 2008.

[22] V. Maquil, T. Psik, and I. Wagner. The colortable: a design story. In
A. Schmidt, H. Gellersen, E. van den Hoven, A. Mazalek, P. Holleis, and
N. Villar, editors, Tangible and Embedded Interaction, pages 97–104.
ACM, 2008.

[23] P. Marshall, R. Fleck, A. Harris, J. Rick, E. Hornecker, Y. Rogers,
N. Yuill, and N. S. Dalton. Fighting for control: children’s embodied
interactions when using physical and digital representations. In D. R. O.
Jr., R. B. Arthur, K. Hinckley, M. R. Morris, S. E. Hudson, and S. Green-
berg, editors, CHI, pages 2149–2152. ACM, 2009.

[24] M. Matsushita, M. Iida, T. Ohguro, Y. Shirai, Y. Kakehi, and T. Nae-
mura. Lumisight table: a face-to-face collaboration support system that
optimizes direction of projected information to each stakeholder. In J. D.
Herbsleb and G. M. Olson, editors, CSCW, pages 274–283. ACM, 2004.

[25] M. R. McGee-Lennon, A. Ramsay, D. McGookin, and P. Gray. User eval-
uation of oide: a rapid prototyping platform for multimodal interaction.
In EICS ’09: Proceedings of the 1st ACM SIGCHI symposium on Engi-
neering interactive computing systems, pages 237–242, New York, NY,
USA, 2009. ACM.

[26] M. R. Morris, A. J. B. Brush, and B. Meyers. A field study of knowledge
workers’ use of interactive horizontal displays. In Tabletop, pages 105–
112. IEEE, 2008.

[27] T.-J. Nam. Collaborative design prototyping tool for hardware software
integrated information appliances. In R. Shumaker, editor, HCI (14),
volume 4563 of Lecture Notes in Computer Science, pages 504–513.
Springer, 2007.

[28] J. Patten, H. Ishii, J. Hines, and G. Pangaro. Sensetable: a wireless object
tracking platform for tangible user interfaces. In CHI ’01: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
253–260, New York, NY, USA, 2001. ACM.

[29] J. Rekimoto. A multiple device approach for supporting whiteboard-
based interactions. In CHI, pages 344–351, 1998.

[30] J. Rekimoto and M. Saitoh. Augmented surfaces: A spatially continuous
work space for hybrid computing environments. In CHI, pages 378–385,
1999.

[31] T. Sato, H. Mamiya, H. Koike, and K. Fukuchi. Photoelastictouch: trans-
parent rubbery tangible interface using an lcd and photoelasticity. In A. D.
Wilson and F. Guimbretire, editors, UIST, pages 43–50. ACM, 2009.

[32] G. Shoemaker, A. Tang, and K. S. Booth. Shadow reaching: a new per-
spective on interaction for large displays. In UIST ’07: Proceedings of the
20th annual ACM symposium on User interface software and technology,
pages 53–56, New York, NY, USA, 2007. ACM.

[33] M. Sugimoto, F. Kusunoki, and H. Hashizume. Design of an interactive
system for group learning support. In Symposium on Designing Interac-
tive Systems, pages 50–55, 2002.

[34] B. T. Tognazzini. The ”starfire” video prototype project: a case history.
In B. Adelson, S. T. Dumais, and J. S. Olson, editors, CHI, pages 99–105.
ACM, 1994.

[35] J. Underkoffler and H. Ishii. Urp: a luminous-tangible workbench for
urban planning and design. In CHI ’99: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 386–393, New
York, NY, USA, 1999. ACM.

[36] D. Vogel and R. Balakrishnan. Interactive public ambient displays: tran-
sitioning from implicit to explicit, public to personal, interaction with
multiple users. In UIST ’04: Proceedings of the 17th annual ACM sym-
posium on User interface software and technology, pages 137–146, New
York, NY, USA, 2004. ACM.

[37] M. Weiss, S. Voelker, and J. Borchers. Benddesk: Seamless integration of
horizontal and vertical multi-touch surfaces in desk environments. 2009.

[38] P. Wellner. Interacting with paper on the digitaldesk. Commun. ACM,
36(7):87–96, 1993.

[39] R. Wimmer, F. Schulz, F. Hennecke, S. Boring, and H. Hußmann. Curve:
Blending horizontal and vertical interactive surfaces. 2009.

[40] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries,
toolkits or training: a 1 recognizer for user interface prototypes. In
C. Shen, R. J. K. Jacob, and R. Balakrishnan, editors, UIST, pages 159–
168. ACM, 2007.

[41] M. Ziefle. Effects of display resolution on visual performance. Human
Factors, 40(4):554–555, 1998.

67

Prototyping of Interactive Surfaces
for mixed Physical and Graphical Interactions

Anna Tuchina

Abstract—In this work I examine several possibilities for the prototyping of interactive surfaces for mixed physical and graphical
interactions. These interactive surfaces belong to the so called tangible user interfaces, which play an elemenatry role in ubiquitous
computing. So far there is no universal answer as to what prototyping technique is the most appropriate for the development of these
interfaces. Low and high fidelity prototyping are introduced as two different approaches, which both can be useful in this case. In
recent scientific publications several prototypes which explore the possibilities of these interactive surfaces have been described. I
discuss the prototypes and examine their individual advantages and disadvantages. I then identify a shift to high fidelity prototyping
as a central trend in this research, and finally discuss how low and high fidelity prototyping can be reasonably combined.

Index Terms—Ubiquitous Computing, Interactive Surfaces, Tangible User Interfaces, Hi-fi Prototyping, Lo-fi Prototyping, Interactive
Prototyping, Paper Prototyping

1 INTRODUCTION

Since the beginning of the computer era three waves of computing
can be identified. In the first one many people shared one computer.
This so called mainframe wave was followed by the personal com-
puter wave, where each person uses one computer. Since the 1990s
the third wave, ubiquitous computing, began to develop, where each
person uses many computers [16].

But even more than that, ubiquitous computing stands for invisible
technology, where users interact with common objects without seeing
the technology behind it [15]. While in the first two waves the peo-
ple had to deal with the technology in order to use it, the ubiquitous
computing paradigm is aimed at completely adapting the computer to
the world of the user. Users then can interact with physical objects
wherein computers are embedded, but no longer have to be concerned
about technical details.

To make the ubicomp vision reality, new user interfaces must be
developed as an alternative to the classical desktop PC interface. Such
an alternative are the interactive surfaces. Interactive surfaces which
combine physical and graphical interactions belong to the so called
tangible user interfaces (TUIs). TUIs form a counterpart to the well
known graphical user interfaces (GUIs) (see figure 1).

As opposed to the GUI a TUI allows direct manipulation of digital
objects through physical objects. That allows interactions, which are
impossible to accomplish with a classical mouse and keyboard, like
two-handed and collaborative interaction and simultaneous alteration
of position and orientation. Furthermore, a TUI is designed to be the
ideal interface for one specific task, while a GUI uses one interface
to accomplish different tasks and therefore cannot offer the best pos-
sible interface for each application. Using TUIs takes advantage of a
humans natural capability for sensing and manipulating his physical
environment and his spatial reasoning skills [1]. All in all, TUIs are
designed to support human interaction skills.

2 PROTOTYPING TECHNIQUES

Since the research on TUIs is in an early stage, it is unclear which
prototyping techniques are most suitable for the development process.
There are some but few studies which concentrate on this topic [10]
[5]. They compare paper prototyping which is often used in GUI de-
sign to interactive prototyping and its use for ubiquitous computing.

• Anna Tuchina is studying Media Informatics at the University of Munich,
Germany, E-mail: toutchina@cip.ifi.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009

Fig. 1. GUI and TUI in comparison [1]

Paper prototyping is a low fidelity, interactive prototyping a high fi-
delity prototyping technique [9]. Both methods are briefly introduced
in the following sections.

2.1 Low Fidelity Prototyping
Low fidelity Prototypes, for example paper prototypes, are often used
in the early design process. They are cheap and easy to create and
can be altered very quickly. They offer limited or no functionality and
cannot respond to user input automatically. Therefore the interaction
with a low fidelity prototype is scripted and supported by a facilita-
tor. Lo-fi prototypes can be used to run usability tests. Due to the
quick alteration, it is even possible to adjust the prototype during a test
session. The prototype is made quickly without paying attention to de-
tails and therefore is convenient to test general concepts without being
distracted by particular elements. On the other side it is problematic
testing interactions in a realistic way. First, the user can see what the
facilitator is doing and therefore has information that normally would
be hidden from him. Second, the interaction of the user is interrupted
by the delay that the facilitator produces during updates. Furthermore,
user studys that are conducted using a lo-fi prototype usually are time-
consuming and require a lot of manpower.

2.2 High Fidelity Prototyping
High fidelity prototypes are fully interactive. They represent the core
functionality of the future product. Development of hi-fi prototypes
usually takes a lot of time, but in return offers a realistic interface.
Interactive prototypes can easily be used for user tests. The interaction
with the hi-fi prototype happens in a realistic way. During the test little
or no staff is needed. High fidelity prototypes are especially useful
to test the user interface, because the look and feel is very similar
to the final product. Creating and altering an interactive prototype
involves much more time, cost and expert knowledge. Therefore it is
not efficient to test different concepts or identify requirements.

Obviously both prototyping techniques have their advantages and
68

disadvantages. The interesting question is how to use them appropri-
ately.

3 RELATED WORK

In the following part of this paper different prototypes of interactive
surfaces involving tangible user interfaces will be discussed. Special
interest lies in the construction and evaluation of the prototype, i.e.
how time-consuming and complex was the construction of the proto-
type, and what findings have been provided using it. Finally it will
be discussed if better insights could have been gained by a different
approach.

3.1 Tangible Geospace
In their research about tangible bits Hiroshi Ishii and Brygg Ulmer
present the metaDesk as one of their ubiquitous computing prototype
[1] [11]. Based upon the idea of foreground and background bits the
metaDesk and the transBoard were constructed to research direct in-
teraction with tangible objects, while the ambientRoom examplifies
peripheral communication.

3.1.1 metaDesk
Characteristic for the metaDesk is the idea to represent classical GUI
elements with physical objects (see figure 2). For example a TUI
”lens” represents the window and the TUI ”phicon” is literally a phys-
ical icon.

The setup of the metaDesk is shown in figure 3. With one projector
for the 2D view of the table surface, one dispay for the 3D view of
the active lens, a number of physical objects, a computer-vision sys-
tem with several sensors and three computers this prototype was very
intensive in terms of hardware.

On the metaDesk platform an application called tangible geospace
was installed. This application allows the user to place phicons repre-
senting buldings of the MIT campus on the metaDesk, where a map of
the campus appears. The map is positioned in a way, that makes the
phicon stand on the spot on the map where the building it is represent-
ing is located. The active lens delivers the matching 3D picture. By
adding a second phicon onto the desk, the map will be scaled, rotaded
and translated automatically, so that both phicons stand on the correct
positions.

The application is supported by an extensive software, that was en-
tirely implemented by the authors. The time that was needed in or-
der to build this prototype is not mentioned in the available sources.
But due to the both complex hardware and software components, it
can be assumed that constructing it took probably several weeks up to
months.

Fig. 2. User Interface Elements of the metaDesk [11]

3.1.2 Discussion
The metaDesk was developed with two intentions. First it is a proof-
of-concept setup for the desktop metaphor and second it was built
to help evolving new interaction techniques. The question is if the

Fig. 3. Architecture of the metaDesk [11]

metaDesk was appropriate to deliver it. As a high fidelity prototype,
it took a very long time in development, and was neither useful to test
the concept, nor to compare different concept approaches. No user
studys or experiments using metaDesk were mentioned in the papers.
It was used more as a showcase for visitors or passers-by to interact
with. In fact it seems as if more insights into technical details were
gained during the development than into new interaction techniques.

3.2 Urban Simulation
The urban simulation was first realised by Hiroshi Ishii and John Un-
derkoffler with the uban planning workbench called Urp [14]. Many
concepts that were used in Urp were developed in the previos proto-
type called Illuminating Light [12] [13].

3.2.1 Illuminating Light
The interface of Illuminating Light serves the purpose of simulating
laser light that interacts with different optical elements and is a toolkit
for holographic recording setups. The laser beam is simulated by light
projected on a table. In addition the optical elements needed for a
holographic recording setup are represented by simple physical ob-
jects. After placing a ”laser” on the table a beam of light is projected
where a laser light would normally be. By placing ”optical elements”
on the table the projected beam of light can be modified and a holo-
graphic 2D image of a physical 3D object occurs (see figure 4).

Fig. 4. Holographic recording setup with the Illuminating Light toolkit
[12]

For this scenario Ishii and Underkoffler created a high fidelity pro-
totype. This prototype consists of plastic forms as representations of
the optical instruments and the laser, which are tagged for identifica-
tion with colored dots (see figure 5). While technically the shape of

69

all objects could be the same, the authors consider design will be an
important element in the final interface. Therefore the physical objects
assume the shape of the real things they are representing.

Fig. 5. Representations of the optical objects [12]

Another part of the prototype is a construction comprising a camera
and a projector, the so called I/O Bulb, which provides input through
the camera to the system in the background and output through the
projector on to the table at the same time (see figure 6). The system in
the background handles the input from the I/O Bulb in a pipeline with
four parts:

• glimpser: gets images from the I/O Bulb and identifies objects
by their dot pattern

• voodoo: analyzes the patterns and detects position and orienta-
tion of the objects

• simulator: determines the path of the laser light

• rendering: renders the laser light and sends it to the I/O Bulb

Trying to keep the time needed to create this prototype within lim-
its, Ishii and Underkoffler are using available software toolkits like
voodoo, a geometric parsing toolkit, and the glimpser, which was
evolved from an earlier version of a program built by the authors. The
whole construction took approximately one week.

Using the illuminating light prototype a user study with eight per-
sons was conducted. Most users found the interface believable and
realistic after they got used to it. Many comments were made about
the graphic presentation of information, e.g. about the presentation of
distances. The two dimensional view of the hologram was criticised,
given that the third dimension also contained important information.

Fig. 6. I/O Bulb in theory and practise [12]

3.2.2 Urp
The Urp system is an interface for urban planners that allows them to
work on both the aesthetic and practical aspects of design. For that
pupose the following information is needed:

• shadows cast by buildings

• proximities between buildings and other elements like streets

Fig. 7. Physical objects and the wind flow simulation used in Urp [13]

• reflections from buildings that have glass sides

• wind flow and its influence on buldings

• visual space

The Urp prototype is based upon Illuminating Light. The I/O
Bulb and physical objects with colored dots were also used for this
setup. For recognition of the physical objects again the pipeline with
glimpser and voodoo is used. In order to simulate wind another soft-
ware has been added, the cellular automaton called ”lattice gas”.

As the physical objects, except for the buldings, cannot be assigned
with a shape from real things, there is no specific design by what the
user could recognise their function (see figure 7).

No formal studies were conducted using Urp, but there was feed-
back given by professional urban planners and visitors to the lab. The
Urp interface was accepted very well. As a main application area the
professionals identified the presentation for clients. Problems were
discovered in the visual space and wind flow functions. Urban plan-
ners normally need a site view from the entrance of a bulding. While
this is easy to perform in virtual 3D space, it is impossible using the
Urp interface, given that the scale of the camera and the buildings in
Urp do not match the real world. Also the wind flow is not represented
in a realistic way with a 2D projection.

3.2.3 Discussion
Both prototypes faced the same two main problems. First of all the
design of the physical objects was recognised as important but has
not been investigated in a separate study. This could have been easily
done using paper or plasticine. While it didn’t seem to be an issue
in the Illuminating Light prototype it definitely became one in Urp.
While Illuminating Light objects were shaped like the optical objects
they were representing, this was not possible for the Urp objects.

The second problem also appeared in both prototypes, where 3D
phenomenons were represented by 2D views. In Illuminating Light it
was the hologram and in Urp the wind flow. Both effects were lacking
the information they have in reality. The alterations that need to be
done to the prototypes to solve this problem could interfere with the
whole design. When using a high fidelity prototype, changing parts of
it takes a lot of time. With low fidelity prototypes this would have been
much easier and if the whole concept turns out to be inappropriate, lo-
fi prototyping allows to develop a new concept much quicker.

3.3 From Sensetable to Audiopad
While Sensetable was not developed for a specific application but
more for general research purpose [6], Audiopad was designed in order
to be the optimum interface for musical performance [7] [8]. However
Audiopad could take advantage of the findings that were made with
the Sensetable platform.

3.3.1 Sensetable
The platform Sensetable is not built upon a specific scenario. The
authors from MIT Media Lab saw the purpose of Sensetable in the

70

research of general technical as well as conceptual principles in TUI
design. The technical goal was to be able to track six to ten objects on
a table surface with low latency. Conceptually the aim was to make
solid tangible objects changeable in adding another elements to it and
so compensate the disadvantage physical objects have compared to
graphical ones.

Fig. 8. Archtecture and User Interface of the Sensetable Platform [6]

To do that a high fidelity prototype has been created. For the con-
struction of this platform two Wacom sensing tablets were composed
to one interaction surface (see figure 8). With the so created surface
six pucks, made out of adjusted Wacom mice, were used as object rep-
resentations. Since the Wacom tablets could only track two objects at
a time, the authors wrote an algorithm that tracked the six objects in
random turns, so that each object was tracked 30 percent of the time.
In order to decrease the latency of a puck that is currently in use, sen-
sors were added to the pucks. These sensors ”turned on” the latency of
the puck that was touched to 100 percent. As mentioned before the de-
signers wanted the pucks to be alterable. Therefore the so called dials
and modifiers can be adjusted on top of a puck. Using the Sensetable
platform the following interaction techniques were observed in exper-
iments:

• binding and unbinding of pucks to and from digital objects

• manipulating digital objects with pucks

• visualizing complex information structures

• sharing information between the tabletop and a display screen

In order to bind a digital object to a puck the user has to place the
puck near this object. This principle is adequate for a small amount
of information shown on the table, but with a great number of objects
can cause difficulties in binding the correct object. For that reason the
authors extend this principle by two properties: The distance between
the digital objects is dynamically adjusted and the puck has to linger
on the object for a certain time in order to bind it. Objects are unbound
from the pucks by shaking them. Many users tried to unbind the puck
by taking it off the surface. The authors intend to allow this possibility
in their next prototype.

Also, users didn’t really see the pucks as representations of the dig-
ital objects but only as control elements. To emphasise the represen-
tational character of the pucks, information about the object that was
currently bound to the puck was now projected directly on the puck
instead like before on the table surface near the puck.

Changes made to objects by dials or modifiers were projected on a
screen in the beginning. The experiment revealed that the users wanted
this information to be displayed near the object on the table surface and
also wanted graphical feedback while changing it.

Whenever users wanted to interact with a great amount of informa-
tion it was difficult for them to keep an overview. Therefore a lay-
out algorithm was developed, that highlights important and weakens

unimpotant information. What information is important depends on
the particular application.

3.3.2 Audiopad
The next prototype called Audiopad is an interface for musical per-
formance using the insights that were made through the development
of the Sensetable platform. It contents smaller pucks that are tracked
using RF tags and one sensing surface instead of two joined ones.

Fig. 9. Changing two dimensional parameters and browsing through the
samples tree [8]

Also it is possible to determine the orientation of a puck which now
contains two RF tags. The pucks now represent groups of samples.
A second type of puck was added. This puck is called the selector
puck and can be used to navigate through a tree of samples as shown
in figure 9. This encourages two handed navigation. While the left
hand is holding the samples puck the other hand is browsing through
the samples tree using the selector puck.

Pucks can be rotated to change the volume of the selected track.
On top of the sample puck a button is placed. Pressing the button
activates the effect setting view of the track, so that these settings can
be modified. In a later version of Audiopad this button is removed.

A floating menu is used to select items from it (see figure 10 on the
left). The user can move the puck over the items and select it by resting
upon one of them. Moving the puck also moves the menu along with
it to ensure that the menu assigned to the puck is always where the
puck is. In experiments problems occured when the user accidentally
selected an item from the menu although he only wanted to move the
puck to a different position or when the user wanted to select an item
but couldn’t because the menu was moving. To solve this problem
the so called selection area has been defined in which items can be
selected. But this solution didn’t really solve the problem. When users
wanted to select an item they often made a loop with the puck that went
outside of the selection area and this way was interpreted as a puck
movement which also made the menu move. Therefore a different
approach has been chosen, where the menu would be moved only if
the puck stays out of the selection area.

Because of the so called ”nulling problem” that came along with
rotating the puck to change the volume, a different approach was cho-
sen to manipulate this parameter. A so called master puck was added.
The volume of the track now depends on the distance of the according
puck to the master puck. The closer the puck is to the master puck the
louder is the track that it represents (see figure 10 on the right).

Another problem occured in connection with two dimensinal pa-
rameter changes. Different approaches have been tested. The first
technique was to define absolute zones on the table where parameters
could be modified along the x and the y axis. This approach implied
the disadvantage of reducing the space that pucks could use on the ta-
ble. A better solution employs a technique, where relative distances
are used. In order to change settings the modifier puck is placed on
a specific spot near the puck, then a barbell-formed area occurs en-
closing the modifier and the sample puck as shown in figure 9. This
graphical feedback shows the user how he is changing the settings
compared to the starting position.

71

Fig. 10. The final interface of Audiopad [8]

3.3.3 Discussion

Using the Audiopad prototype many design and interaction issues have
been discovered. Although the problem is that, implementing some of
these changes could cause the necessity of constructing a new pro-
totype. Also many problems have been recognized very late in the
design process. It is possible that these interaction issues could have
been exposed using a low fidelity prototype. This would have avoided
time consuming construction and alteration of the high fidelity proto-
type. Especially in the early design phase the forms of the pucks and
the general layout could have been easily tested with a low fidelity
prototype.

3.4 Collaborative Musical Instrument

Sergi Jordà from the Music Technology Group in Barcelona developed
the reacTable, a modern musical instrument, that uses the advantages
of a tangible user interface [4] [3]. The main goal was to make the
instrument easy to use even for beginners, but at the same time offer
creative freedom and control possibilities for professional players.

3.4.1 FMOL

The history of the reacTable begins with a software application called
FMOL, that was created by Jordà in 1997 [2]. FMOL is a tool for
collaborative musical composition on the internet. It was built for PC
and was controlled by mouse. The GUI consisted of a 6x6 grid, where
the vertical lines represent voice generators and horizontal lines effect
processors. The lines act as input as well as output. By editing the
lines with the mouse, the wave form of this line changes. These lines
can later also be found in the reacTable interface.

3.4.2 reacTable

The reacTable was developed to remove the restrictions in the interac-
tion that were present in FMOL. Internet collaboration in FMOL was
replaced by direct collaboration on a table.

In order to support the development of reacTable a simulation pro-
gram for PC was prepared (see figure 11). Using this simulation basic
concepts and interaction ideas were tested before they were realised
with a more complex prototype. Four kinds of objects were identi-
fied and assigned each with a different geometrical shape. Later the
reacTable will contain six object families. Also, the connection lines
in the final interface will embody additional information, while in the
simulation they were just straight lines.

The final prototype is constructed with a round table, a camera and
a projector, the tracking system reacTIVision, a connection manager
to calculate the network and the audio- and the visual synthesizers
(see figure 12). Furthermore, there are pucks that have one of the
six possible shapes depending on their content. On their bottom side
markers were places in order to be able to track the pucks. On the
upper side symbols specify the content.

Fig. 11. reacTable simulation for PC [2]

The user can move the pucks auround on the table and thus create
and edit a network. Whether pucks connect or not depends on the type
of the pucks and their distance from each other. A connection can be
”muted” by a simple finger gesture. Editing object parameters can be
executed by rotating the puck and by pointing on the round graphical
elements that enclose the pucks.

The reacTable can be launched in different scenarios. Local col-
laboration on a reacTable can be performed by up to four persons at
the same time. In doing so users can each play in a separate area, like
it would be playing in a band, or they can construct one musical for-
mation together (see figure 13). Beside the local there also exists the
remote collaboration, where reacTables or simulations of it are con-
nected in a peer-to-peer network. Thereby objects that are controlled
on the remote table also can be seen on one’s own table. But these
objects are virtual and can only be controled on the remote table. Fur-
ther scenarios are imaginable on mobile devices, where the reacTable
is implemented in a reduced way.

The reacTable was showed at several occasions like festivals, con-
ferences and shows, where it was played by many users with different
musical knowledge.

Fig. 12. Architecture of the reacTable [3]

3.4.3 Discussion

Using the reacTable simulation the designers had many possibilities
to test, and if necessary change their concept without too high ef-
fort. It would also have been possible to use low fidelity prototyp-
ing techniques like paper prototyping in order to experiment with TUI

72

Fig. 13. The reacTable in collaborative use [3]

elements, which is even more beneficial concerning complexity and
freedom of design.

4 CONCLUSION

All the setups that had started off as high fidelity prototypes, had to be
replaced by new ones in order to advance. Especially at the beginning
of the development, the focus often lies on technical implementation
details and not on conceptual advancement. One could argue that tech-
nical progress is as important as is the concept for the final product.
This is supported by the fact that a concept standing alone without any
possible implementation doesn’t have much value. Then again, a con-
cept should not be constrained by the current technical possibilities,
or it will be at risk to have the only purpose to fit the given technol-
ogy. When the used technology becomes obsolete, so does the whole
concept.

As we have seen, high fidelity prototypes are not suitable for con-
cept development. They are inefficient in time and cost, this makes
them unflexible to possible major changes to the concept. On the other
hand, because of their resemblance to the final product, high fidelity
prototypes can be useful to analyse interactions in a realistic way. In
order to test different concept ideas low fidelity prototypes can be of
a greater use. They can be quickly adapted if necessary. But it isn’t
possible to investigate interaction techniques in a realistic way using
lo-fi prototyping. As this is an important field of current research on
TUIs, low fidelity prototyping alone won’t be enough.

Therefore it is advisable to use lo-fi prototypes especially in the
early phase of the concept development in order to give the designer
as much freedom as possible to alter it without having to think about
platform constraints. Also it is possible that lo-fi solutions like paper
prototyping not only make it easier for the users to criticise the con-
cept, but also for the developers to deal with it. They then don’t have
to fear major changes in the concept because of the amount of work it
could involve.

Later in the design process, where details need to be refined, hi-fi
prototyping can build upon the lo-fi prototype. Little changes espe-
cially in the look, position and behaviour of graphical objects can be
carried out easily. Great conceptual changes are not very likely to oc-
cur after testing the concept with the low fidelity prototype.

5 OUTLOOK

As an alternative to high fidelity prototyping I want to introduce a pa-
per prototyping technique that was especially developed for tangible
user interfaces. The Paperbox 3D toolkit is currently being developed
by Julia Küfner, Alexander Wiethoff and Andreas Butz from the me-
dia informatics department for computer science of the LMU. This pa-
per prototyping toolkit has all the advantages that are associated with
common paper prototypes. In addition they enhance two dimensional
paper prototypes by offering the 3D shapes that are needed for TUI
development as seen in figure 14.

Using this toolkit a study has been conducted with three different
settings. In each setting the test persons had to use a different brain-
storming method to develop a photobrowsing application on a tangi-
ble user interface. The groups using post-its or the clustering tech-

Fig. 14. TUI Elements in Paperbox3D

nique both have structured and analysed the topic in a more general
way, but had little precise ideas. The group that used the Paperbox 3D
toolkit had more specific ideas, but didn’t concentrate so much on the
overview.

For further development of this toolkit a major experiment and a
user study will be conducted. Also a comparative test with a high
fidelity prototype that has been constructed by members of the institute
is planned.

REFERENCES

[1] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces be-
tween people, bits and atoms. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 234–241, New York, NY,
USA, 1997. ACM Press.

[2] S. Jordà. Sonigraphical instruments: from fmol to the reactable. pages
70–76, 2003.

[3] S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrunner. The reactable:
exploring the synergy between live music performance and tabletop tan-
gible interfaces. pages 139–146, 2007.

[4] M. Kaltenbrunner, S. Jordà, G. Geiger, and M. Alonso. The reactable*:
A collaborative musical instrument. pages 406–411, 2006.

[5] L. Liu and P. Khooshabeh. Paper or interactive?: a study of prototyping
techniques for ubiquitous computing environments. pages 1030–1031,
2003.

[6] J. Patten, H. Ishii, J. Hines, and G. Pangaro. Sensetable: a wireless object
tracking platform for tangible user interfaces. pages 253–260, 2001.

[7] J. Patten, B. Recht, and H. Ishii. Audiopad: a tag-based interface for
musical performance. pages 1–6, 2002.

[8] J. Patten, B. Recht, and H. Ishii. Interaction techniques for musical per-
formance with tabletop tangible interfaces. page Article No. 27, 2006.

[9] J. Rudd, K. Stern, and S. Isensee. Low vs. high-fidelity prototyping de-
bate. Interactions, 3(1):76–85, 1996.

[10] R. Sefelin, M. Tscheligi, and V. Giller. Paper prototyping - what is it good
for?: a comparison of paper- and computer-based low-fidelity prototyp-
ing. pages 778–779, 2003.

[11] B. Ullmer and H. Ishii. The metadesk: models and prototypes for tangible
user interfaces. pages 223–232, 1997.

[12] J. Underkoffler and H. Ishii. Illuminating light: an optical design tool
with a luminous-tangible interface. pages 18–23, 1998.

[13] J. Underkoffler and H. Ishii. Illuminating light: a casual optics work-
bench. pages 15–20, 1999.

[14] J. Underkoffler and H. Ishii. Urp: a luminous-tangible workbench for
urban planning and design. pages 386–393, 1999.

[15] M. Weiser. The computer for the twenty-first century. Scientific Ameri-
can, 265(3):94–101, 1991.

[16] M. Weiser. Ubiquitous computing. http://sandbox.parc.com/
ubicomp/, 1996. visited 08.12.2009.

73

Prototyping for the development of ergonomic interactive surfaces

Maximilian Schenk

Abstract— Prototyping is a prevalent technique to test unfinished systems, forecast later assets and drawbacks or simply visualize
various ideas. This work deals with the question how prototyping can be used to adjust ergonomics of a final system as much
as possible to human requirements. Therefore it has to be clear which aspects of interactive surfaces influence ergonomics. Five
Ergonomic Input Parameters are identified: Size, Height, Orientation, Aptitude and the Input Device. Seven recent projects are
described to discover how different approaches with different techniques led to a more or less ergonomic adjustment. It will be
highlighted which explicit procedures allow the developers to create systems that could be used convenient, rather than systems that
are only just working. The early participation of later users at the design process provides a high adaptability of the system which
allows the developers to modify their prototype. In combination with multiple prototyping phases the adjustment gets better step by
step.

Index Terms—Ergonomics, Interactive Surface, Prototyping, User Centered Design

1 INTRODUCTION

”Without investigation of real use, technical feasibility can be mean-
ingless [4].” With these words begins Dan Fittons’ work about rapid
prototyping. It shows quite plainly how important prototypes can be,
at the development of new devices or ways of interaction. In this work
the focus will be on the development of ergonomic interactive sur-
faces. The rise of touch technologies and the ubiquity of computers,
displays and interactive devices of all kinds causes the question how
to make the next generation of these devices better. One way of im-
provement is an ergonomic adjustment. Maybe the next generation
isn’t much faster or bigger or smaller, maybe it’s just better to use, like
computer displays in the past were characters in some color on a black
screen, today we have mostly black characters on a bright screen, be-
cause it’s easier for us to read.

To give you an overview of prototyping, a short explanation and
two examples are provided. After that attention will be put on more
ergonomic issues, the parameters that can be adjusted to make a device
more ergonomic. What consequences has a determination of a certain
parameter on the entire system? Following this I will show how pro-
totypes can or could influence the result using the example of some
recent project that used prototyping or not used it. Did the developers
put attention on ergonomic aspects, and did they try to find out how to
optimize them?

In this work the terms display, table or system are used synonymi-
cal. In other context they certainly are not, but here for simplification
they all describe an interactive surface.

2 DIFFERENT WAYS OF PROTOTYPING

Prototyping in general means to start the real creation of systems in an
very early development stadium, instead of thinking trough and then
rethink and rethink and then only one time really building it. After
building this early prototype the system ist tested in a more or less
real situation, to find out what works good and where the weaknesses
are and then an optimized version of the system is created, which gets
tested again. With this iterative process of creation and feedback the
system can be improved in every stage, so that the final system accords
to the developers imagination and is build the way it has to be built
and not the way the developers think is has to be. In this context the
development time and the costs can be reduced [5].

Prototyping can be done on different levels, so there are the two big
categories fidelity and functional selection. In table 1 it is shown how

• Maximilian Schenk is studying Media Informatics at the University of
Munich, Germany, E-mail: Maximilian.Schenk@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Interactive Surfaces, 2009

Low an High-Fidelity differ from each other in their core aspects.

2.1 Low- and High-Fidelity Prototyping

High and Low-Fidelity differ from each other in the following points.
Low-Fidelity prototypes are quickly and often cheap constructed, they
are supposed to show the concepts and the general idea. They can
also sketch different versions, like design variations to evaluate which
works best and should be developed furthermore and which should
be discarded. Often pen and paper is used to make these sketches,
because it’s cheap and fast and you need no special skills.

Later I will go into the example of the Paper Prototyping technique.
The degree of detail is low in relation to the accomplished system but
that is no problem, it is volitional because it would not make much
sense to cut a picture when you don’t know the frame size. The pos-
sibilities to interact are limited, but it’s enough to see if the project is
heading in the right direction or if you better start again with a mod-
ified idea. Furthermore lots of different versions can be tested and
quickly customized [11].

In contrast to this, High-Fidelity prototypes are in a later level of
development they provide real interactivity and simulate the behavior
of the system on a higher niveau. The expenses for such a prototype as
well as the time to build are higher respectively longer but it is possible
to see more clearly how users would interact with or use the system.
To pick up the metaphor, if you know the frame size it is reasonable to
cut the image to get a better picture of the picture. ”Higher fidelity pro-
totypes simulate or animate some but not all features of the intended
system [11].”

2.2 Vertical and Horizontal Prototyping

The second big category contains mainly how far the single function-
alities are implemented and which functionalities are implemented.
A vertical prototype has a very small functional range, but the few
functions that are implemented are fully working and not just facile
dummys. As the case may be a broad functional range gets cut down
to provide in-deep functionality for some key features, which can be
tested deeply. This is reasonable to test core functions or if additional
functionality is not necessary.

Horizontal prototypes on the other side provide the full rage of func-
tionality on a single level. Everything on this level works as it has to,
but there is no functionality in-deep that can be tested. Horizontal pro-
totypes often can be done fast, for example if it is just the interface
without a working system underneath. In both versions one part is
picked up to be implemented and tested and another part is cut off, be-
cause it is unessential for the current evaluation [11]. It can be useful
to combine both techniques in different parts of the same prototype [5].
That’s the case when, for example the complete interface is clickable
but just the central aspect is fully working.

74

Table 1. Low VS High Fidelity Prototyping [11]

Lo-Fi Advantages
less time and lower cost
evaluate multiple design

useful communication device
address screen layout issues

Lo-Fi Disadvantages
limited usefulness for usability tests

navigational and flow limitations
facilitator-driven

poor detailed specification

Hi-Fi Advantages
partial/complete functionality interactive

user-driven
clearly defines navigational scheme

use for exploration and test
marketing and sales tool

Hi-Fi Disadvantages
time-consuming to create

inefficient for proof-of-concept designs
managements may think it is real

2.3 Example: Paper Prototyping
The simplest way to explain Paper Prototyping is that you make your
prototype out of paper. It is a Low Fidelity Prototype that can be used
in a horizontal way to sketch up different interfaces variations or form
factors of a system. (see figure 1) To simulate interactivity, the reaction
of the system to a users’ input, like the change of displayed content
you need someone to play the computer. This person for example
has to change the sticky notes, that represent to displays [10]. The
more distinct this simulation is, the more blur the bounds to the below
explained technique of Wizard of Oz.

Nevertheless this simulated version of interactivity works in both
directions. When the test user has to type something in, he uses a
pen and writes, when a button has to be pressed it gets pressed by
touching the paper. The studies of Sefelin et al. [13] compared Paper
Prototyping with computer based Low-Fidelity Prototyping and came
to the conclusion that there is minimal difference in the result. The
testers mostly preferred the computer based version, but however
there are some reasons why Paper Prototyping is the treatment of
choice.

Advantages of Paper Prototyping [13]

• No restrictions of a framework - You can create whatever you
want

• Easy to realize - No special skills are needed

• Fast and cheap

2.4 Example: Wizard of Oz
The need of the Wizard of Oz simulation becomes clear when you re-
alize that human communication is very complex and can’t be simply
done by a computer. Today’s technology can simulate some aspects of
human communication but often only with a big amount of work. In
the development of a system when you decided to use prototyping it is
much easier to simulate the simulation instead of creating a simulation
system that maybe won’t be used furthermore.

Fig. 1. Prototype N 15 - Curve project, made of styrofoam a wooden
lath and paper (Image thankfully provided by a Curve staff)

This simulation technique is not only used to simulate human com-
munication, most parts of a system for example simple common com-
puter interaction can be simulated too. The idea behind the Wizard of
Oz is, that a person in the background plays the computer respective
the specific part of the system the has to be simulated, because the
system or the computer itself has not implemented the specific func-
tionality yet. The tester interacts with the system and does not perceive
the wizard in the background [2]. The human wizard can for example
react on any input the tester gives, this provides a continuous func-
tionality and the user is not disturbed by elements that maybe are not
necessary for the system, but for the correct working simulation of the
prototype [6].

3 ERGONOMIC INPUT PARAMETERS

Before the question for input parameters could be answered, another
question is more important: What is ergonomic? Interactions among
humans and other elements of a system can be seen as ergonomic if
data and methods are designed ”in order to optimize human well-being
and overall system performance [8].” The other elements of a system
are as important as the interactions for this work. This contains many
aspects of the prototype which are the Ergonomic Input Parameters.
Every system has parameters that can be adjusted, but it depends on
the system itself if a specific parameter could be seen as ergonomic
relevant or not.

An example: If you have a very large public display, the frame
width has no influence on how good humans can use the display. When
you have a small handheld computer on the other side, the width of the
frame is probably essential for a convenient use. In the following there
will be described five of those parameters, that could be identified in
recent projects. Certainly there are other factors that can be ergonomi-
cally adjusted, but I will confine myself to this five as the most impor-
tant ones for ergonomic prototyping for interactive surfaces.

3.1 Size
The size is one of the most obviously parameters that has to be er-
gonomically optimized for humans. In this paragraph I will explain
why it is so important. Mainly it depends on the future purpose of the
system. Is it supposed to be a single workstation or in a conference
room to be used for collaborative work? These are basic decisions that
influence the raw dimension of the system, but inside this dimension
there can be done minimal adjustments that are not less important. So
Wigdor et al. [16] found out, that persons preferred the larger field of
view, provided by larger devices, even if they have to reach farther for
targets at the top and the corners of the screen. Furthermore there can
appear privacy issues. When the display is too large content gets dis-
played large, too. This can be inconvenient for the user, also because
he can loose the overview what is displayed. The research of Elliot et
al. [3] has resulted, that ”large work surfaces should focus on putting
primary information near the user and less important information in
the periphery [3]”.

Nevertheless the size as ergonomic input parameter depends on hu-
man beings. The form factor of the Curve (see 4.1) or the BendDesk

75

(see 4.2) were created on the users biometric characteristics. How
large should a digital table be? Data with absolute validity are tough
to get, but it has been found out, ”that a table measuring 107 cm diag-
onal is a good minimum size. Observations of smaller table sizes (80
cm diagonal) reveal that users frequently bump elbows and arms with
each other while interacting [12].” On a horizontal screen the users
tend to lean on their elbows or arms. To avoid false detections of in-
teraction at touchscreen, there have to be touch insensitive areas. This
enlarges the entire size of the system [12].

3.2 Height
The second easy to understand input parameter is the systems height.
A vertical displays that is mounted too high, can’t be interactively used
by small adults or children. As a practical example for adjustability of
height you could name blackboards at schools. At horizontal inter-
active surfaces it is a little more difficult, but it also depends on the
systems purpose. Wigdor et al. [16] adjusted theirs system in such
height, that the user was able to use it while standing or seated. Two
sitting heights are mentioned by Ryall et al. [12]: The first is the so
called Lobby Table it has the height of a coffee-table and can be per-
fectly used for casual interactions. The second one is a table at Desk
Height. People can put their legs underneath and work for hours. This
height is more suited for productivity tasks.

Table height can also impact reachability and readability of the dis-
play for example when because of a wrong height the viewers eyes are
too far away from the display [12]. Furthermore the eye height while
sitting is a influencing factor, because the head has to be bended when
the height is beyond certain constraints [17].

3.3 Orientation
The orientation of the surface means if it’s horizontal mounted or ver-
tical mounted. Such a simple variation takes effect on very basic at-
tributes of the interactive surface. Horizontal desktop-like systems are
more adapted for physical work like sorting tasks. Users can interact
with virtual and physical objects (especially because they don’t fall
down). Collaborative works is also easier because all four sides of the
table can be used [17, 16]. Horizontal table-like displays can be used
in two ways. On one side as it is intended for an interactive surface,
but on the other side like Wigdor et al. [16] showed, people used it
as tables in small meetings and group work. They put things on it
and used it as furniture. A pure horizontal workplace has according
to Benko et al. [1] negative effects on the users health. They mention
that the permanent looking down causes neck strain and that it’s not
good for the back.

Work environments that are orientated vertically are mostly virtual
and without physical objects. Tangibles and other direct touch inter-
action elements are not necessary because vertical surfaces are better
suited for displaying, than directly editing information [17]. The com-
mon way of editing content is on a vertical computer-screen, but it is
usual to use mouse, keyboard or a stylus and no direct touch input.

Additional to this has the orientation effects on clarity and readabil-
ity [12]. At a vertical display it’s obvious how a photo has to be shown.
There is no question: Which side is up? A interactive surface that is
mounted horizontal on a table has no way to detect from which side
the user is looking at it and maybe shows the photo upside down.

3.4 Aptitude
The parameter aptitude is applicable for horizontal as well as vertical
displays [16]. The inclination can advance the ergonomics of a sys-
tem. The displays Wigdor et al. [16] used were mounted on a sloped
surface in order to enable working like on a drafting table. Metrical
considerations show that if the top edge of a horizontal display gets
raised, the user can easier reach and view the pixels at the top and in
the corner of the display. This qualifies the above mentioned dual use
of horizontal surfaces. From a certain angle objects would begin to
slide across its surface. You should keep that in mind when you adjust
the angle.

The neck strain problem, Benko et al. [1] mentioned could be an-
tagonized by a inclination of the surface. The final answer of which

aptitude is the best is the following: ”Vertical and horizontal interac-
tive displays expose specific assets and drawbacks, and the choice of
the appropriate angle depends on the users task [15].”

3.5 Input Device
The last ergonomic input parameter I want to talk about is the input
device. The common input devices are mouse and keyboard. They are
well established and there is currently no way of not using them in ev-
eryday life. It is open to dispute, if a mouse is ergonomically adjusted,
but the answer on this question has marginal impact because mice are
the common standard input devices in combination with keyboards.
Much more interesting are other input devices, like styli, tangibles or
simply the users fingers. One might think that fingers are not as pre-
cise as a mouse but after a learning phase users can work as precise
with their fingers as with a computer mouse [16]. Touch technology
can also provide the advantage of multitouch, if the system supports
it. Fingers are always availible in contrast to multiple mice, or the
computers’ support of multiple mice.

A problem with multitouch is, that ”some people are hesitant to
touch the table simultaneously, especially when they are first intro-
duced to the technology [12].” In a collaborative situation it can hap-
pen that people fear to touch another users’ hand or bump the arms
accidentally with another user. When users know each other, that’s
not a problem, but when they don’t or are even from different cultural
areas this can impact the acceptability of the entire system. Unprac-
ticed users could also perform accidental touches with their wrists or
cloth, which can’t happen with a common mouse. This kind of prob-
lems could be avoided by system that cleverly filters erroneous inputs.

Textinput is another important thing and therefor a keyboard works
best, ”bare fingers are insufficient for text input [12]”. Tangibles can be
ergonomically adjusted, but a lot of things can get wrong even with the
basic form. It is hardly possible to give a general statement how they
can be adjusted. Wimmer et al. use for their Curve a ”combination of
WIMP and touch technology [17]”. Maybe that’s the most ergonomic
adjusted model of input devices. People who are inexperienced with
touch technology get along due to usage of the classic combination
of keyboard and mouse, which is also used for things like text typing.
There is still the option to interact by touch which opens new ways of
interface design.

4 ERGONOMIC PROTOTYPING OR NOT?
In the following part I will describe and analyze recent research
projects that developed and/or observed interactive systems. I want to
highlight if the researchers in these projects applied prototyping and if
they had an advantage of doing so. The focus will be if the scientists
put attention on ergonomic aspects. Did they avoid mistakes, or was
the outcome the same, as if they would not have used prototyping? On
the other hand I want to show projects in which mistakes could have
been avoided with the right prototyping. Furthermore I will disclose
how and which way the prototyping was used or could have been used.

4.1 Curve
The first project I want to mention is the Curve [17] project. Within
this project the researches wanted to close the gap between physical
and virtual desktops. As seen above, horizontal surfaces are more ap-
propriate for some tasks than vertical surfaces are and vice versa. The
Curve is an approach to combine these two characteristics in one single
desktop-sized interactive surface. The basic form is ”a soft curve form-
ing one large, L-shaped surface [17].” At the thought of ergonomics
they put a lot of work in the finding of the right dimensions. They
decided to gather the values form the dimension parameter in three
steps. The basic measures where taken from literature [9] to adjust the
curve to a average german. After this additional constraints have been
discovered in discussions with designers and cognitive psychologists.
The undetermined factors have been defined by a study with 18 differ-
ent prototypes made of paper. These prototypes represented all possi-
ble combinations of the three open factors. The first factor was the top
edge of the vertical surface in relation to eye height of the user. The
higher the edge is the larger is the effective seen display. They picked

76

two values: The average users’ eye height +5cm and -5cm. The two
other open factors were the inclination of the vertical surface and the
radius for the curve. Values used in the study have been 5, 10, and
15 degrees for the surface inclination and 5, 10, 15 cm for the curve
radius. Based on these values they build 18 different prototypes with a
fixed size of 120 cm. The students, taking part in the study had to fill
out questionnaires and must test every single prototype and rank them.
After evaluation of the study the researches could name the preferred
constellation. The Curve desktop they built has the values shown in
figure 2 a).

Fig. 2. a) Curve measures seen from the right [17], b) BendDesk and
it’s ergonomic parts of the display (I vertical screen (39” x 19”), II curve
to connect I and III (radius: 4”), III horizontal screen (39” x 15”), IV non-
interactive border (39” x 3”)) [15]

At this project they put attention on good preparation work and as-
pects which could not be prepared have been prototyped in a relative
fast an inexpensive way. Due to the building of 18 versions of paper
they could figure out the best combination of values. The testing of
these different configurations made them get a most ergonomic ad-
justed final version.

4.2 BendDesk
The Benddesk [15] project is very similar to the Curve project. The
researchers at this project also tried to combine the established out-
put technology of vertical displays with horizontal displays, which
are more efficient for example drawing tasks. They also perform this
combination by connection the two displays by a curve which allows
dragging from one displays to another. In the absence of detailed in-
formation there is not much about to say how they derived the dimen-
sions of the BendDesk. The dimensions of the displays are, except
the width, similar to the ones of the Curve. One could suspect that
there was an analogue basic ergonomic consideration. The curve ra-
dius is nearly the same as at the Curve (4” are about 10.16 cm). The
”preliminary user tests [15]” seem to led to the knowledge that users
prefer a greater curve radius when they slide up with the finger. Sadly
they did not present why and how they came to the conclusion that a
radius of 4” works best. The finding of the other parameter values,
would have been interesting, as well. Especially when the focus is
on the drag-from-horizontal-to-vertical-display feature, the not exist-
ing inclination of the vertical displays could be questioned. The Curve

prototypes have pointed that a backwards inclination of the vertical
display is convenient for the user. This ergonomic aspect perhaps was
disregarded at the BendDesk. Perhaps it would have attracted attention
with an adequate way of prototyping.

An ergonomic aspect the BendDesk researches considered is the
additional non-interactive border. This is one of the factors that hardly
comes up in a prototype made of paper. A high fidelity prototype
maybe could avoid this and show disadvantages of a design other ways
of prototyping can’t show. That’s probably the reason why the Curve
researchers did not add a non-interactive border.

Concluding the results of both projects are similar, with little dif-
ferences, but the elaborate prototyping of the Curve researchers led to
more ergonomically adjustment in some fields.

4.3 Interactive group learning
The next project is an interactive group learning system for children in
elementary school [14]. The pupils had to construct a physical model
of a town in a playful way (see figure 3 a))and then get the environ-
mental effects of their activity presented on a virtual screen (see figure
3 b)), to ”verify knowledge they have acquired from a schoolteacher
or a textbook [14]”. Like in other projects the systems’ requirements
were asserted at first in interviews with specialists. In this case the
specialists were the teachers and the pupils. It came up that image-
processing technology with a camera is not suitable for a classroom,
because pupils are not able to set up and dismantle such equipment.
The technology of choice was sensor-based detection.

Before building the final system, they made some different sized
paperboard prototypes with various numbers of grids on it. A clear
idea of the hardware is necessary, because it’s harder to change after a
certain point than software. These prototypes were without detection,
one of the researchers simulated the systems input manually. At this
test, in which 30 pupils took part, they used relative simple prototypes
made of paperboards and a little bit of software. The size of the boards
had to be more than 60 x 60 cm, so that four to six pupils can work at
one system, but not too large, because of their shorter arms pupils lean
over the board to reach fields far away from them. Another crucial
point is the size of the game pieces, ”because pupils would have dif-
ficulty manipulating pieces that were too big or too small [14]”. This
is a nice example of ergonmic adjustment of tangibles. Furthermore
children get along better with user-interfaces with characters, that with
graphical representations, a point that only can be found out at when
testing with kids.

After all the final system was developed based on the requirements
which became clear after testing prototypes in classrooms. Lots of
possible failures haven’t been made because of early prototyping and
good preparation work. After establishing the final system it came up
that the boards where slightly too heavy for one pupil to carry. This
depends on the used sensing hardware. It would be hard to name this
a failure, but it shows quite fine how important it is to understand the
prototyping process as a circle where parameters influence each other
and have to be considered in every phase of developing. Sugimoto et
al. [14] observed, that requirement given from small children are not
a 100 percent correct, because they can’t express themselves in way
grown up can do and probably are not aware of what the requirements
really are.

4.4 Interruptibility Prediction
The focus of the following project is not on the development of an
ergonomic system in a physical meaning but it is prototyping on the
communication level. It’s a feasibility study on the basis of the proto-
typing technology Wizard of Oz [7]. Humans need only one moment
to cognize if another human can be interrupted at the moment or if it’s
appropriate to not disturb. Computers don’t have this ability what in
daily life leads to computers that either always interrupt instantly and
present what ever they have to present, or never interrupt and wait for
the user the request the content. This feasibility study wants to figure
out, if there would be appropriate sensors a computer based system
would be able to predict if it is suitable to interrupt at a specific mo-
ment.

77

Fig. 3. a) The Interactive group learning system used in a classroom
with elementary school pupils [14], b) An example of visualizing a town
being constructed on the board [14]

As initial point of the study they made a long-time video record-
ing with audio, of four subjects in a similar single-office environment.
The subjects were asked periodically to rate their current interruptibil-
ity. Based on these recording the researchers identified 23 events or
situations that could give information about the subjects interruptibil-
ity. They used some machine learning techniques to develop predictive
statistical models, which should be able to predict a humans’ interrupt-
ibility. The problem on testing the models is that, at present, there are
no appropriate sensors to detect the parameters. To deal with this they
used the Wizard of Oz technique and simulated the sensor input manu-
ally - but in a real situation. So they could test the effectiveness of their
models and prove the feasibility of human interruptibility prediction,
if there would be suitable sensor technology.

4.5 Hermes 1

The Hermes 1 [4] is a system installed at office doors. Users can leave
messages and this allows asynchronous communication between them,
like sticky notes could do. The mounting outside an office door aims
to combine private an public elements. The basic decision that ”with-
out user studies, technical feasibility can be meaningless [4]” led to a
split of the development into phases. This phase-based cycle in com-
bination with rapid prototyping and a deployment of the systems in a
very early state, provides a maximized ability to adjust and improve
the system.

The system contained only a small range of functions, this low com-
plexity makes it very easy for the testers to use the Hermes 1 messag-
ing system and ensures a high reliability for the whole system. At the
beginning they aimed to develop the core functionality with only two
Hermes 1 systems given to friendly users. (See figure 4 - a)) A weak-
ness is that friendly users’ adjudgement could be affected from their
friendliness.

While the complete development process the researchers logged the
entire usage of the system to get detailed feedback where the weak-
nesses are and where the systems runs as it should. In every pro-
totyping cycle the amount of installed devices was continuously in-
creased, in the same way the study participants were extended. From
only friendly users at the beginning to ones that are not so familiar
with this kind of technology. The splitting of development process
into phases provides another advantage, the focus on which character-
istic has to be enhanced, can be changed for the reason that a goal-
orientated development is possible. Due to the deployment in a very
small extent at the beginning they could figure out a ”major issue im-
pacting reliability.[4]” A great deployment maybe would have make
it difficult to discover that people standing in front of the Hermes 1
block the wireless signal and disable the working of the system.

In the next phase with more devices this issue was resolved. In later
phases, based on feedback of study participants the amount of interac-
tion possibilities was increased. Extending the functional range at the
beginning would not have been reasonable, because the requirements
just became clear after evaluating the feedback from the users.

The focus in this project was not on ergonomics, but this project

shows how a system can be success when user feedback is included in
all stages of the developing process. If the requirements are verbalized
from the ones who use the system, the system gets adjusted to them.

4.6 SPAM

Another system in whose development process Hermes 1 displays
have been used is SPAM, that stands for ”SMS Public Asynchronous
Messenger [4].” The system aims to expand the possibilities of com-
munication in a working environment beyond the existing ways to
communicate, like telephone, fax and email. The idea behind is to
enable the sending of SMS not only to persons mobile phones but also
to a public screen. Public in this case does not mean the market square
but rather an office with an well-arrange amount of people. So it is
possible to send a message to a place and not to a person.

To not overstrain the user or frighten him off, the developers at-
tached great importance to reliability and easiness of usage. Before
starting the construction the researchers did two weighty things to dis-
cover how the system could be adjusted to later users and usage. The
first was to gather ethnographic data on usage. Due to this move is
easy to make fast to realize and associated with only low financial
charges it gives serviceable insights into users requirements. Certainly
this was only the first step, because all aspects could hardly be covered
by unspecific analysis.

The other important preliminary work was to set up a Participatory
Design Workshop. Under usage of props, including the above men-
tioned Hermes 1, the later users took share in the development process.
In this workshop they rapid prototyped different scenarios to discover
which works best with the test users. This way later users are able to
give useful feedback in a very early state of development, for example
they could refuse a designers’ idea before he puts effort on an idea that
is probably less promising. The cheap the obtaining of ethnographic
data was, the expensive is it to make such a workshop.

Bringing the findings of both processes together the requirements
for the later SPAM system became clear. Fitton et al. [4] used ”off-
the-shelf” software and hardware components to quickly build a ver-
sion that could be deployed and tested outside the lab in a real environ-
ment. During these tests every action of the participants were logged
to evaluate them later. This way the researchers were able to get a very
fast and pure feedback of the actual use of the SPAM system. Based
on this feedback they made some modifications very quickly.

In this project to the focus wasn’t on ergonomic topics in a straight
physical way, as well. The size for example plays a subordinate role
meanwhile the adjustment to the users requirements and their partic-
ipation in the development process were essential. In later project
phases they had not much to modify which led to the conclusion that
good preliminary work can counteract a large amount of prototyping
cycles.

4.7 Hermes 2

The success of the Hermes 1 displays brought the developers to use it
as starting point for another project, with the focus on how the ”physi-
cal placement and design [4]” of wireless connected displays influence
their usage in a community. Based on the Hermes 1 they started the
development of the Hermes 2 system [4]. As mentioned at the Her-
mes 1 project less effort was put on ergonomic inputfactors as defined
in chapter 3. The Hermes 2 should be more ergonomically adjusted,
which has to be reached by a suitable development process. Parame-
ters should be configured in a way users are comfortable with. Some of
the parameters - they sadly don’t name all of them - are display size,
number of devices or user interface layout. In the first phase of the
development the researchers focused on two key aspects: The phys-
ical from-factor, which means for example the size or the thickness
and the general display configuration users can handle most suitable.
Therefore they created six different styled prototypes.

To get a situation that is mostly realistic they mounted displays in
an environment that’s similar to the later actual usage. Here the er-
gonomic inputfactors height, aptitude and orientation attract interest,
even if the researchers are not aware of this fact. The participants of

78

Fig. 4. a) Hermes 1 deployment [4], b) a Hermes 2 probe pack, contain-
ing a diary, a camera, glue and a pen [4]

the study, the persons that will get a display, were filmed when the de-
velopers showed them a ”tour around the showcases [4]”. Through the
guidance when introducing the showcases the users could be brought
to give high quality feedback. They combined different aspects of var-
ious prototypes and told the researches precisely which configuration
they would prefer. Such a large scaled activity is associated with a lot
of time and money for the building of the prototypes and nevertheless
with organizational effort.

All participants of the showcase demonstration were equipped with
a probe pack. ”these packs contain a diary, instant camera, pen, and
glue [4]” (see figure 4 - b)). This probe pack should help the later
users to journalize their messaging behavior. Every day they had to
note down messages they had left for themselves or others and mes-
sages others had left for them. To have a better imagination of the
surroundings of the message photos could be taken with the camera
and glued into the diary. This analog recoding lasted for seven days.

The early consultation with the end users and their involvement in
the development process, in order they were able to give high qual-
ity feedback and discuss with the developers generated a mostly er-
gonomically adjusted final system. The paper prototyping for the user
interfaces only had limited success, but Fitton et al. [4] admit that this
was caused by a not extensive enough realization.

5 CONCLUSION

What have all these projects shown? Is prototyping reasonable when
the final system has to be ergonomically adjusted? In the following I
want to excerpt answers from the just inspected projects. The Curve
project is distinguished by good preparation work and a great amount
of built prototypes to evaluate the final parameter configuration. The
researchers at the BendDesk project led to similar results without a
large-scaled prototyping. The Curve developers explicit focused on
ergonomics and gathered the slightly better result which can be traced
back to the extensive prototyping. Testing prototypes with the later
users early in the development process and continuous recheck of
the requirements were the recipe for success of the Interactive group
learning project. Here it comes up that a frequent verification of the
requirements can be useless if the source of the requirements is unre-
liable. At the feasibility study for Interruptibility Prediction the pro-
totyping worked as it has to. Here the focus was on the evaluation a

system before it is finished. Phase based development was the idea
behind the Hermes 1. In every development cycle the prototypes have
been enhanced respectively adjusted to the users requirements. The
later users, in this case they were reliable, have been included in the
system design process and gave precious feedback. Due to this a high
flexibility and a maximized ability to adjust were provided. In SPAM
project the end user have been included as well and their preliminary
work and certainly their experience on this sector did not require many
prototypes. Hermes 2 was developed with early end users feedback as
well and supported by prototypes to visualize potential systems.

The question at the beginning of this work was if prototyping is
reasonable. The answer to this question is ambiguous. Prototyping
is reasonable if the requirements are not a 100 percent clear. A good
preliminary work, on the other side, can reduce the necessity of pro-
totyping. Picking up the point ergonomics, it can be very useful to
prototype and include the later users in very early levels of develop-
ment to get fast feedback. Understanding prototyping cyclic allows to
adjust the system in every loop more and more to the end user.

REFERENCES

[1] H. Benko, M. R. Morris, A. B. Brush, and A. D. Wilson. Insights on
interactive tabletops: A survey of researchers and developers. 2009.

[2] N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of oz studies: why
and how. In IUI, pages 193–200, 1993.

[3] A. Elliott and M. A. Hearst. How large should a digital desk be?: qual-
itative results of a comparative study. In CHI ’00: CHI ’00 extended
abstracts on Human factors in computing systems, pages 165–166, New
York, NY, USA, 2000. ACM.

[4] D. Fitton, K. Cheverst, C. Kray, A. Dix, M. Rouncefield, and G. Saslis-
Lagoudakis. Rapid prototyping and user-centered design of interactive
display-based systems. IEEE Pervasive Computing, 4(4):58–66, 2005.

[5] C. Floyd. A systematic look at prototyping. In R. Budde, K. Kuhlenkamp,
L. Mathiassen, and H. Züllighoven, editors, Approaches to prototyping,
pages 1–18, Berlin, 1984. Proceedings of the Working Conference on
Prototyping, Springer.

[6] J. Höysniemi, P. Hämäläinen, and L. Turkki. Wizard of oz prototyping of
computer vision based action games for children. In IDC ’04: Proceed-
ings of the 2004 conference on Interaction design and children, pages
27–34, New York, NY, USA, 2004. ACM.

[7] S. E. Hudson, J. Fogarty, C. G. Atkeson, D. Avrahami, J. Forlizzi, S. B.
Kiesler, J. C. Lee, and J. Yang. Predicting human interruptibility with
sensors: a wizard of oz feasibility study. In G. Cockton and P. Korhonen,
editors, CHI, pages 257–264. ACM, 2003.

[8] International-Ergonomics-Association. What is ergonomics? Web-
site, 2000. Available online at http://iea.cc/browse.php?
contID=what_is_ergonomics; visited on December 8th 2009.

[9] W. Lange and A. Windel. Kleine ergonomische datensammlung. TÜV
Media, 2008.

[10] L. Liu and P. Khooshabeh. Paper or interactive?: a study of prototyping
techniques for ubiquitous computing environments. In G. Cockton and
P. Korhonen, editors, CHI Extended Abstracts, pages 1030–1031. ACM,
2003.

[11] J. Preece. Prototyping, 2005. Available online at http://hamilton.
bell.ac.uk/btech/hci/hcinotes17.pdf; visited on Decem-
ber 8th 2009.

[12] K. Ryall, C. Forlines, C. Shen, M. R. Morris, and K. Everitt. Experiences
with and observations of direct-touch tabletops. In Tabletop, pages 89–
96. IEEE Computer Society, 2006.

[13] R. Sefelin, M. Tscheligi, and V. Giller. Paper prototyping - what is it good
for?: a comparison of paper- and computer-based low-fidelity prototyp-
ing. In G. Cockton and P. Korhonen, editors, CHI Extended Abstracts,
pages 778–779. ACM, 2003.

[14] M. Sugimoto, F. Kusunoki, and H. Hashizume. Design of an interactive
system for group learning support. In Symposium on Designing Interac-
tive Systems, pages 50–55, 2002.

[15] M. Weiss, S. Voelker, and J. Borchers. Benddesk: Seamless integration of
horizontal and vertical multi-touch surfaces in desk environments. 2009.

[16] D. Wigdor, G. Penn, K. Ryall, A. Esenther, and C. Shen. Living with a
tabletop: Analysis and observations of long term office use of a multi-
touch table. In Tabletop, pages 60–67. IEEE Computer Society, 2007.

[17] R. Wimmer, F. Schulz, F. Hennecke, S. Boring, and H. Hußmann. Curve:
Blending horizontal and vertical interactive surfaces. 2009.

79

Prototyping for the Development of Ergonomic Interactive Surfaces

Eduard Vodicka

Abstract— Interactive surfaces like tabletops or walls are currently a popular topic in research. They offer a new way of interacting
with a computer, making a contrast to traditional desktop environments. Interactive surfaces can allow multi-touch and multi-user
interaction and thus create new working scenarios. To be most suitable to the user, ergonomic aspects should also be taken in mind.
This paper deals with the prototyping process when developing such ergonomic interactive surfaces. Prototyping is necessary to
evaluate concepts and find errors and problems, so it should always be part of the design process.
At the beginning of this paper an overview of different prototyping techniques like paper or hardware prototyping is presented. The
concept and design challenges of ergonomic interactive surfaces are discussed in the next step to understand the requirements in
the design process. On the basis of exemplary projects the actual way from an idea to the final prototype is shown. It occurs that
hardware prototypes are the usual choice when evaluating a project. Paper prototypes instead are used rarely but should be the first
choice, especially when designing ergonomic devices.

Index Terms—prototyping, tabletop, ergonomics, interaction, gestures

1 INTRODUCTION

The term interactive surface generates a contrast to the common desk-
top computer paradigm. With interactive surfaces it is possible to ex-
plore other forms of displaying information and interacting with it.
The desktop metaphor usually presents the data on a monitor, the user
can interact with the system by using a keyboard and a pointing device
like a mouse or a touchpad. Interactive surfaces allow direct interac-
tion with the device or the place where the information is presented
for one or more users. It is not determined what exactly an interactive
surface consists of. It could be a simple touchscreen hanging on a wall
or a flatscreen embedded in a tabletop or a projection on a wall or any
other combination of technologies. These devices have in common
that the users can operate with them directly, for example with their
hands using gestures (see figure 1).

While designing such surfaces, several problems can occur. An idea
has to be realized in some way, which means technical realization in
the first place. It is often difficult to build a new device with existing
technology. Sensors for example could not be as precise as needed for
a correct detection of the user’s inputs. It is also important to think
about the interaction techniques that have to be accepted by the users.
Another point that should be taken into consideration is ergonomics.
When working with ergonomic rules, the chances that the system can
be operated by a heterogeneous group of people are increased. The
users will accept the project and ideas faster, when it is easy to use for
them.

A way to solve such problems during the designing process or sim-
ply to check and validate ones ideas is evaluation. By letting users
test the product and ideas, problems can be identified and new solu-
tions can be found. It is recommended to begin these evaluations early
and to repeat them during the development process. A prototype can
be used to present the users something they can work with. So the
basic approach when designing a new interactive surface seems to be
to build a prototype that matches the ideas, evaluate it and continue
the development with the new insights. Of course this scenario is not
only suitable for interactive surfaces but for all kinds of hardware and
software developments.

This paper gives an overview about the different possibilities to re-
alize these prototypes and show the goals that can be achieved by us-
ing these different kinds of prototyping. Another aspect of this paper
is the design of interactive surfaces and what it means to call them

• Eduard Vodicka is studying Media Informatics at the University of
Munich, Germany, E-mail: eduard.vodicka@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/2010

ergonomic. Finally, those two aspects are combined to show how pro-
totyping is actually used in the process of designing new interactive
surfaces. This way it can be analyzed, which prototyping techniques
are suitable and which are not. In the conclusion, a recommended way
of prototyping can be shown.

Fig. 1. A multi-user scenario on a tabletop display [26].

2 PROTOTYPING

Building prototypes is an essential part in the process of designing
new interfaces in software or hardware. It is a fast and cheap alterna-
tive to build something based on ones ideas to test the producibility or
to present it to others. These others could be customers who want a
presentation of the made progresses or the users of the future product.
Letting the users interact with the prototypes can give valuable insight
in the usability of the ideas, which is an important part of the evalua-
tion. The designers can manifest their ideas with prototypes and thus
bring their hypothesis to life to test them [18]. By these evaluations it
is not only possible to prove the concepts, but also to learn more about
the problems that should be solved [12]. In this way prototyping is an
important step before building the final product. To have enough time
to analyze and implement the insights brought by the evaluations, the
first stages of prototyping should begin early in the design process.

Prototyping allows to filter unimportant aspects like the colors of an
interface or the shape of the buttons. A prototype is never complete,
which is its strength [18]. The designer does not have to think about

80

how exactly the product will be build and which material or technology
it will require. Instead he is free to focus on the concepts on his mind.

Basically there are two different approaches to build a prototype.
The low-fidelity (lo-fi) and the high-fidelity (hi-fi) prototype. Low-
fidelity means a simple non-functional sketch of the ideas to present
certain aspects of the products such as the user interface. Low-fidelity
prototyping is often associated with paper prototypes because this is
an often used technique [25]. In contrast high fidelity prototypes seem
to be much more advanced. That could be for example an already
working piece of software or hardware or a simulation that already
looks like the final product. These two approaches both have advan-
tages and disadvantages. Lo-fi can be build very quickly and focus on
certain problems that should be evaluated.Hi-fi can be used for a de-
tailed proof-of-concept or to sell an idea to others. But hi-fi can also
cause problems when focusing the work on a bagatelle and therefore
forgetting the core issue [25].

There is also another categorization for prototypes, distinguishing
between horizontal and vertical prototyping. The vertical version im-
plements only selected functions of the final product but these func-
tions are fully operational and ready for use. The horizontal version in
contrast tries to give an overview over as much of the planned func-
tions as possible, but they are not implemented in detail and so not
fully usable [8].

To make building of prototypes easy, developers can use tools and
frameworks that support them in the design process. These tools allow
to sketch prototypes with predefined components and can therefore
speed the work up [12].

2.1 Paper Prototypes

As mentioned above, a common possibility to implement a lo-fi pro-
totype is to draw ones ideas on paper. Sketches of the user interface
of an application or a website can be made this way without writing a
single line of code (see figure 2). There has to be no worrying about
colors, icons or images, instead the developers can focus on layout
and interaction [29]. A paper prototype is easy to build, it is cheap
and fast to create. All that is needed are some drawings of screens and
menus that are composed together. After having finished the proto-
type it can be used not only to check the visualized ideas but also for
evaluation. The users can interact with the ‘application’ by touching
it. An operator acts as a computer and changes the screens. Using a
paper prototype the testing is independent from technology and imple-
mentation issues and changes can be easily adopted. Problems with
the interface can be found and considered before having finished the
application.

Instead of drawing the screens on paper to build a low-fidelity pro-
totype it is possible to make them on a computer. The user can interact
with such a mockup of an application by using a display and input de-
vices like mouse and keyboard. These mockups can be implemented
interactively or by using the Wizard of Oz approach (see section 2.4).
In comparison to paper prototypes the visual component and the look-
and-feel are more important in computer based prototypes.

Studies have shown, that at early design stages the gathered infor-
mation using paper or computer based prototypes is quite similar [27]
and that people do not respond negatively to the incomplete and dirty
looking paper prototype [29]. So the criterias of choosing a prototyp-
ing technique can be for example time, because it is much faster to
build a paper prototype than a computer based or even interactive one
[19]. As discussed in by Liu et al. [19] a paper prototype does not
have to be suitable at later points in the design process. Concrete tech-
nical ideas and more complex interaction scenarios can require a more
complex type of prototype.

2.2 Prototyping in Hardware

When developing a new software application, it seems to be easy to
build an appropriate prototype. The development of new hardware de-
vices can be more complicated in this point of view because at some
point a working piece of technology has to be assembled. At the begin-
ning of the process a simple sketch of how the device should look like

Fig. 2. Paper prototype of a graphical user interface [29].

can be drawn [3] or a mockup using materials like paper or styrofoam
can be build [33]. Such mockups can be used for user studies.

To achieve real functionality, a working piece of hardware is
needed. But at this point building the finished device could be too
early. Conducting studies on the finished product is ineffective be-
cause it will be expensive to change aspects that caused problems.
What is needed is an easy to build hardware prototype. There are
toolkits that allow to do such a thing, hardware components that con-
sist of microprocessors, different kinds of sensors or input and output
interfaces. These components can be connected to one another and to
a computer (see figure 3). The developer does not have to worry about
the communication between these components, he can use a software
framework to program them and instruct them what to do. Hartman
et al. presented an example for such a toolkit [12]. Using hardware
toolkits is a way to build interactive hardware prototypes without de-
veloping new technology. It is a goal to make that process just as easy
as sketching in software [13].

Fig. 3. Hardware prototype build with a toolkit [3].

2.3 Video Prototypes
Traditional prototyping techniques have their limitations when some-
thing is actually build. It is possible that the resulting prototypes are
not portable or not really usable. Most of all they are incomplete and
they possibly do not show the actual idea of the project to someone
who is not directly involved, for example the customer. Prototypes are
designed to test specific functions or interfaces and thus do not have
the functionality of the final product. A good way to show someone

81

the idea and the vision behind a product and to present the planned
functions without implementing everything is to produce a video that
shows how the product will look like and the ways it can be used.
A video breaches both software and hardware limitations and so it is
possible to write a storyline where people interact with a device or an
application that does not exist yet. In that way plans and ideas can be
presented to an audience that possibly does not know anything about
the product.

Because of the possibilities offered by producing a video, there are
some important points that should be taken in mind, as discussed by
Bruce Tognazzini [30]. It is easy to build a mockup of a complex piece
of hardware that is very hard to produce in reality, so it should be as-
sured that the real product is not exaggerated. Of course in a film the
actors do exactly what the script says and so every interface looks easy
to use. A video does not free from actually designing and testing the
interface and thinking about the implementation of the shown interac-
tion techniques. Having a script also means that that the users in the
video should not operate the device without problems all the time. It
is important to create situations that feel real. By considering these
points it is possible to make a realistic and convincing video prototype
that carries the spirit of the ideas.

2.4 Wizard of Oz

Another approach in prototyping is to use humans to simulate com-
puters. These prototypes have to be looked at from different points of
view. The user’s point of view is a fully functional device or software
application that he can begin to use instantly. From the developer’s
point of view, the prototype is only a mockup which is operated by
people who react on the user’s interactions to maintain the illusion of
functionality. The user is not aware of what happens between his input
and the following reaction of the used device.

Most people behave differently when communicating with a human
or a machine. Because of this, Wizard of Oz studies can give insights
on how the users will interact with a new system. Other forms of pro-
totyping that are directly operated by a human like paper prototyping
cannot achieve this [14, 4]. The Wizard of Oz approach is suitable
for situations which require user input that is hard to interpret for a
computer and thus hard to implement, such as voice recognition [9],
complicated textual input or gestures [14]. In such situations a wizard
can be used at early design stages when a complex system is not yet
available. The wizard can monitor the users and adapt to them and
thus gain information about their behavior. In order to act like a ma-
chine, for example react quickly and avoid typing errors, simulation
environments that provide templates can be used.

Dahlbäck et al. [4] conducted a study that analyzed whether the
users are aware of the fact that they are actually communicating with
a human. It shows that in general the users do not notice the system is
simulated (assuming the prototyping setup has no design errors). This
leads to an ethical question because the study participants are deceived
about the true nature of their conversation partner. It should be avoided
to bring the users in embarrassing situations.

3 INTERACTIVE SURFACES

Displays have become bigger during the last decades. From classic
small computer displays they have evolved to huge flatscreens and
tabletop displays and even wall-sized screens. During this time, the
form of interaction has evolved, too. Beginning with touchscreens, the
idea leads to interactive surfaces, meaning huge displays with which
the users can interact directly. An interactive surface is not just a dis-
play anymore, it is not only an output device, the possibility of direct
touching makes it an input device at the same time [28].

Interactive tabletops are a very popular example for interactive sur-
faces. The idea is moving away from a single-user setup with every-
body having his own vertical display to a more collaborative scenario
(see figure 1). Sitting face to face at a table shall support this scenario.
In fact, researchers have the opinion that collaboration or multi-user
environments are one the advantages of interactive tabletops [1]. To
allow cooperative working the tabletops must support multi-touch or

multi-gesture input which occurs to be another advantage. Collabora-
tive applications can be for example games, photo browsing applica-
tions [26] or brainstorming sessions [1]. Classic single-user scenarios
such as text processing or web and email applications are not very
popular on tabletops yet due to the lack of efficient text input, vague
pointing and ergonomic issues when working alone at a large horizon-
tal display [1].

The new usage scenarios, interaction designs and of course the
appearance make interactive surfaces look different from the known
desktop computers. People often do not realize that the same technol-
ogy that is operated by common Windows or Unix based systems is
working underneath. They consider interactive tabletops to be some-
thing completely new and not only another form of input/output de-
vices for already used computers [26].

Fig. 4. A single user using a tabletop to work with traditional everyday
software [32].

3.1 Design Challenges
Building new interactive surfaces can lead to different problems that
have to be solved in the design process. There is little common knowl-
edge of interaction possibilities and user behavior when facing an in-
teractive surface. The technical realization has to be considered, too.

3.1.1 Technical Aspects
The first challenge is the question how to get the surface to become a
display. The different approaches like front or rear projection or us-
ing a flatscreen have different advantages and disadvantages. Hiding
a projector under a table means there is no room for feet left but pro-
jection from the top leads to occlusion. According to Ryall et al. [26]
this is not a great concern because the shadowed area is not larger than
the area hidden by the users hand anyway. Flatscreens can lead to res-
olution problems when users are located too close to it. A display on
a wall often simply does not allow back projection because there is
no room in the back. This means that a projector has to be installed
in front of the wall. Since interactive surfaces do not have to be flat
but also can have different curved forms, another problem occurs. It is
needed to create a seamless high resolution image on these surfaces.
Because a projector can only create a flat image, multiple projectors
whose projections overlap can be a solution. The equations to cal-
culate the correct transfer and projection parameters or the intensity
blending which is needed to achieve such a seamless projection are
introduced by Raskar et al. [24].

Desktop computers and even classical touchscreens allow only one
pointing device. So when realizing multi-touch or multi-gesture user
interfaces on interactive surfaces a new technical solution must be
found. The common solution here is to use optical systems to detect
objects that touch a screen or are located close to it. It is possible to

82

use infra-red sensible cameras or optical sensors that can be build into
an existing Flatscreen and thus making it multi-touch capable [15].
Recognizing multiple input points does not yet allow full multi-user
support. By only sensing touches it is not clear whether the system
is operated by one ore more users or which pointer belongs to who.
The Diamondtouch system [6] introduces a way to clearly distinguish
between different users. Electrical signals make it possible that each
user has its unique ID when interacting with the tabletop (see section
4.2).

People sitting around a tabletop display do not have equal access to
the displayed information. Text documents or images have an orienta-
tion that allows only the users sitting on the right side to see them in
a proper way. The other participants of a collaborative work have to
either look on the objects from a wrong direction or change their ori-
entation manually. This is not considered to be a problem with small
documents because humans are capable of recognizing text even in a
wrong orientation [26], still there are approaches to solve this prob-
lem technically [21, 16]. A setup of multiple projectors and mirrors
can give each user his unique view and thus rotating the objects on the
screen so that they are easily visible.

3.1.2 Interaction
Large interactive displays like tabletops or walls are not suitable for
the old interaction metaphor using mouse and keyboard. New interac-
tion techniques have to be developed to ensure these new devices can
be used effectively and properly. One possibility is the direct inter-
action with the surface using fingers or devices like pens to touch it.
Gesture or pressure based interaction can be realized this way. Tech-
niques that allow moving objects on a large screen or between different
devices have been compared by Nacenta et al. [22]. It is important to
differentiate between the possibilities that the target is within or out
of hands reach. A far target does not allow to simply move it with
a movement of the hand. In this case gestures can be used to direct
an object to a distant place. Another approach is to use a miniature
map of the whole environment to reach distant places without actually
moving there physically. It should be considered that a finger is not as
precise as a mouse cursor and that the interfaces have to be designed
in a way to support this fact [26]. Interaction with hands and fingers
can be supported by tangible devices that may have additional control
elements, for example buttons that invoke a menu [11].

Direct interaction is not possible in all situations, especially when
the used surfaces are large, for example an interactive wall. In these
situations remote pointing devices can be used. A laser pointer [5] for
example makes it possible that a user can interact with a wall-sized
display without standing directly in front of it and reach all areas, even
the distant ones.

3.1.3 User Behavior
Though an interactive surface and its user interface can be thought-out
in every detail, it is possible that the users will not accept it or have
no need for it. It can be useful to observe people using an interactive
surface in a real world scenario without clear instructions what to do
with it or how to operate it. There are two studies on that topic, one
conducted by Ryall et al. [26] focuses on multi-user support. The
other one, conducted by Widgor et al. [32] observes a single user (see
figure 4). These studies point out the problems when using everyday
software applications such as office systems, web browsers or email
clients. Inaccurate pointing input by using fingers and the lack of an
efficient way to type text are the main causes of this. It is interesting
that users begin to operate the tabletop systems with only one finger
although they are multi-touch capable. After being informed of this
fact, they begin to experiment with gestures. This may change in the
future because of the rising presence of multi-touch devices such as
the iPhone in everyday life. Having enough training, the users are
able to adapt and begin to use both hands to operate the systems more
efficiently. But not only multi-touch scenarios are difficult at the be-
ginning, multi-user approaches experience the same problems. People
hesitate touching the tabletop at the same time as others, being afraid
of accidentally interfering with the work of others or even touching

them. The problem of coming in contact with another person is even
more important when people in the group do not know each other. In
this situations it is even more difficult to conduct corporate tasks. A
well-rehearsed team can use the advantages of a multi-user environ-
ment much faster.

Another detail that has to be taken into consideration when design-
ing interactive tabletops is that they are actually used as tables. People
put cups and other objects on it and lean their arms on it while work-
ing. This can lead to problems when these touches are interpreted as
input. An insensitive area on the edges is needed or a technology that
can distinguish real touches and large objects just standing on the sur-
face. Hygienic issues are also important, because many people hesitate
to touch something others have touched before and thus do not want
to use their fingers and hands to interact with the surface.

3.2 Becoming Ergonomic

A developer who wants to design interactive surfaces that will be ac-
cepted by the users has to think about ergonomic aspects. Ergonom-
ically formed interfaces should be the most suitable for the users, so
that they like to work with them and, which is also very important, do
not suffer any physical problems when using them over a long period
of time. Part of the ergonomic thoughts is the size of the device and the
alignment of the user interface. The measures and the inclination of a
tabletop can determine whether all areas are comfortably reachable or
lie out of hands reach so the user has to stand up or move to interact
with them. Thoughts on a tabletops size and height have been made
in different studies [7, 26]. These variables can depend on the usage
scenario of the interactive surface. A single user may need a smaller
and angled desk to comfortably reach all edges, a group on the other
hand needs a larger table where the people have enough room to seat
and enough personal space on the display so they can work with it. A
table that is used for casual interaction such as games or photo brows-
ing can be at coffee-table height, a place where people actually work
for a longer period of time should have desk height. Depending on
the scenario decisions about these characteristics can be made early
by conducting a user study to find out what people are comfortable
with [33]. Not only the device itself has ergonomic aspects, the means
of control are an important part, too. For interactive surfaces that are
controlled by direct touch, the designers have to implement a set of
gestures. These gestures should not only be easy to learn and intuitive
but also ergonomic and thus not physically stressing. To achieve this
goal it is necessary to think about biomechanics and to find out which
hand or finger movements are easy to perform and which are difficult
[23].

Lightning characteristics are another part of the ergonomics [2]. To
easy recognize the content of a display, its brightness should not be
too high or too low. Contrast, sharpness and reflections on the surface
have to be considered, too. These variables do not only have an in-
stant effect (dark and blurred screens are hard to read), working with
poor adjusted devices can tire the eyes and even lead to permanent
sicknesses.

Ergonomic aspects should be considered and tested before actually
building or at least finishing an interactive surface. As a first step it
can be helpful to look into a compilation of ergonomic data [17] that
can contain information such as average human height, arm length or
eye height. Considering these values can give insight if an idea will
work or not.

4 USING PROTOTYPES

As seen in the last section, interactive surfaces are still a quite new
research area. There are no standard approaches that can be followed
and many things have to be developed from scratch. User needs have
to be identified and ergonomic aspects have to be taken in mind. This
means conducting user studies. The research projects have different
approaches and purposes and thus may require different kinds of pro-
totyping. Still in most cases building a prototype is necessary. Some
of these projects on interactive surfaces are presented in this chapter.

83

4.1 Size of a Digital Desk
Setting the dimensions of an interactive tabletop affects the ergonomic
aspects of the device. Ame Elliot and Marti Hast wanted to deter-
mine these dimension by comparing different devices in a user study
[7]. They used a desktop computer with mouse and keyboard input, a
tablet pc and a tabletop with a stylus. The participants had to fulfill a
sketching task and a sorting task with images. The used devices were
not self build, existing commercially available hardware with fixed di-
mension was used. The results suggest that for sketching tasks, tablet
or tabletop are preferred and for sorting the desktop computer is the
right choice. This study basically compared three different output de-
vices and two different input devices. Since the size of the desk was
fixed and only the angle was adjustable it is not possible to say what
size a tabletop should have or if the results would be different when
using a smaller or bigger version.

4.2 DiamondTouch
The DiamondTouch system [6] introduces a multi-touch and multi-
user capable technology for interactive surfaces. The touches are not
recognized through an optical system but an array of antennas build
into the surface. Each antenna emits a unique signal which is passed
through the body of the user who is touching it into a receiver in the
chair or in the floor. This way it is possible to determine what antenna
a user has touched and thus where on the screen he points and which
user has touched the antenna. The DiamondTouch is able to assign
each recognized touch point to a specific user. This enables new pos-
sibilities in collaborative work. Because the surface is insensitive to
pressure and optical effects and needs a closed circuit to recognize a
touch, objects can be put on it without affecting the interaction.

The authors of the DiamondTouch suggest that their technology can
be used in different sizes and resolutions. It was not part of their re-
search to determine which size and setup was the most suitable for
interactive surfaces, they only introduced a new technology that can
be used for different devices. Because of this they did not conduct a
user study, they only build a small hardware prototype (see figure 5a)
to proof that the technology is working.

Fig. 5. Prototype of the DiamondTouch technology (a) [6] and a sketch
of the Fantasy Table (b) [20].

4.3 Fantasy Table
The DiamondTouch technology has been used for different studies on
interactive surfaces [26, 32]. The Fantasy Table project [20] also re-
lies on this system. This project wants to analyze the possibility to use
interactive surfaces to support fantasy games of young children in the
age from three to four years, in order to introduce them in the world of
technology. The decision to use an interactive tabletop (see figure 5b)
and its dimensions were proceeded by not specified prototyping and
user studies. The final design was implemented using existing compo-
nents, the DiamondTouch as hardware and Adobe Flash as Software.
The first study revealed major interaction problems, most of them as
result of the software implementation (objects that should be moved
are too small) but also problems with the hardware itself. The children
tended to move while using the tabletop and so lost contact with the
receiver mat on the floor which terminated the interaction.

The software issues were solved by changing the game setup. The
objects became larger and the geometrical complexity of the displayed
environment was reduced. A second study using the new prototype
was more successful. The children actually began to play with the
game on the tabletop instead of just playing with the possible interac-
tion techniques.

4.4 cueTable
Another project dealing with interactive tabletops is the cueTable [10].
The goal is not to use new technology or to improve the interaction
possibilities but to research the use of such devices in collaborative
scenarios. The cueTable prototype was a self made multi-touch ca-
pable device. A pong like game with teams consisting of two people
that play against each other was used to study the users behavior in
cooperative and competitive situations. The measures of the prototype
were not derived from a preliminary user study because ergonomic is-
sues were not considered. When playing the game, some users held
their hands in exhausting positions or had problems with the interac-
tion techniques. Another problem was the delay between touch and
feedback due to technical latency of the system.

Fig. 6. Schematic setup of the Lumisight table [21].

4.5 Lumisight Table
As mentioned above, the orientation of documents and objects on a
tabletop surface might be a problem in collaborative work. These ef-
fects occur when multiple users are working with a single view from
different positions. The Lumisight table [16, 21] offers a possible so-
lution by offering more than one view. A different image is projected
to each side of the table with the objects on screen being rotated so
that every user can see the content from the correct perspective. The
systems works with multiple projectors and mirrors (see figure 6) and
a screen material that becomes transparent or opaque depending on the
viewing direction. The position of the objects is not altered, so collab-
orative interaction and discussion is still possible which would not be
the case if each view showed objects at another position instead just
rotating them.

Ergonomic aspects were not considered when building the proto-
type. The hardware does not allow to put feet under the table, the
dimensions were set without evaluation. The user study that was made
focused only on the question whether the developed system increases
the performance of the people who work with it, which was the goal
of the authors.

4.6 Curved Surfaces
There are currently multiple projects on combining horizontal and
vertical interactive surfaces. The Curve [33] and the BendDesk [31]
project both work on creating a device that blends both types of work

84

Fig. 7. Hardware setup of curved tabletop blending horizontal and verti-
cal surfaces [31].

spaces. Vertical and horizontal displays or surfaces are suitable for
distinct kinds of work and are not always interchangeable. Using both
kinds in different devices to combine the advantages has been prac-
ticed so far, the idea of the current projects is to create a seamless
interactive surface that has a horizontal and a vertical part. Basically
it is a tabletop that fades into wall through a small curve (see figure 7).
This construction allows it to use both parts of the device equally as it
is most adequate to the task and to position documents or objects on
the screen as needed. For example, the vertical part can be used as a
display like in classic desktop environments, the horizontal part as an
input possibility for drawing tasks.

Both projects are working on a hardware prototype and possible
software applications. The dimensions of the BendDesk has been de-
termined after conducting a not specified user study. The Curve project
began with paper prototyping. Different setups were created and eval-
uated resulting in the dimensions like height and angle of the vertical
part or width of the device and which are most suitable to the users
thus trying to reach the best ergonomic properties as possible.

5 DISCUSSION

In chapter 4 some projects on interactive surfaces covering differ-
ent approaches and having different goals were presented. All these
projects used the concepts of prototyping in some form to achieve their
goals and to validate their results. The technique that was used in all
cases is hardware prototyping that means that all projects had a func-
tional device in the end or are currently building it. It seems suitable
to build such a prototype at some point, if it is to determine whether
an idea is technically realizable or to conduct a user study to evalu-
ate the interaction techniques. There exist possibilities with different
coverage and complexity, you can build a prototype from scratch and
thus destine its appearance and dimensions or use existing technology
and extend it. The choose depends on the research goals, a novel in-
teractive surface will supposably have to rely on new and self build
hardware. A project that primarily researches interaction techniques
or forms of user cooperation can use an already working device and
just design the proper software.

It is noticeable that all regarded projects actually build working de-
vices, meaning hardware and software. No Wizard of Oz approaches
were used in the user studies. The cause may be that this technique
may work well for textual or speech input or generally input forms that
give the operator some time to react. Surfaces that are based on touch
and gesture interaction require an instant response on unpredictable
user movements which would be difficult to handle for a wizard, but
not impossible [14] (see section 2.4). It would be a problem in user
studies when the system would give false reactions on the users’ input.

They could recognize that it is operated by a human or think that it is
not working properly and thus not suitable for everyday use.

Just one of the projects [33] used paper prototyping or at least did
not mention it. Using this technique, the design and the measures
of a planned device could be tested and experimented with without
spending too much time developing in a wrong direction. Instead this
phase is skipped most of the time, the hardware prototype is build
directly with no further tests.

Like paper prototyping, ergonomic issues are mostly left out when
developing a new technology or an interactive surface. Of course they
do not have to be considered in projects that have different purposes
but should be when designing a new device or studying the behavior of
the users. Thinking about the dimensions or the form of a surface and
evaluating them leads to a more usable device and avoids problems
when testing the final hardware prototype. Just setting those variables
can mean that the final product will be too small or too large or have
areas that are not reachable for normal grown persons. Such mistakes
can cost time and money to fix them and can cause that the users sim-
ply do not like the product because it is exhausting to work with it.

After having discussed the common prototyping techniques and
projects on interactive surfaces, it can be said what workflow seems
recommendable. When trying to build an ergonomic interactive sur-
face it is important to check the ergonomic issues first, before building
the actual product. Paper prototyping seems the most suitable for this
task. A mockup (see figure 8) or different variations can be build with-
out much effort and then evaluated to find out the best design. The next
reasonable step then would be the technical realization and implemen-
tation of the needed software. This leads to a hardware prototype. This
can be used for new user studies that deal with interaction on the sur-
face. The results can be used for further research. Of course a concept
video for presentations can be made during the whole process.

Fig. 8. User study to determine the dimensions of the Curve using a
paper prototype [33].

6 FUTURE WORK

For future research it would be helpful to move the focus more on
ergonomic issues. They are a vital part when designing hardware and
interaction techniques that should be actually used by people in their
everyday life. An interactive surface that brings physical stress to its
users and is not applicable for a longer period of time has failed in HCI.
This situation should be brought to the researchers minds. Another
point is the effect of prototyping techniques on the development of
ergonomic interactive surfaces. The right choice of prototyping can
save time and money because errors can be detected earlier. A detailed
study on how the choice of prototypes affects the development and
success of the project would be helpful, this could result in a guideline
of the correct workflow when designing an ergonomic device.

85

7 CONCLUSION

There are different types of prototyping serving different purposes.
When looking at the development of interactive surfaces it is common
to build a hardware prototype at a final stage of the design process.
Other forms of prototyping like the Wizard of Oz approach are difficult
to adapt to the scenario of interactive surfaces. Paper prototyping is
rarely used but that does not mean they could not be useful. Especially
when taking in mind ergonomic aspects, building a simple mockup
can be useful to wipe out design errors. Ergonomics are mostly leaved
out of the design considerations, even if it would be important for the
project and could help to avoid mistakes.

REFERENCES

[1] H. Benko, M. R. Morris, A. B. Brush, and A. D. Wilson. Insights on
interactive tabletops: A survey of researchers and developers. Technical
report, Microsoft Research, Redmond, WA, USA, March 2009.

[2] U. Bräuninger and E. Grandjean. Lighting characteristics of visual dis-
play terminals from an ergonomic point of view. In CHI ’83: Proceed-
ings of the SIGCHI conference on Human Factors in Computing Systems,
pages 274–276, New York, NY, USA, 1983. ACM.

[3] A. Butz, M. H. Gross, and A. Krüger. Tuister: a tangible ui for hierarchi-
cal structures. In J. Vanderdonckt, N. J. Nunes, and C. Rich, editors, IUI,
pages 223–225. ACM, 2004.

[4] N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of oz studies: why
and how. In IUI ’93: Proceedings of the 1st international conference on
Intelligent user interfaces, pages 193–200, New York, NY, USA, 1993.
ACM.

[5] J. Davis and X. Chen. Lumipoint: Multi-user laser-based interaction on
large tiled displays. Displays, 23(5):205–211, 2002.

[6] P. Dietz and D. Leigh. Diamondtouch: a multi-user touch technology.
In UIST ’01: Proceedings of the 14th annual ACM symposium on User
interface software and technology, pages 219–226, New York, NY, USA,
2001. ACM.

[7] A. Elliott and M. A. Hearst. How large should a digital desk be?: qual-
itative results of a comparative study. In CHI ’00: CHI ’00 extended
abstracts on Human factors in computing systems, pages 165–166, New
York, NY, USA, 2000. ACM.

[8] C. Floyd. A systematic look at prototyping. In R. Budde, K. Kuhlenkamp,
L. Mathiassen, and H. Züllighoven, editors, Approaches to prototyping,
pages 1–18, Berlin, 1984. Proceedings of the Working Conference on
Prototyping, Springer.

[9] J. D. Gould, J. Conti, and T. Hovanyecz. Composing letters with a sim-
ulated listening typewriter. In Proceedings of the 1982 conference on
Human factors in computing systems, pages 367–370, New York, NY,
USA, 1982. ACM.

[10] T. Gross, M. Fetter, and S. Liebsch. The cuetable: cooperative and com-
petitive multi-touch interaction on a tabletop. In CHI ’08: CHI ’08 ex-
tended abstracts on Human factors in computing systems, pages 3465–
3470, New York, NY, USA, 2008. ACM.

[11] F. Guimbretière, M. Stone, and T. Winograd. Fluid interaction with high-
resolution wall-size displays. In UIST ’01: Proceedings of the 14th an-
nual ACM symposium on User interface software and technology, pages
21–30, New York, NY, USA, 2001. ACM.

[12] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B. Burr,
A. Robinson-Mosher, and J. Gee. Reflective physical prototyping through
integrated design, test, and analysis. In UIST ’06: Proceedings of the
19th annual ACM symposium on User interface software and technology,
pages 299–308, New York, NY, USA, 2006. ACM.

[13] L. E. Holmquist. Sketching in hardware. interactions, 13(1):47–60, 2006.
[14] J. Höysniemi, P. Hämäläinen, and L. Turkki. Wizard of oz prototyping of

computer vision based action games for children. In IDC ’04: Proceed-
ings of the 2004 conference on Interaction design and children, pages
27–34, New York, NY, USA, 2004. ACM.

[15] S. Izadi, S. Hodges, A. Butler, A. Rrustemi, and B. Buxton. Thinsight:
integrated optical multi-touch sensing through thin form-factor displays.
In EDT ’07: Proceedings of the 2007 workshop on Emerging displays
technologies, page 6, New York, NY, USA, 2007. ACM.

[16] Y. Kakehi, M. Iida, T. Naemura, Y. Shirai, M. Matsushita, and T. Ohguro.
Lumisight table: An interactive view-dependent tabletop display. IEEE
Computer Graphics and Applications, 25(1):48–53, 2005.

[17] W. Lange and A. Windel. Kleine ergonomische Datensammlung. TÜV
Media, 2009.

[18] Y.-K. Lim, E. Stolterman, and J. Tenenberg. The anatomy of prototypes:
Prototypes as filters, prototypes as manifestations of design ideas. ACM
Trans. Comput.-Hum. Interact., 15(2):1–27, 2008.

[19] L. Liu and P. Khooshabeh. Paper or interactive?: a study of prototyping
techniques for ubiquitous computing environments. In CHI ’03: CHI ’03
extended abstracts on Human factors in computing systems, pages 1030–
1031, New York, NY, USA, 2003. ACM.

[20] E. I. Mansor, A. De Angeli, and O. de Bruijn. The fantasy table. In
IDC ’09: Proceedings of the 8th International Conference on Interaction
Design and Children, pages 70–79, New York, NY, USA, 2009. ACM.

[21] M. Matsushita, M. Iida, T. Ohguro, Y. Shirai, Y. Kakehi, and T. Nae-
mura. Lumisight table: a face-to-face collaboration support system that
optimizes direction of projected information to each stakeholder. In J. D.
Herbsleb and G. M. Olson, editors, CSCW, pages 274–283. ACM, 2004.

[22] M. A. Nacenta, D. Aliakseyeu, S. Subramanian, and C. Gutwin. A com-
parison of techniques for multi-display reaching. In CHI ’05: Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
pages 371–380, New York, NY, USA, 2005. ACM.

[23] M. Nielsen, M. Strring, T. B. Moeslund, and E. Granum. A procedure for
developing intuitive and ergonomic gesture interfaces for hci. In A. Ca-
murri and G. Volpe, editors, Gesture Workshop, volume 2915 of Lecture
Notes in Computer Science, pages 409–420. Springer, 2003.

[24] T. W. Ramesh Raskar, Jeroen van Baar. Quadric transfer for immersive
curved display. Technical Report 2004-034, Mitsubishi Electric Research
Laboratories, Cambridge, MA, USA, January 2004.

[25] M. Rettig. Prototyping for tiny fingers. Commun. ACM, 37(4):21–27,
1994.

[26] K. Ryall, C. Forlines, C. Shen, M. R. Morris, and K. Everitt. Experiences
with and observations of direct-touch tabletops. Horizontal Interactive
Human-Computer Systems, International Workshop on, 0:89–96, 2006.

[27] R. Sefelin, M. Tscheligi, and V. Giller. Paper prototyping - what is it
good for?: a comparison of paper- and computer-based low-fidelity pro-
totyping. In CHI ’03: CHI ’03 extended abstracts on Human factors in
computing systems, pages 778–779, New York, NY, USA, 2003. ACM.

[28] C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt,
M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse. Informing
the design of direct-touch tabletops. IEEE Computer Graphics and Ap-
plications, 26(5):36–46, 2006.

[29] C. Snyder. Paper prototyping. http://www.cim.mcgill.
ca/˜jer/courses/hci/ref/snyder.pdf, 2003. visited
19.11.2009.

[30] B. Tognazzini. The “starfire” video prototype project: a case history. In
CHI ’94: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 99–105, New York, NY, USA, 1994. ACM.

[31] M. Weiss, S. Voelker, and J. Borchers. Benddesk: Seamless integration
of horizontal and vertical multi-touch surfaces in desk environments. In
Extended Abstracts of Tabletop ’09, 2009.

[32] D. Wigdor, G. Penn, K. Ryall, A. Esenther, and C. Shen. Living with a
tabletop: Analysis and observations of long term office use of a multi-
touch table. In Tabletop, pages 60–67. IEEE Computer Society, 2007.

[33] R. Wimmer, F. Schulz, F. Hennecke, S. Boring, and H. Hußmann. Curve:
Blending horizontal and vertical interactive surfaces. In Adjunct Pro-
ceedings of the 4th IEEE Workshop on Tabletops and Interactive Surfaces
(IEEE Tabletop 2009), Nov. 2009.

86

Prototyping in Physical Computing - Sketching in Hardware

Robert Kowalski

Abstract— Sketching in hardware provides an opportunity to quickly and repeatedly present and evaluate product ideas during their
development. Within this field, hardware prototyping toolkits provide a flexible and feasible approach to quickly develop a rough
”hands-on” experience for potential users or customers and collect their feedback. This paper addresses this way of prototyping in
the following way: First of all, the broad field of potential toolkit users will be structured into four unique user profiles, which represent
different expectations and knowledge levels. These profiles are based upon a toolkit advisor framework, which will be introduced
in this paper. Nevertheless, since there are more criterions, besides the two the framework is based on, the second part will cover
further aspects on how to differentiate the current available toolkits. With these basics in mind, the following paragraph will discuss
a selection of toolkits, ranging from scientific ones, which are not publicly available, to versions, targeting for style and exclusivity.
This is followed by two more ”exotic” examples, which focus on paper computing and mobile prototyping. With this foundation of user
profiles, criterions and examples, a discussion will evaluate the question which toolkit is suitable for whom.

Index Terms—Prototyping, sketching, hardware, tangible, interaction, toolkit, mock-up

1 INTRODUCTION

Prototyping, physical computing and sketching in hardware are the
three major terms in this topic. For a better understanding, a short
introduction into these concepts will be given and as an example for
their practical relevance, the connection towards commercial product
development will be provided.

According to Porter’s value chain [25], product development is very
important and should be a company’s core competence. Besides many
research and engineering tasks, prototyping is a driving factor within
this process, which describes the creation of product prototypes.

Prototype derives from the Greek words ”protos”, meaning ”first”
and ”typos” for ”impression”1, which already reveals the basic mean-
ing: Giving a potential user or customer a first impression of a possi-
ble tool or product and offer a possibility for the designers to test their
design hypotheses [5]. Besides visualization, prototypes enable com-
panies to continuously evaluate the results during development, which
may prevent them from ”throwing a product over the wall”, resulting
in unusable products, for example. Therefore, prototyping is an it-
erative process, allowing the designers to repeatedly improve quality
over time [24]. During these iterations, the ”product” evolves from
rough low-fidelity mock-ups to detailed high-fidelity solutions, which
are very close to the final result. As already implied, low-fidelity pro-
totypes stand for early ideas and try outs in order to find a customer-
focused approach. Since these early sketches are fast and easy to pro-
duce, many iterations towards the right solutions can be done in short
time. As soon as the features and the interaction design are fixed,
high-fidelity prototyping comes into play. In contrast, this is not about
fundamental features or ideas, but it addresses details like the visual
design of buttons for example.

On first sight, physical computing may not be directly linked with
prototyping. However, it becomes essential the minute it is not about
software products anymore, but physical or hardware products that can
actually be touched and are able to read and compute data from the
”physical world”. An exemplary cycle would be the data input via
sensors, followed by the analysis of the collected information, possi-
ble resulting in an output or feedback through actuators. Sensors may
include pressure-, magnetic-, photo- or tilt sensors, which gather spe-
cific data or are able to recognize certain situations. If such a situation

• Robert Kowalski is studying Media Informatics and Technology
Management at the University of Munich and the Technical University of
Munich, Germany, E-mail: robert.kowalski@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/2010

1Online Etymology Dictionary - http://www.etymonline.com

is triggered, a microcontroller takes over, processes the signal and for-
wards another signal to an output device, like a Liquid Crystal Display
or servomotor [12]. Taking this into account, it is obvious, that new
ways of prototyping are needed in this domain, in order to be able to
quickly draft a system, that specifically reacts to certain factors in the
environment by combining sensors, one or more microprocessors and
output devices.

This process is called ”Sketching in Hardware”. In general, this ba-
sically describes the activity of creating running hardware prototypes,
to be able to actually show it to customers or users for evaluation.
Therefore, sketching ”is an essential part of any design process” and
whereas for example a graphic designer sketches on paper, a designer
of an interactive prototype does not only focus on the static look, but
on the ”dynamic properties”, like the ”essence of a proposed system”
[14].

Taking this into account, physical computing is a powerful tool for
the designer to convey an idea. Yet, this is also the crux of sketching
in hardware. Since average designers tend to be not much experienced
with electrical engineering and software programming, new tools are
needed to lower the entry barrier for designers. Fortunately, proto-
typing toolkits are available, which not only provide easy access, but
furthermore heavily support the iterative process by providing reusable
parts and microprocessors, making prototyping much cheaper and less
time consuming, as well.

As you might imagine, there are countless toolkits in development
and use. In order to provide a common entry point to this topic, this
paper will start with two short motivational examples, to show off the
power of toolkits. After that, the different types of users will be iden-
tified, which is a first approach towards toolkit classification. Since
there still remain a large number of prototyping platforms, criterions
will be introduced, that allow further subdivision. Having these basics
in mind, this paper will address current toolkits, as well as examples
from the upcoming fields of paper- as well as mobile prototyping. Fi-
nally, a discussion will determine, which toolkit is suitable for whom.

2 MOTIVATIONAL EXAMPLES

Before the introduction of the user profile framework and the enumer-
ation of exemplary toolkits, two projects will be provided, in order to
show the strengths and possibilities of hardware prototyping toolkits.

The first example has been taken from a sketching with hardware
block course at the University of Munich and puts the word ”rapid”
into rapid prototyping. In other words, this example demonstrates,
that it is possible to quickly deliver excellent prototypes. The result of
two days work by two electrical inexperienced students can be seen in
figure 1a. The concept was to have illuminated cubes, which change
their color according to the cube’s side, which faces up. Besides the
recognition of orientation, the cubes were also able to detect if another

87

cube has been stacked upon, put below or has been pushed side by
side. In all these cases, the cubes not only changed their colors, but
even took on the same ones.

The construction of a laser harp2, represents the impressive possi-
bilities prototyping toolkits offer. A laser harp, as seen in figure 1b,
can be best described as a regular harp, which has laser beams instead
of strings. When a beam is interrupted, a MIDI event is generated and
send to a synthesizer, which creates sounds depending on the MIDI
event’s properties3.

These were just two prototyping examples, but they already provide
a glimpse at the hardware prototyping toolkits’ potentials.

Fig. 1. a) Prototype of the ”What Do I Want Cube” b) a laser harp
by Stephen Hobley; Sources: own photo, photo from http://www.
stephenhobley.com/build/

3 USER PROFILES

When approaching the topic for the first time an average user faces
two problems: Firstly, the sheer amount of available toolkits and the
lack of information how ”powerful” they are. This addresses a typical
problem to find a fitting toolkit, which delivers all required functions
to ”get the job done”. The second problem deals with the height of
the entry barrier, respectively novelty and confirmation according to
Weizsäcker [29]. If it is too high, the toolkit might be suited best for
the task, but unless the user is not able to work with it, the project
will fail anyway. In order to solve these two problems of information
overload and lack of information, a framework, inspired by the Boston
Consulting Group Portfolio Matrix [28] and the 2D mapping of var-
ious toolkits by Camille Moussette [22], has been developed. The
goal of this framework is, to enable users to quickly determine which
toolkit is suitable for them, depending on their level of knowledge and
the desired complexity.

Fig. 2. Toolkit advisor framework; Source: own illustration

2http://hacknmod.com/hack/create-techno-with-a-laser-harp/
3http://www.youtube.com/watch?v=sLVXmsbVwUs

This toolkit advisor, displayed in figure 2, is based on a two di-
mensional graph, whose y-axis corresponds to the amount of avail-
able toolkit components, which is directly linked to the toolkit’s
mightiness. Additionally, the graph’s x-axis reflects the beginner-
friendliness. The definitions of these two criterions will be provided
within the according subsections below. By subdividing the graph into
four categories, a two by two matrix is created, which holds the differ-
ent user profiles: Apprentice, Explorer, Master and DIY-Guy, which
will be described below.

3.1 Apprentice
The Apprentice is a newcomer in prototyping and hardware sketching,
but is eager to learn. This person has little or no knowledge, when
it comes to electrical engineering, soldering or programming and is
looking for an easy introduction into the topic. Preferably, these early
steps should deal with electronics as little as possible and program-
ming is done via visual programming or in high level languages.

3.2 Explorer
After gaining some experience, the Apprentice reaches the limits of
the beginner toolkits. The major limiting factor is the lack of addi-
tional components for more complex projects. These would require the
adoption of other toolkits, which facilitate the use of a broader range
of input and output modules. By doing so, the Apprentice becomes an
Explorer and now works with toolkits, which are more versatile, but
remain to be beginner-friendly. Nevertheless, visual programming is
substituted by high level languages.

3.3 Master
As soon as the user got acquainted with complex toolkits and high
level programming, she or he becomes a Master. As a result, low-level
programming languages are no limiting factors concerning toolkit se-
lection anymore. Furthermore, the user is no longer dependent on pre-
assembled parts, like boards with soldered microcontrollers.

3.4 ”DIY-Guy”
The Do-It-Yourself Guy represents the approach of an almost com-
plete abandonment of pre-assembled parts. From the board’s circuitry,
over the microcontroller programming via assembler, to even the con-
struction of own sensors, this user does nearly everything by himself.
However, this profile is not very common within commercial hardware
sketching, since the process of iterative prototyping should be as fast
and cheap as possible.

4 CRITERIONS FOR DIFFERENTIATION AND FILTERING

Alongside the two criterions amount of available toolkit components
and beginner-friendliness, additional differentiation factors are possi-
ble and might be even necessary, in order to further break down the
amount of toolkits in consideration. Therefore, the following criteri-
ons pose as an extension to the advisor framework, which can be put
in use in order to further filter the toolkits within a user profile. More-
over, these factors have been selected, because they represent limiting
project properties. For example, within the user profile ”Explorer”,
there are a certain number of toolkits for selection. If there are no
project team members, who are capable of programming C, it would
be advisable to filter out these toolkits, which rely on that language
and choose from the remaining sketching platforms. In order to inte-
grate further criterions into the matrix, it is possible to alter the radius
of the circle, which represents the toolkit. For example, the mightier a
toolkit is, the ”thicker” becomes the circle.

4.1 Available Components
This factor is an important one, since it is used in the advisor frame-
work. This is due to the fact, that the amount of available components
is not only directly linked to the mightiness of the toolkit, but also to
the possible complexity.

Considering the components, they can be subdivided into three cat-
egories: Input, output and data processing/computing modules. In-
put modules typically are all kind of physical sensors like pressure,

88

tilt, light, etc. In contrast, actuators, displays or LEDs are often used
for output. When it comes to the computing modules, there are also
a wide variety of different microcontrollers, differing in architecture,
speed and price for example.

A further important issue, which greatly contributes to the amount
of available components, is the question if any modules from elec-
tronic stores can be used or just specific ones that are bundled with the
toolkit. Therefore, this should be considered as well, when the factor’s
value is determined on the axis .

4.2 Mightiness

As mentioned above, the toolkit’s mightiness is a criterion, resulting
directly from the amount of available components. This is due to the
fact, that with the amount of available modules, also the number of
unique module combination rises, which ultimately leads to an in-
creasing number of possible task solutions. The more solutions there
are, the mightier the toolkit becomes.

4.3 Beginner-friendly

This criteria is used in the framework as well, since this is an impor-
tant issue for the target group of designers, for example. Basically it
takes into account how much previous knowledge is needed, in order
to work productively with a toolkit. The driving sub factors are pro-
gramming and electrical engineering skills. Concerning programming
skills, the scale is based on the language’s suitability for beginners
as well as its popularity. Popularity has been taken into account, be-
cause it is an indicator on how much support a beginner can find in
the many software developer communities on the web. In order to
”measure” the popularity, the Tiobe Programming Index4 has been se-
lected, since its rating mirrors this aspect. On the hardware side, this
factor takes into account, how easy it is to assemble the modules. Less
beginner-friendly toolkits for example, would urge the user towards
soldering works, instead of giving him the possibility to just stick the
components together via magnets or into a breadboard.

4.4 Location of power supply

The location of power supply is by far no trivial question in later stages
of the prototyping process. The two common options are either the
”onboard” integration or the external supply via an USB port. The
important thing to keep in mind is the concept of the future product.
If it should be a wireless or freely movable object, then a wired ap-
proach might not be the best idea, considering the design in general or
the quality of the user feedback from the studies. Furthermore, if the
power supply should be integrated, then the size of the battery must be
taken into account as well.

4.5 Location of processing power

This criterion is very similar to the above one. But instead of power
supply, this is about the location of the processing power, meaning the
microcontroller. The two location options remain the same as well,
including the implicit problems that might occur when using it: On the
one hand there is the onboard version and on the other hand there is
the possibility that the processing power is provided by an additional
computer. But there is a third option, which might come up in the
following years and is closely connected with the current trend towards
cloud computing. In this case, the data processing would be done on
servers inside the internet.

4.6 Programming language support

As mentioned within the introduction of this section, the programming
language should not be disregarded. Moreover, the programming lan-
guage supported by the toolkit plays an important role as well. Nat-
urally, this criterion is closely linked to the beginner-friendliness and
therefore more focuses on the languages themselves. Consequently,
this is a simple, but easy to apply filter.

4http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

4.7 Platform-independency
The importance of this criterion rises with the growing popularity of
Windows platform alternatives, like Mac OS X or Linux. The cliché
is, that ”creative people”, like designers, often work on Macs, whereas
highly technical oriented people rather work on Linux. Although this
is no reliable data, there is undoubtedly some truth in it, which makes
the platform-independency an important criteria for the users and es-
pecially teams, who work on heterogeneous systems.

5 EXAMPLES OF COMMON TOOLKITS

The following paragraph will examine some examples of toolkits,
which are currently in use. Since there are countless platforms avail-
able, this paper focuses on giving examples for each of the different
user profiles of the advisor framework. For every toolkit, general in-
formation on the development and on the functionality will be given.
Furthermore, the above introduced differentiation criterions will be
covered as well.

Fig. 3. a) I-CubeX toolkit b) Lego Mindstorm NXT 2.0; Sources: [1], [21]

5.1 Lego Mindstorm
In a nutshell, Lego Mindstorm is the extension of the Lego bricks ex-
perience towards physical computing. In particular, it is the continous
use of the bricks, which makes this toolkit special for everyone, who
ever played with Lego.

The current Version NXT 2.0 of Lego Mindstorm has been released
in August 2009 and can be seen in figure 3b. Like the previous ver-
sions, NXT and the Robotics Invention System (RIS) are based on
a robotic kit, which has been developed by the MIT. Here, the well
known Lego blocks serve as a basic structure, on which the several
modules get attached to. These input and output devices are wired
to the NXT, a central programmable unit, which is equipped with an
ARM 32bit microcontroller.

This toolkit offers several components, that can be used with it.
It includes color, touch, light, sound, ultrasonic, compass and an ac-
celerometer sensor for input. For output purposes the user has the
choice between several servo motors and furthermore the NXT itself
has a speaker and a display. Therefore the amount of available com-
ponents is limited and consequently the mightiness is not high.

In order to program the NXT, the visual programming language
LabVIEW from National Instruments has been integrated into the soft-
ware development kit ROBOLAB from Lego, which can be used on
a PC or Mac. After the program is finished, it can be uploaded via
USB or Bluetooth onto the central unit. This combination of a visual
programming approach and the usage of the well-known Lego bricks
and design for the modules, leads to a high beginner-friendliness.

As already mentioned, the processing power is situated inside the
NXT unit as well as the power supply. Another option is the use of a
rechargeable battery pack.

When it comes to programming languages, the Mindstorm toolkit
is highly supported from third-party languages. From Visual Basic to

89

C and C++ over Java and Python, there are many languages, that have
been taken as a basis for the development of own NXT programming
languages, like brickOS5,Ch6, Lego.NET7, leJOS8 or NXT-Python9.

A further advantage of this support is, that through the many differ-
ent languages all users of the computer platforms like Windows, Mac
OS X or Linux can prototype with this toolkit [4], [15].

5.2 I-CubeX
In contrast to the other toolkits, I-CubeX has been designed to be a
selling product for interactive/artistic installations. Impressive as well
as interesting examples can be seen on the toolkit’s website [1].

I-CubeX (see figure 3a), is based on the I-Cube System from Axel
Mulder. The target was to develop a data acquisition and processing
system for artists to design and create interactive art. Like I-CubeX,
this system is based on the MIDI protocol, which is used for the com-
munication between the microcontroller, which is described as ”digi-
tizer” within I-CubeX, and a computer or any MIDI device [23].

Equal to all other toolkit’s, sensors are used as input devices, but in
contrast to them, the data collection is focused on all kind of move-
ments of humans, animals or objects, as well as environmental param-
eters, like temperature or humidity. Even biological data, like heart-
beats or the galvanic skin resistance can be measured. Therefore, the
amount of available components might be limited to two domains, but
due to the diversity of existing measurable data, the mightiness should
not be underestimated.

The setup of the toolkit is not as simple as with Lego Mindstorms.
Instead of plugging bricks on top of each other, some wiring is needed,
when sensors have to be connected to the digitizer. These can be con-
nected to either MIDI event receiving devices or to a Windows, Mac
OS X or Linux system for programming via USB, Bluetooth or MIDI.
Supported languages include C and C++, but also Max, an interac-
tive graphical programming environment for music, audio, and media,
since it is closely linked with the toolkit’s target group.

The power supply is similar to the Mindstorm toolkit, too. Either
the digitizer is plugged directly into the power socket, or it is addition-
ally equipped with a battery pack. But in contrast to Lego, I-CubeX
has no built-in battery tray.

As being the central device, the digitizer alone is responsible for
the data processing and the conversion of the signal from the sensor
to MIDI events. Therefore, it is able to accept analog and/or digital
signals at any of the maximum 32 inputs and, due to its programming,
create an according event, which is sent to a MIDI device, that executes
it. Finally, in order to transfer the program from the computer to the
digitizer, the above mentioned transfer methods can be used.

Last but not least, it is important to mention, that the I-CubeX is
not specifically targeted for prototyping, although it would be suit-
able, but is more a selling product. Instead, the toolkit is a bit out of
the ordinary, since all components are very well designed and have a
high quality claim. Furthermore, the modules are easy to integrate and
almost configuration-free. However, this comes with a high price. The
basic system costs about 330 USD and sensors are between 40 USD
and 560(!) USD. Taking everything into account, this is by far the
most expensive toolkit, which is covered in this paper [22], [1].

5.3 littleBits
littleBits encourages trial and error, by delivering a playful approach:
Little pieces of electronics, which can easily be snapped together.

The littleBits represent a prototyping platform, which literally come
near the term plug and play. The basic idea is to have many small and
stand-alone entities, which consist of a tiny circuit board in combina-
tion with discrete electronic components. These could be a button, a
knob, a LED or any kind of sensor and since every entity just inher-
its one function at a time, this toolkit can be described as a modular

5http://brickos.sourceforge.net/
6http://www.softintegration.com/docs/ch/
7http://www.dcl.hpi.uni-potsdam.de/research/lego.NET/
8http://lejos.sourceforge.net/
9http://code.google.com/p/nxt-python/

Fig. 4. a) littleBits toolkit example b) Calder Toolkit controller example;
Sources: [3], [17]

block system. In order to combine several Bits with each other, Ayah
Bdeir and her team designed an easy snap together mechanism, which
is based on magnets. A simple example can be seen in figure 4a. When
taking up the cause of moving electronics ”from the hands of experts,
to those of artists, makers and designers” an essential success factor is
to push the platform, in order to reach a critical mass of users as well
as module developers, which mutually enforce each other. In order to
benefit from such a network effect [18] it has been a smart move to
make littleBits an open source library.

Nevertheless, since the starter kit has just been released in May
2009, there are unfortunately not many components available, yet.
And due to the fact, that there are not many components, besides
LEDs, a power supply and a few switches like toggle switches, or slid-
ers available, there are currently not many combination possibilities,
which in return limits the mightiness. Furthermore, since all modules
are pre-produced and configured, there is no way for the user to alter
or to change a module, which is a limiting factor as well.

A fitting example for the high beginner-friendliness is the use of
magnets for connecting the Bits: On each edge of a module there is
a magnet serving either as power or ground connector, making it easy
to stick them together. But additionally the polarity of the magnet is
used to enforce the polarity of the connector, making it impossible to
connect the modules in a wrong way. The performed user study [8]
also underlines this, as participants, who did not have anything to do
with electronics or even feared to use them, were really excited about
the toolkit.

The power supply is granted through a battery, which can be as
easily plugged towards another module, as the littleBits among each
other. According to the project’s website, there is also a USB connec-
tion available, that enables empowering the toolkit.

The location of the processing power cannot be answered easily,
since there is actually no microcontroller. All modules just have one
function, which is hardwired and cannot be altered. As a result, no
complex input or output operations and algorithms can be applied, but
it is possible to control the current flow, thus making it possible to dim
an LED via a transistor for example.

Supported programming languages as well as platform-
independency need no further discussion, because the criterions
do not apply to this toolkit. However, this is done intentionally, due
to the high beginner-friendly and inspirational claim to work with
electronics [8], [3].

5.4 Calder Toolkit

Most toolkits normally focus on the technical design, by delivering
a hardware platform. The special thing about the Calder Toolkit is a
freely formable foam, into which all components are stuck. This foam
also makes it possible to further integrate the esthetic design aspect
into prototyping.

90

The Calder system has been designed at the HCI and School of
Design Institute at the Carneige Mellon University. It was specifically
developed for product designers, in order to provide them with the
capabilities to explore ”form and interactivity of product designs”[17]
and the ability to iteratively work and evaluate high fidelity prototypes.
This toolkit includes a set of input and output modules, which can
be reused, a foam infrastructure to connect these wired or wireless
components and integration into existing interface prototyping tools.

Considering the available components, it has to be pointed out that
the amount is fairly limited. In total, there are just eleven modules,
five wireless ones and six, which are attached to wires. In general, the
modules are equipped with a microcontroller, which serves as a link
to a ”global master” (a computer which provides power supply and
processing power) and furthermore manages the component’s I/O de-
vice(s). The wired modules implement a general-purpose input ”hub”,
which has four digital and four analog connections for receiving the
corresponding signals. To keep the system simple, these two connector
types are incompatible, making it impossible to misconnected devices.
Moreover, the toolkit supports ”hot plugging”, which enables the user
to exchange devices during the runtime. For the wireless modules an
uplink transceiver is responsible for the communication between the
computer and further wireless modules in the vicinity.

On the first sight, due to the limited collection of components, the
mightiness could be considered low. Nevertheless, the Calder Toolkit
offers an interesting basis for the components: foam. This foam makes
it possible for the designer to quickly shape the desired look or make
adjustments to it. Moreover, modules are simply pushed into the foam,
making it easy to arrange them as well. Consequently, it is not time-
consuming to build and evaluate a game controller, like the one in
figure 4b.

A few points have already been mentioned, which make this toolkit
beginner-friendly: hot-plugging, uni-fitting connectors and modules to
stick on freely formable foam. But, additionally the programming in-
frastructure is easy accessible as well. Via an interactive GUI system it
is possible to implement Calder components into a GUI environment,
fulfilling the claim the be integrateable into existing systems.

The location of power supply depends on the module in use. A
wireless one has its own battery, whereas a wired component receives
power via an USB connection. In contrast, the processing power is not
provided by the PC, but from the onboard microcontrollers.

The current programming language support is focused on software,
that designers use for their visual prototyping, like Macromedia Direc-
tor10. But, as announced by the inventors, the programming languages
C/C++, Java and Visual Basic are likely to be supported soon. There-
fore, the toolkit can currently only be used on Mac OS X and Windows
computers, since Director is running on these platforms. [17].

Fig. 5. a) A serial Arduino board b) Gainer toolkit and components;
Sources: [10], Shigeru Kobayashi [2]

10which is now called Adobe Director

5.5 Arduino
The Arduino board is one of the most successful ones. This may be
due to the fact, that it is very cheap in comparison to the other toolk-
its. At the same time, it offers many additional possibilities with the
concept of ”shields” as extensions.

Arduino has been developed in collaboration between the Interac-
tion Design Institute Ivrea and the Tisch School of the Arts at New
York University, in order to enable designers to express their desired
intentions towards engineers for future development. Since it is not
likely, that ”artists” turn into ”techies”, or vice versa, a intermediary
has to impart between the parties. Arduino, as a prototyping toolkit
has been designed to be that link and thereby to enforce and improve
the exchange.

One big advantage of Arduino is the quasi unlimited amount of
available components, since the board is designed to work with stan-
dard electronic ones. Hence, the users can use any sensors or actua-
tors, regardless if they are new or unusual, without having to wait for
Arduino fitting versions. Furthermore, ”shields” represent extensions
to the classic board, which provide extra functionality. RFID read-
ers, Organic light-emitting diode touch displays, Ethernet connectors,
Bluetooth interfaces or GPS are just a few examples for modules, that
can get just snapped on Arduino and instantly multiply the possibilities
and at the same time the mightiness.

Concerning the beginner-friendliness and electronics, Arduino fol-
lows an educational approach, by simplifying to the point where users
can deal with the topic directly and by themselves. Another major fac-
tor is the vast community. On a daily basis, new Arduino projects are
presented, shared and discussed by the users and moreover, the count-
less forums provide an excellent platform for beginners to receive help
and inspiration.

As with most of the described toolkits in this paper, internal power
supply can be achieved by a battery pack. But in contrast, its inte-
gration is easier, since the shield extensions allow an easy snap-on.
Additionally, power may also be induced via the build-in USB port.

Each Arduino board (figure 5a) contains a microcontroller, leaving
the processing power primarily onboard. Considering the approach
from the Calder toolkit, where every input or output component inte-
grated an own small microcontroller, Arduino mirrors a centralized
processing approach in comparison to the decentralized one of the
Calder modules. However, this is not the only possibility to process
data, since Arduino is able to communicate via its serial (USB) port
with running programs on computers, using their resources or trigger
actions within them.

The Arduino language is based on C/C++ and just includes the ”im-
perative basics”. The GUI itself is based on the Processing develop-
ment environment11, thus making the SDK easy to use. This SDK has
been written in Java and runs under Windows, Mac OS X and Linux,
making it platform-independent and able to attract a significant num-
ber of developers and persons who want to become one [10].

5.6 Gainer
Gainer stands out by tackling the problem of limited space on a bread-
board, by providing so called bridge modules. Complex circuits can
be integrated into these modules and therefore save space on a bread-
board.

This toolkit is an environment for both education and actual instal-
lations. The key concept is, that the user starts with bare components
and a breadboard and then builds her or his own I/O module, by sol-
dering the required components. Thereby, the user shall acquire the
basics of working with electronics. This ”puzzle approach” provides
several advantages like easy exchange of single broken components or
a very high degree of individualization towards the selection of com-
ponents. To further support this ”handicraft work” the Gainer hard-
and software is open source, allowing more advanced users to modify
existing hardware to create a new one for their individual project.

The amount of available components is as limitless as with Arduino,
since both toolkits follow a similar doctrine. However, the Gainer

11http://processing.org/
91

toolkit (figure 5b) offers one additional feature, which can become
very handy, due to the limit space on a breadboard: The bridge mod-
ules. These are intended to be combined with the ports of an I/O mod-
ule, in order to expand the capability of the ports. This is necessary,
because as soon as more complicated circuits are needed, the space
on a breadboard decreases rapidly. Such circuits are integrated into
that bridge component, leaving consequently more space and, depend-
ing on the bridge, may provide further values as well. Taking this
into account, the Gainer toolkit can be considered even mightier than
Arduino, but this clearly shifts the customer focus towards more expe-
rienced ones as well.

As a result of this customer focus shift, the beginner-friendliness
is reduced, but only on the hardware side. Considering the software
however, the user can handle the modules with both graphical as well
as code-based programming languages. Support can also be gained
from the community, but unfortunately it is mainly active in Japan and
Japanese forums, leaving non-speakers out.

Power can be supplied via the USB connection, as well as exter-
nal power adapters. Interestingly, no battery packs specifically for the
Gainer toolkit are currently offered. This is not a big downside, when
considering, that this platform follows the same approaches like Ar-
duino and battery packs are easily exchangeable.

The processing power as well follows the Arduino example. But,
due to the possibilities bridge components offer, an increase in pro-
cessing power is theoretically thinkable. One example would be the
pre-processing of input data from several sensors at the bridges and
then forwarding the results to the central microcontroller, which would
only have to process filtered data, for example.

As mentioned above, visual as well as code-based programming
languages are supported, which greatly increases usability. On the side
of graphical program development Max/MSP is supported by Gainer,
providing a good entry point for designers and the code-based side is
covered by the Processing environment, which is based on Java. But
in between these two extremes a further language can be used for pro-
gramming purposes: Flash. With these three alternatives, Windows,
Max OS X and Linux can be used as a development platform [19].

5.7 ”Custom solutions (Barebone)”

The custom solutions fall into the category ”Do-it-yourself” (DIY)
and become increasingly popular online. Dozens of communities like
Makezine12 or Making Things13 can be found, where people show
and tell, how they tinkered, hacked, reused and (re)assembled com-
ponents and materials in fun, creative, unexpected or just more effi-
cient ways. Since DIY is strongly connected with individualism and
creativity, there might be users who are not satisfied with the offered
prototyping toolkits and consequently turn to custom solutions.

Microcontrollers are as well available in so called ”barebone config-
urations”. Here, the designer has just the chip and has to do everything
by himself, which of course is more work, but leaves him with the lib-
erty to do everything like she or he wants to. Naturally, this leaves the
user with an unlimited supply of modules, since these can be bought,
hacked, modified or simply self-build. As the mightiness of a toolkit
is correlating with the amount of available components, it is obvious,
that custom solutions are the most mighty ones to work with.

Nevertheless, the mightiness comes with a price: Barebone configu-
rations are very far from being beginner-friendly and are only suitable
for experienced users. For example, it is up to the designer to build the
microcontroller supporting circuitry, which is a quite complex task.

Considering the location of power supply and processing, it is again
completely up to the user how it is to be implemented and what is to be
implemented. As a result, this stresses even more the high mightiness,
but as well the very low beginner-friendliness.

Microcontroller programs are usually made with the Assembler lan-
guage. On the one hand, this might not be the easiest language to
program in, but on the other hand it is platform-independent, since a
simple text editor represents a sufficient development environment.

12http://www.makezine.com/
13http://www.makingthings.com/

Fig. 6. Paper prototyping examples; Source: [20]

It cannot be emphasized enough, that this is the most challenging
and maybe also frustrating approach, however at the same time, the
user has almost unlimited possibilities at her, or his hands [22], [9].

6 SPECIAL TOOLKITS

To round things up, this paper will shortly introduce two special kinds
of toolkits, which deal with paper computing and mobile prototyp-
ing. These approaches stand for current and interesting developments
within the fields of physical computing, prototyping and hardware
sketching.

6.1 Paper computing

Paper computing stands for an innovative approach which combines
programming, painting and papercraft, which allows users to create
functional prototypes set on painted paper. On these grounds the MIT
Media Lab in collaboration with the Craft Technology Group intro-
duced a toolkit, that consists of microcontrollers, sensors, actuators
and power sources, which are fixed on paper surfaces via magnets.
Besides its magnetic characteristics, the paint has conductive ones as
well and is therefore used as ”wires” between the modules, which can
be moved freely on the surface, like magnets on a whiteboard. Two
examples can be seen in figure 6.

The aspect of available components poses a ambivalent issue. In
general, every imaginable module could be used, but it has to be pre-
pared in a complex process before it is ready to be used in this toolkit.
Each module is glued on uniquely colored (i.e. switches are green,
LEDs are pink, ... , etc.), magnetic and conductive paper and its polar-
ity is indicated via the paper’s shape (flat sides are negative, rounded
ones are positive). Furthermore magnets are attached, in order to en-
able the component to stick to the big paper surface. Since normal
wires are no adequate way to connect the modules in this toolkit, spe-
cial conductor paths have to be used as well. In this case, CuPro-
Cote14 paint has been used, which has the advantage, that it can be
used like normal water-based acrylic paint.

The mightiness should be seen differentiated as well. Since the
amount of components ”out of the box” is limited, the factor would
initially be medium to rather low. Nevertheless, it is possible to modify
”normal” components for the use with the toolkit, which increases the
factor again.

The beginner-friendliness of this toolkit is obviously very high. It
is very easy to just draw the circuits and snap the modules as needed
onto the paper. One minor problem could be the removal of the painted
lines, which is more difficult than just pulling a wire.

The locations of power supply and processing is, fitting to the artis-
tic claim, integrated into the ”artwork”. Batteries as well as microcon-
trollers are simply snapped onto the surface. Considering the external

14http://www.lessemf.com/292.html
92

supply with power sources or processing capabilities via an USB con-
nection, no concrete implementation could be found, but should not be
a difficult task to develop.

The microcontrollers are programmed by using the Arduino IDE,
which consequently requires some knowledge in C/C++ and provides
the same high platform-independency by running on Windows, Mac
OS X and Linux systems. In order to program a picture/prototype it
is possible to connect its 4 pin header with a USB port of a computer
and the upload is realized via the Arduino IDE.

Especially for this toolkit a new criteria has to be introduced: awe-
someness. It is simply amazing how easy it is to paint, rather than
”build” the prototype. Not to mention to process of painting itself,
which is a counterpart to the classic approach.

Last but not least, this toolkit also provides new and interesting
ideas for interactive paintings, new kinds of games or teaching [20].

6.2 iStuff mobile

iStuff mobile bridges the gap between hardware and software proto-
typing, by delivering a framework, that allows the use of external sen-
sors and actuators in combination with standard mobile phones, which
do not have to be modified in order to be used within this toolkit. Thus
it is possible, to tackle the problem to integrate new hard- and software
without making internal modifications to the handset, which is a large
obstacle for rapid prototyping and researchers. Due to the fact, that
this toolkit represents an ”in-betweener”, the above introduced advi-
sory matrix is not completely fitting and therefore, iStuff mobile will
be generally described in order to round up the toolkit presentation.

This toolkit is based on hard- and software prototyping environ-
ments. For the hardware aspect Ballagas et al. focused on the physical
hardware toolkit Smart-Its [11], which provides the sensor network
platform. The underlying advantage of Smart-Its is, that it allows the
reconfiguration of the sensors via a procedure call interface and there-
fore applies these changes without the user having to reprogram the
sensor boards. On the software side, the iStuff [7] framework in com-
bination with the Event Heap [16] and Apple’s Quartz Composer15

builds the foundation for development.
The general setup for this toolkit is a Smart-Its sensor board in com-

bination with a Bluetooth communication device, which are attached
to the back of a phone. As soon as the sensor registers a movement for
example, the data is transmitted wirelessly to the Smart-Its x-bridge,
which bridges between the wireless devices and a local software in-
frastructure. One important part is the Smart-Its Proxy which col-
lects the data and encapsulates it in Smart-Its events, which are subse-
quently forwarded to the Event Heap, which is the second part. This
approach covers the input via the sensors, but in order to process input
from the mobile phone a further channel is needed. This is provided
by a running application on the phone, which intercepts key presses
for example and passes them on via the build-in Bluetooth module in-
side the phone to a third part of the software infrastructure, the Mobile
Phone Proxy, which encapsulates the data into iStuffMobile Events
and pushes these onto the Event Heap as well. When it comes to pro-
cessing these events, the Quartz Composer in combination with special
plugins for the iStuff’s Patch Panel, as a forth and final part, is respon-
sible for transforming the input events into desired output events, like
a display device for example. For output on the mobile phone, the
Phone Proxy listens for iStuffMobile Events on the heap and forwards
them via Bluetooth to the application on the mobile phone. Receiving
these events as well as sending events like the mentioned key presses
are handled by a background application. This application either exe-
cutes the command directly or passes it on to a foreground application,
which deals with the direct user interaction [27].

Obviously, this toolkit is not suitable for random places, but re-
quires an existent infrastructure. Therefore it is best suited for instru-
mented environments or generally in the field of ubiquitous computing
and it demonstrates a way to easily create sensor-enabled applications
on mobile phones. However, this toolkit seems a bit outdated in com-
parison to Apple’s iPhone, which is able to provide own sensor data as

15http://developer.apple.com/graphicsimaging/quartzcomposer/

well as the means to process the input internally. Nevertheless, since
the iPhone is limited to three sensors, an interesting approach would
be the extension with further ones in combination with this toolkit.

Fig. 7. Toolkit advisor framework; Source: own illustration

7 DISCUSSION

Now, with the advisory framework established and a few exemplary
toolkits introduced, it is time to put both together and rank the toolkits
inside the matrix. Thereby, recommendations will be created, which
toolkits fit best to the according profiles. Besides the criterions of the
axis, other differentiation ones will be included as well, in order to en-
sure the best user fit possible. The complete matrix with the assigned
toolkits can be seen in figure 7 and will be discussed below. For this
figure the framework has been extended with a further dimension in
order to display the mightiness of the toolkits.

The ”Apprentice” has not yet gathered much experience with pro-
gramming, soldering or electronics in general and is looking for an
easy introduction. Therefore the adequate toolkits are characterized
with a high beginner-friendliness in combination with just a few avail-
able components to reduce complexity.

The first fitting example is Lego Mindstorm, which offers the fewest
modules and is very easy to use. The reasons for that are versatile.
First of all, the use of the Lego bricks metaphor, which makes it much
more intuitive for the user, because she or he is already used to stick the
bricks together. Secondly, the native support of visual programming,
and especially the user-friendly LabVIEW, makes programming basi-
cally a drag and drop task and allows the quick and easy creation of
programs. Last but not least, the toolkit provides with the NXT a cen-
tral element which integrates processing power and electricity supply,
which has the advantage, that the user does not have to worry about
the right plugging of the modules. This as well makes it easier and
allows focusing on the project.

The second suitable toolkit for the Apprentice is the Calder Toolkit.
It delivers a few more components than Lego Mindstorm, and can be
considered a bit less beginner-friendly, since the user gets in contact
with electronics for the first time. Nevertheless, hot-plugging, uni-
fitting connectors, surrogate objects for programming and the ability
to stick modules freely on formable foam makes this toolkit still a great
recommendation for starters. But there is a little catch: currently, only
Macintosh and Windows users are able to program for that toolkit,
since Linux/Unix systems are not supported by the Adobe Director,
which is used for software development.

The littleBits are stuck in the middle between ”Apprentice” and the
”Explorer”, due to their limited, but greater supply with components
and the even higher beginner-friendliness in comparison to Calder and
even Lego. Therefore this toolkit could be seen as a ”transitional” one
between the two profiles. The unique selling point of the littleBits is,
to make prototyping a bit like puzzling. All the single components
stand alone for themselves and can simply be snapped together with

93

other modules. As a result, no programming languages have to be
learned as well, since the components are autarkic and basically just
control the power flow via buttons, sensors or knobs. This whole setup
makes this toolkit probably the most simple one in this paper, but con-
sequently does not offer any complexity or the possibility to process
input or output operations. This case shows, that it is essential, to pro-
vide further criterions or dimensions in the framework, since littleBits
would be a better choice than Lego Mindstorm at the first sight. By
providing further information about the mightiness, the user is better
supported in determining the right framework for her or him.

I-CubeX falls completely into the ”Explorer” category. The crucial
point of this profile is, that beginner-friendliness is still important, but
at the same time more components are demanded by the user. This is,
because the modules provided by Apprentice toolkits are not up to the
task anymore, to fulfill the Explorer’s demands. I-CubeX fits into this
category, which is due to the relatively high amount of available com-
ponents, which is paired with still high beginner-friendliness. The high
usability is granted through almost configuration-free and easy to inte-
grate modules as well as the support of Max, a graphical programming
environment. Although, ”only” MIDI events are exchanged, which on
the one hand can limit the mightiness, it should not be underestimated
on the other hand, since a wide range of movements and environmental
data can be measured and processed. Furthermore, the digitizer sup-
ports input from 32 different sensors, which enables complex setups.
A nice plus are the well designed components which suffice even fixed
installations.

Putting the Arduino toolkit inside the ”Explorer” category, may be
a bit underestimated. Although it is still easy to program via the Ar-
duino programming environment and easy to use with the ”plug-in”
wiring of sensors, the huge amount of available components makes
this toolkit very popular and powerful. Here, the developers found
a great trade-off and this may also be the reason why ”Masters” of-
ten choose Arduino for their projects. Furthermore, this toolkit is
very cheap compared to other platforms and introduced the concept
of shields, making it possible to extend an Arduino with complex fea-
tures, like a small, touch sensitive organic light-emitting diode display.
Obviously, this is also a major factor, which raises the mightiness even
more. Last but not least, the vast Arduino community is contributing
greatly to the toolkit’s success. Here, the users exchange project ideas
and solutions, help each other and brainstorm for new concepts. More-
over, source codes and circuit plans from projects can be downloaded
and reverse engineered by Apprentices to learn more.

Just like the ”Explorer” profile, the ”Master” still draws on many
available components, but is not anymore constrained to high level
programming languages and made already some experiences with
electronics and soldering. The Gainer toolkit is a fitting example for
this category. The beginner-friendliness on the hardware side is quite
low, since the user has to build and solder her or his own I/O modules.
Having done so, the microcontroller, breadboard and I/O have to be
puzzled together. However, this is not a bug, but a feature, since the
developers designed the toolkit in this way on purpose, in order to get
the user more acquired with electronics. However, the software side
is much more easy to use, since Flash, Max/MSP and Processing is
supported for programming. The amount of available components and
consequently the mightiness is slightly smaller than with Arduino, be-
cause Gainer has no extension option via shields. A further minor sub-
traction has to be considered with the beginner-friendliness for users,
who do not speak Japanese, since the majority of the community is sit-
uated in Japan and the forums and web pages are often just in Japanese
language.

The ”DIY-Guy” as well as the custom solutions play a special
role. The user profile is characterized by the low reliance on pre-
manufactured modules and as a result, everything has to be made
by oneself. Naturally, ”handicraft” is a long and expensive process,
which is not suitable for commercial product development. Concern-
ing the toolkit, it is obvious, that the beginner-friendliness is nonex-
istent, since all modules are made by oneself. At the same time the
amount of available components seems to be unlimited on the first
sight. But it has to be taken into consideration, that the amount of

available modules is correlated with the individual skills in program-
ming and electronics. This is due to the fact, that for every new mod-
ule a certain amount of knowledge and experienced is required and the
more complex the component gets, the more time consuming and de-
manding is the construction and assembly. In order to reflect this fact
in the matrix, this ”toolkit” will be put close to the ”Master” border
and the indication of mightiness is set to a high value.

8 CONCLUSION

Product development is an essential part of many companies [25], and
there are a lot of factors, which have to be considered. First of all,
since it is always about the money, it is important to meet the bud-
get. As soon as the development costs are too high, the product has
to be sold for a higher price, which can have a great impact on sales.
Secondly, product evaluation is important, because the customer has
to like the final product. The third point is closely connected, because
a late change in the product is much more expansive, than many lit-
tle changes within the development. Therefore, product development
and evaluation have to be iterative. Due to the fast-paced technology
world, every day new innovations appear and have to be taken into
consideration of the own product. This is the reason for the forth de-
mand, which is modularity. By having different modules, it is easier
to exchange it with another, and not having to redesign everything.
Closely connected to this is the reusability of modules, which is not
only environmental friendly but also more cost effective. Furthermore,
speed, as the sixth factor is also a strong demand, considering the fast
technology world. This list of demands is not exhaustive, but mir-
rors some important factors, which prototyping toolkits and hardware
sketches are able to tackle. Already with the introduction of prototyp-
ing, the product development costs can be significantly reduced [6].
Secondly, prototypes represent a handy tool in order to collect cus-
tomer feedback on the product, to lower the ”non-acceptance risk”
from the customers. Additionally, hardware sketches allow an inter-
active evaluation during the product development and therefore fulfill
the third demand as well [13]. Modularity and reusability can also
be achieved, due to the fact, that toolkit prototypes a priori are often
separate input and output modules, which are easy exchangeable [26].
According to Backhaus et. al [13] rapid prototyping also fulfills the
last demand, which is speed. Many toolkits serve that need as well,
since they provide an easy way to quickly combine different modules.
By outlining these demands, it becomes clear, that prototyping tools
are an essential part as well as a vital tool of and for product develop-
ment.

This might also be one of many reasons for the wide variety of hard-
ware sketching toolkits. But besides this commercial approach, there
are many more: science, education, hobby, entertainment and so on.
Due to this high diffusion rate, it is very difficult to keep track with
new and current toolkits. Furthermore it becomes difficult as well to
compare the toolkits with each other and give concrete recommenda-
tions, which toolkit is suitable for whom. In order to contribute to the
solution of this problem in the future, this paper presented a toolkit
advisory framework, which is able to support a user in his search for
a fitting toolkit via user profiles. Since every profile inherits many
platforms, further differentiation criterions can be applied, in order to
reduce the number of options. This framework takes less time and is
more effective than conventional research. For starters, a few toolk-
its have already been analyzed and ranked in this matrix, in order to
provide an entry point for future toolkit analysis as well as selection.
Finally, the author hopes, that this framework might help to introduce
many more people to the exciting world of hardware sketching.

REFERENCES

[1] About I-CubeX. http://infusionsystems.com/catalog/
info_pages.php?pages_id=117, last accessed on 01.12.09.

[2] Gainer Exhibition. http://gainer.cc/Exhibition/
PlusGainer, last accessed on 23.12.09.

[3] littleBits. http://www.littlebits.cc/index.html, last ac-
cessed on 03.12.09.

94

[4] What is NXT? http://mindstorms.lego.com/en-us/
whatisnxt/default.aspx, last accessed on 01.12.09.

[5] Reflective Physical Prototyping through Integrated Design, Test, and
Analysis. ACM, October 2006.

[6] 3D Systems. Product development at laser speed - getting
to market first. http://www.metrorp.com/images/
ProductDevelopmentAtLaserSpeed.pdf, last accessed on
10.12.2009.

[7] R. Ballagas, M. Ringel, M. Stone1, and J. Borchers. istuff: A physical
user interface toolkit for ubiquitous computing environments. In CHI
2003, 2003.

[8] A. Bdeir. Electronics as material: littlebits. In Proceedings of the
Third International Conference on Tangible and Embedded Interaction
(TEI’09), 2009.

[9] L. Buechley, E. Paulos, D. Rosner, and A. Williams. Diy for chi: Meth-
ods, communities, and values of reuse and customization. In CHI 2009,
2009.

[10] D. C. David A. Mellis, Massimo Banzi and T. Igoe. Arduino: An open
electronics prototyping platform. In CHI, 2007.

[11] H. Gellersen, K. G., A. Schmidt, and M. Beigl. Physical prototyping with
smart-its. In IEEE Pervasive Computing 3, pages 74 – 82, 2004.

[12] S. Gregor. Physical interaction design. Seminararbeit, February 2009.
[13] P. D. D. h.c. Klaus Backhaus and P. D. M. Voeth. Industriegtermarketing.

Verlag Franz Vahlen Mnchen, 8. auflage edition, 2007.
[14] L. E. Holmquist. Sketching in hardware. interactions, 13(1):47 – 60,

January + February 2006.
[15] J. W. Jason Gilder, Michael Peterson and T. Doom. A versatile tool for

student projects: an asm programming language for the lego mindstorm.
Journal on Educational Resources in Computing (JERIC), 3:Article no.
2, 2003.

[16] B. Johanson and A. Fox. The event heap: A coordination infrastructure
for interactive workspaces. In WMCSA ’02: Proceedings of the Forth
IEEE Workshop on Mobile Computin Systems and Applications, 2008.

[17] S. E. H. J. F. P. H. D. Johnny C. Lee, Daniel Avrahami and D. Leigh. The
calder toolkit: Wired and wireless components for rapidly prototyping
interactive devices. In Designing Interactive Systems, Dis 2004, 2004.

[18] M. L. Katz and C. Shapiro. Network externalities, competition, and com-
patibility. The American Economic Review, 75:424–440, 1985.

[19] S. Kobayashi, T. Endo, K. Harada, and S. Oishi. Gainer: a reconfigurable
i/o module and software libraries for education. In NIME ’06: Proceed-
ings of the 2006 conference on New interfaces for musical expression,
pages 346–351, Paris, France, France, 2006. IRCAM — Centre Pompi-
dou.

[20] S. H. Leah Buechley and M. Eisenberg. Paints, paper, and programs: First
steps toward the computational sketchbook. In Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction, 2009.

[21] C. Moussette. Tangible interaction toolkits for designers.
[22] C. Moussette. Tangible interaction toolkits for designers (short).
[23] A. Mulder. The i-cube system: moving towards sensor technology for

artists. 1995.
[24] S. O. Onuh and Y. Y. Yusuf. Rapid prototyping technology: applications

and benefits for rapid product development. Journal of Intelligent Manu-
facturing, 10:301 – 311, 1999.

[25] M. E. Porter. Competitive Advantage: Creating and Sustaining Superior
Performance. The Free Press, 1985.

[26] J. Portilla, A. D. Castro, A. Abril, and T. Riesgo. Rapid prototyping for
multi-application sensor networking. SPIE Newsroom, page 1, 2007.

[27] R. R. Rafael Ballagas, Faraz Memon and J. Borchers. istuff mobile:
Rapidly prototyping new mobile phone interfaces for ubiquitous com-
puting. In CHI 2007 Proceedings, 2007.

[28] B. von Oetinger. Das Boston Consulting Group Strategie-Buch: Die
wichtigsten Managementkonzepte fr den Praktiker. Econ, 2000.

[29] E. v. Weizsäcker. Erstmaligkeit und bestätigung als komponenten der
pragmatischen information. Offene Systeme I Beiträge zur Zeitstruktur,
Entropie und Evolution, 1, 1974.

95

Prototyping in Physical Computing - Sketching in Hardware

Thomas Bauer

Abstract— Hardware toolkits are gaining more and more attention, not least from the sketching and prototyping point of view. Ideas
can be tested, evaluated and thus improved in a very early stage which can save a lot of time and energy. In this seminar paper I
will try to give an overview on some frameworks and analyze them in terms of their level of abstraction and the possibilities they offer
consequentually. After that a closer look at a number of concrete implementations is taken to further point out the difference between
the distinct systems before an outlook on an evaluation is given.

Index Terms—Prototyping, Hardware, Toolkits, Ubiquitous Computing, Tangible Interfaces, Mockups, Sketching

1 INTRODUCTION

The interface between human users and the computer is one of the
major problems in Information Technology at the moment [29]. On-
going research in the field of Human Computer Interaction (HCI) and
Human Computer Technology (HCT) is adressing this task and tries
to narrow the existing bottleneck that hinders the high performances
possible within the human mind to get through directly to the machine
that can process it. Thus more powerful interfaces are being created
in many different variations and forms. The goal is to augment the
overall efficiency when interacting with a computer. Prototyping is
an essential part of designing such concepts [3] as evaluation can
take place in very early stages. Problems can be identified, positive
tendencies further explored. And all that without any risk as such
schemes or drafts are usually rather inexpensive and fast to develop.

There are many different methods of prototyping graphical user
interfaces (GUIs). Paper prototypes [8] that work without any digital
help by sketching drafts on paper and cardboard. Wizard of Oz [9]
setups, where functionality is imitated by a hidden person in the
background. Or Mockups [10], rudimentary pre-versions of interfaces
and applications that dont offer functionality but the possibility
to browse and explore the interface. There are more options and
variations but it is noticeable that all of those prototype options of-
fer possibilities for fast, easy and very low-level realization - if desired.

When observing current developments in HCI/HCT a noteable
growth of tangible devices to interact with the digital world can be
experienced [5] [7]. Generally speaking, more channels to transmit
information get opened in both directions. Speech control systems
for example gain more and more attention by users and developers,
ending the unidirectional flow of audio information. Other examples
include touchscreens (iPhone, Microsoft Surface) or move-sensitive
devices (Nintendo Wii, iPhone). More abstract projects are being
developed such as motion sensored installations or devices with haptic
feedback. Some of them have found their way into the commercial
world, more and more will in the near future.

The easy access to computers and software developer tools has
proven to be a hotbed for new ideas concerning software applications.
The same effects can be expected on the hardware side. It is nearly
impossible for a single person to understand all the details of an
ordinary mp3 player. Only when put on a higher level of abstraction
lay people that come from different backgrounds will have the
chance to work and actually implement their ideas hardware-wise
[6] [1]. In our context this is exactly the case as computer scientists

• Thomas Bauer is studying Media Informatics at the University of Munich,
Germany, E-mail: bauerth@cip.ifi.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/2010.

who do research on the digital world often reach their limits when
facing more hardware-oriented problems and tasks. Such toolkits
are hence heavily needed and imply an important part within the
more hardware-directed fields of computer science like Ubiquitous
Computing and Human Computer Technology [4]. Toolkits can
help to create first mock ups of systems, but they can also serve as a
complete construction kit. This depends on the final goal and the kit
used. Examples will be discussed in section 4. To get a complete first
overview on existing hardware frameworks see [2] and [19]. For this
study seven representative toolkits were picked.

The main contribution in this paper is to give the reader a first
insight in the subject, a basis to further explore the field and to support
the search for the framework that seems to fit his/her level of hardware
knowledge the best. Concrete examples will further recess the picture.

2 INTERESTING HARDWARE TOOLKITS: AN OVERVIEW

Seven toolkits will be introduced in this section. The intention is to
cover a broad field of different approaches. Every implementation has
its own focus and goals and I will try to point them out properly. To
start things off let me first talk about all the toolkits covered separately.

2.1 Arduino

Fig. 1. Arduino basic module. [12]

The intention behind the Arduino [12] project is to provide a lit-
tle minicomputer (fig. 1) that is strictly free of barriers, that is open
source. Thus there are various different versions available: Mega
Board, Duemilanove, Mini, Nano, Pro, and many more. As very ba-
sic hardware components are used (’open hardware’) those boards can

96

be reproduced by anyone with proper electrical engineering knowl-
edge. In general they all share property of being a little computer
that can process different in- and outputs. Linked to an usual personal
computer functions and actions can be added and edited on the board
directly. The provided software also allows for scripting on a higher
level where C and C++ can be used. Proper documentation is available
and a noteable community has grown around this platform. In com-
bination with additional sensors and output devices this approach can
offer a wide range of possibilities.

2.2 BASIC Stamps

Fig. 2. BASIC Stamps: tiny components, tiny devices. [13]

BASIC Stamps [13] are tiny computer modules that are to be pro-
grammed in BASIC. Again, there are various different versions of
stamps (fig. 2) for all kinds of different purposes. Commercial in-
terests seem to play a bigger role here as there are many different
manufactuers offering and selling correlative products. On the tech-
nical side though they all share the fact of being really tiny. Different
I/O slots are given to communcate with either computer or other de-
vices or stamps. One of the more popular versions from Parallax also
offers a socket to enable communication with environments like Flash
or Max/MSP. Documentation is available in detail. In the end a lot of
the more detailed specification depends on the company the Stamps
are bought from.

2.3 littleBits
littleBits [14] is a promising project with a slightly different approach.
It offers a set of preassembled hardware components that can be linked
to each other via magnets, just like Lego bricks. The bits are divided
into four kinds of types. Power bits provide electricity. Wire bits in-
clude wires or logic circuits. Input bits offer a wide range of switches,
buttons and sensors while output bits include LEDs, motors, displays
and speakers. This toolkit is not yet commercially available, a pre-
order can be placed at the website [11]. Overall, simplicity plays an
important role within this project. The open source approach certainly
unlocks barriers but using this framework it is hard to think of the re-
alisation of more complex projects, e.g. projects that require a certain
amount of computing or logic.

2.4 Electronic Brick

Fig. 3. Electronic Brick: Robust prototyping paired with a huge variety
of modules. [15]

Electronic Brick [15] by Seeedstudio is another representative I
want to talk about. This extensive framework offers a variety of dif-
ferent low-level modules that can be linked via 3 or 8 wire bus cables
using a central MCU unit. Seeedstudio provides such a unit although
any Arduino compatible board can be used. Bricks in the commer-
cially available starter kit (in some parts shown in fig. 3) include an
angle sensor, a light sensor, a buzzer and a 16x2 LCD display. A
robust design and the prototyping perspective are pointed out in the
toolkit’s description. As Arduino boards can be used as the main hub
the software side works accordingly to the first example covered in
this section.

2.5 Phidgets
Another popular toolkit is Phidgets [16] [5] [6]. Having had a more
scientific background in the past this extensive library of small-sized
hardware pieces is now available commercially through a spin-off
called Phidgets Inc. The initial intention was derivated from (desktop)
widgets that allow for easy creation and customization of graphical
user interfaces (GUIs). This concept was ment to be put into a hard-
ware context. Developed at the University of Calgary in Canada, Phid-
gets offer a wide range of possibilities for a broad spectrum of users.
Modules are plug and play and many different programming languages
can be used on the software side using sockets (C, COM, Java, .NET,
Flash). Unlike other toolkits it is not possible to run Phidget projects in
standalone mode as the created devices have to be linked to a computer
at all times.

2.6 LEGO Mindstorms
Having talked about ’Lego’ earlier, here it is: the real LEGO toolkit
[17]. Definately not built with the intention to provide hardware bits
for physical prototyping this product offers all the neccessarities to
perform such tasks, anyway. Numerous I/O devices are provided such
as sensors, buttons, controllers and audio units. Those devices can
be connected through a computer the prototyper can program using
the provided graphical software. Connection to a host computer is
possible via USB and Bluetooth.

2.7 The BUG

Fig. 4. The BUG: High-Level prototyping with class. [18]

A little bit like grown up’s Lego seems bug lab’s The BUG [18].
Consinsting of a base module and a small number of I/O modules (fig.
4) that can be clipped on to it this solution is keeping it simple and
clear. The fully programmable computer in the base module can be
accessed via USB, Wifi, Bluetooth and Ethernet. Java is used as pro-
gramming language. The available modules include a GPS locator,
a sound module with speaker and microphone, a touch-display and a
motion detector. The simplicity of this product leads to the fact that it
is designed rather bold and unflexible.

97

Table 1. Toolkits: Pricing

Toolkit Price
Arduino 30USD for Base Module (no sensors)

BASIC Stamp 40USD for a stamp module (no sensors)
littleBits Not yet specified

Electronic Brick 60USD for starter kit
Phidgets 80USD for basic interface kit

LEGO Mindstorms 400USD for basic kit
The BUG 750USD for BUG Bundle

3 ATTEMPT OF A CLASSIFICATION: HIG LEVEL VS. LOW
LEVEL SOLUTIONS

Besides the seven toolkits chosen there are many more options to
pick from. Those include among others kits like the Beagle Board
[24], The Create USB Interface (CUI) [25], I-CubeX [26], Make
Controller [27] or the NerdKits [28]. The variations inbetween all of
those systems point out the fact that at the end of the day any related
aggregation of electrical pieces can be a hardware toolkit. It is a
matter of the user, what he can think of and what he can create.

Nevertheless I will try to put the presented frameworks into
relation. As this paper is ment to be a help especially for the beginners
on the field of hardware prototyping I will put a special focus on the
level of abstraction. How close are the toolkit’s modules to the very
basic electro-technical elements? This is of great importance since
it will in most cases determine how experienced a user has to be in
order to reach his goals. In most cases it will also affect the price and
the level of detail that can be worked in a crucial way.

3.1 High Level: The straight Legos
The most beginner-friendly possibility is obviously the LEGO
Mindstorms set (fig. 5). It is designed for kids and it seems rather
implausible that a deep understanding of electrical or software engi-
neering is required. More likely the intention was to offer a product
that provides the possibility to play and learn in an engineering
context. This of course doesn’t mean Mindstorms is not a toolkit that
can be used to strive for higher goals. Pieces can be combined in
any possible way and the parts itself are of high quality and oriented
towards the functionalities the other frameworks are offering. All in
all the bold design of the modules and the fact that no real program-
ming is possible (as opposed to other toolkits, see table 2) leads to
the conclusion that possibilities are somewhat limited in a prototyping
context, especially when including external elements. Nevertheless
this toolkit offers a way of putting simpe ideas into reality which can
serve as a starting point for a more detailed implementation later on.

Fig. 5. LEGO Mindstorms: Powerful children’s toys. [17]

Having talked about LEGO Mindstorms and going on with the BUG
toolkit now it seems a little bit like leaving the McDonald’s kid’s par-
adise to go next door for the classy french restaurant. It’s not the func-

Table 2. Toolkits: Programming Languages

Toolkit Available Programming Languages
Arduino Open Source Environment (+more through Proxies)

BASIC Stamp BASIC (+more through socket server)
littleBits Physical options, presets

Electronic Brick Own basic language (docs available)
Phidgets C, COM, .NET, Java, Flash, MAX/MSP..

LEGO Mindstorms Proprietary Visual Editor
The BUG Java

tionalities offered that make this comparison possible, it’s the general
design and approach to the subject. BUG modules have a very unique
and smart look. Besides this aspect there are a lot of similarities: a
base module, easy putting together of the pieces and a high technical
standard. The fact that the BUG can be programmed in Java is prob-
ably the biggest difference the two Lego toolkits can be divided into.
As Java itself can be seen on a relatively high level of abstraction this
framework is still a very beginner friendly one. And with the breakout
board, a module that allows to link external devices via USB, the BUG
universe seems wide open again.

3.2 On A Medium Level: The All-Rounders
In this section I will talk about toolkits that can make it all possible,
but that are not so consumer oriented and closer to the basic levels
of hardware. Phidgets (fig. 6) and Electronic Bricks (let me include
Arduino here) are two commercially available frameworks that stand
out especially because of their very wide range of modules they offer.
Where other toolkits (if you can use that term with those at all) consist
only of an I/O board these two models offer already four. And when
it comes to the actual pieces to play with possibilities seem endless:
distance/range or force/pressure sensors, all sorts of motors, buttons,
switches, relays and more - see table 3 and table 4 for an overview
on in- and external linking possibilities. Components can still be
connected to each other easily via USB or BUS cables, and the fact
that their buildup is rather rudimentary keeps the price to be payed
on a fair level. Compared to the lego kits pricing can be put into a
range of a fifth to a tenth. More detailed information about costs can
be found in table 1.

Fig. 6. Phidgets: Wirde range of possibilities, easy connectivity. [16]

The software part with those tools might lay out the biggest obsta-
cle for most of the beginners. Electronic Bricks’ open source approach
with given applications and an onboard C-like programming environ-
ment surely will ask for some time before the user can get familiar
with it. The fact that there is another, more user-friendly and Java-
oriented programming environment provided for the host computer is
definately a big plus. Phidgets socket approach permits even more di-
versity on the software side. The biggest difference between the two
projects in this section might be the lack of a processor module in
the Phidgets approach. Summing up one can say this paragraph con-
sists of toolkits that are set up in a very complete way, that are rather
small and rudimentary and that require certrain programming skills.

98

No hardware knowledge is used whatsoever, so these projects might
be interesting to look at for the software people.

3.3 Low Level Bits: The Little Ones
The reason why the next two frameworks were put into one category
is very simple: they are really small. BASIC Stamps, as the name
already states, have basically the size of a stamp. A usual toolkit
consists of a programmable microcontroller, cables and LEDs and
depending on the order extra features like pushbuttons, a poten-
tiometer or a piezospeaker. The littleBits toolkit’s components
(fig. 7) are as tiny as the BASIC Stamp’s. They seem a little more
user-friendly because of their magnetic linking possibilities. A big
questionmark poses the nonexistence of a main module, all the bits are
preassembled. The final release has still to be awaited but the project
looks really promising as it seems to combine the lego approach with
very low-level building blocks.

Fig. 7. littleBits: Low-Level Prototyping made easy. [11]

Overall it is obvious that the small size has to result in certrain
trade-offs. And this is not even mainly the hardware side where
most important functionalities, especially with the BASIC Stamps,
are provided. But the software side can form a major obstacle for
people that are not familiar with writing computercode on very low
levels. With littleBits it’s not entirely possible to say, but the lack of a
programming environment naturally trims the number of possibilities.
To guarantee a high variety of project options the designers aimed for
an open source strategy. This is supposed to result in a high count of
components. It will be interesting to see if such an approach can work
out and where it reaches its limits.

As for the littleBits I want to note that it seems plausible to put
them into the first group, the Legos, as well. It shares the characteristic
of easy connectivity without the need of a deep understanding of the
different pieces. Still it is an approach on a very low level, very close
to the actual elements used in electrical engineering. Sharing this fact
with the BASIC Stamps in many ways I decided to put them into this
section.

4 EXAMPLE PROJECTS

In this section I will present example projects from all the three levels
of abstraction I just talked about. This will point out the different aims
these toolkits were developed for and further help the reader to find
the category his projects might fit in the best.

4.1 The BUG: It actually has Apps
When looking at bug labs’ website the first link in the menu after ’the
BUG’ is called ’Apps’. When going through this list which, at the
moment, consists of 164 entries, one can clearly see where this project
might be going: an open source iPhone, without the phone of course.

Table 3. Toolkits: Module to Module Interfaces

Toolkit Computer Interfaces
Arduino Serial port, USB

BASIC Stamp Serial port, USB
littleBits -

Electronic Brick User defined
Phidgets USB

LEGO Mindstorms USB, Bluetooth
The BUG USB, Wifi, Bluetooth, Ethernet

Table 4. Toolkits: Device to Computer Interfaces

Toolkit Hardware Interfaces
Arduino 11 I/O interface pins

BASIC Stamp 16 I/O interface pins (typical)
littleBits Magnets, Undefined possibilitiets for Extensions

Electronic Brick Pins Slots
Phidgets Specified to each module, specialized connectors

LEGO Mindstorms 4 inputs for sensors, 3 outputs for motors
The BUG 4 Bug Module Connectors, USB for external

One could also call it a fully customizable iPod Touch. Hardware can
be put together as desired (and extended via USB), software can be
put on the main computer hub and managed with the help of a pre-
installed Linux operating system. All in all this has led to a number
of community applications like a GpsLogger for Google Maps, a Bar-
code Scanner or a Twitter application. It will be interesting to see if
the fact that the hardware is customizable can lead to any major ad-
vantages as opposed to devices that strive for having all functionalities
included and embedded in one closed up system. From a (hardware)
prototyping point of view on the one hand it is clear that the fixed
design of the device prevents innovation in a way since possibilities
seem limited. On the other hand the BUG can be seen as a functioning
system that only needs to be programmed. In this regard the user gets
more or less total freedom in what he creates.

4.2 Phidgets: Everything is possible
With Phidgets being a very extensive toolkit any idea seems to be
possible. The relatively small and basic pieces can be put in the
background, functionality and individual design ideas get more
important. There are hundreds of example projects available online,
they can be browsed from the Phidgets website.

An example of work possible with Phidgets is the Antique Weather
Clock [21] (Fig. 8). Using an old antique clock with a fake clock face
it is capable of showing the current weather situation in real-time. To
do so it connects to the internet and gets the needed information from
a webserver using a little Flash application. After processing the data
it puts it into one of the twelve states available on the clock as a little
motor moves the needle into the right position.

Another interesting widget [22] was created by Liz Friesen at the
University of Calgary in the iLab where the Phidgets framework was
developed. She linked a small toy dog with an instant messenger
application. Activity in the instant messenger application caused the
dog to move around, to notify the user. Additionally the dog moves
when there is movement in the physical room. This happends through
the use of a motion sensor. The apparatus is linked to a personal
computer where it can be set up through a host application.

Wack the Mole [23], a mixed digital/physical multiplayer game de-
veloped at the Umea University of Sweden in 2003 is another interest-
ing way to use the Phidgets. The creators built a physical table with
four holes where the ’mole’ would pop up. The player has to use a

99

Fig. 8. The Antique Weather Clock: Smart devices, little effort. [21]

physical hammer and put it back down. Meanwhile another player
on the computer could perform the same task in a digital way using
his mouse. The software on the computer is aware of the table at all
times, sensing a push down with the use of mechanical switches. A
servo motor was used to release the moles. Additionally a motion sen-
sor was included to attract potentional players that walk by the table
by playing a jingle. 12 Phidgets were used to realize this playboard.
A complete list plus wiring information can be found on the project
website.

4.3 littleBits
Simulating basic functions is the focus for the littleBits example
projects. What is shown on their website are fastly created mockups
of usually highly complex devices: a smart phone with a touch screen
and a button, a single button gaming device with a function to vibrate,
a fake remote control. Some of the work can be seen in fig. 9. Func-
tionalities are rather basic but the fact that the creation of the described
mockups didn’t take longer than 30 minutes each is noteable. No de-
tailed information can be given as the toolkit isn’t even released yet.
The examples given should point out though that for rapid prototyping
such very basic sets of modules seem to be the first choice.

Fig. 9. littleBits Example Projects: Rapid Prototyping with little effort.
[14]

5 CONCLUSION

Seven electrical hardware kits have been presented, analyzed and put
into relation using their given parameters and available examples. To
summarize and conclude this paper a few interesting observations can
be put together.

Huge variety. No hardware kit is like the other. Although I just
categorized some of the toolkits available and put them into certain
groups every kit comes from its very own unique background, puts
different hardware- and software architectures into focus and therefore
attracts certain target groups. Interested people should take their time
before investing in a kit as with a little bit of research online the best
fit can be identified.

Online Communities. Web 2.0 communication plays a huge role
with most of projects described. Forums, example code, example
projects or FAQ sections are available, users are taking advantage of
it. It is possible to use those aspects as another indicator on how well
the kit fits with one’s needs, how popular it is and most importantly, if
quality and service are adequate and fair.

Software skills become the focus. None of the kits presented
requires a deep understanding of hardware contexts. Elements
can be put together very easily via cables, magnets or other basic
mechanisms. Building electrical devices becomes playing Lego. The
big obstacle is mainly to ’set the machine alive’, to put digital content.
The way the software part is organized within the toolkits varies a lot,
there are high- and low-level solutions concerning micro controllers,
host computers and programming environments. As this paper is
written from a computer scientific point of view this point can be seen
as very positive since it’s the hardware obstacles that were identified
as major barrier for tangible interfaces and ubiquitous devices or set
ups.

No borders. When thinking about sketching or building devices
(future) engineers should be aware that using a hardware toolkit
doesn’t mean they will be moving around in a self-contained system.
Anything can be used to reach the goals and there will be very few
cases where an apparatus is built out of pieces from the kit only.
Also, anything that provides tools to build hardware devices can be
seen as a hardware toolkit. This fact is well presented in this paper
by covering both Lego Mindstorms as opposed to tools like BASIC
Stamps or Arduino.

All in all it has the be clear that this categorisation is only one of
many possible models. As software skills become the focus it would
for example be plausible to put this subject into focus as well. An-
other approach would be to go into a specific detail of prototyping like
speed, robustness or possibilities in variety. This might require actual
studies though. In fact some of the frameworks can also be used to
create actual devices, not only simulations: another parameter to dis-
tinguish the different kits.
The choice of toolkits could have been different, too. The goal was
to cover a field that is representative, that shows the reader the many
different alternatives there are. Again, for more information see [2]
and [19] for more information on other toolkits and frameworks.

6 FUTURE WORK

As no concrete evaluation was performed to gather additional infor-
mation about the value of the different toolkits only given data was
used for this summary. It would be interesting to work on a more
empirically driven comparison with specific tasks and regulations. In-
formation like the time needed to finish a device or exact pricing com-
parisons would then be possible. A more detailed analysis of the soft-
ware environments would be important and very helpful as informa-
tion about these aspects of the toolkits is rather rare.

100

REFERENCES

[1] Brygg Ullmer and Hiroshi Ishii: Emerging Frameworks for Tangible User
Interfaces. In Human-Computer Interaction in the New Millenium, John
M. Carroll, ed.; Addison-Wesley, August 2001, pp. 579-601.

[2] Camille Moussette: Tangible interaction toolkits for designers. UmeaŁ
Institute of Design, UmeaŁ University, UmeaŁ, SE-901 87, Sweden.

[3] Matthew Cottam and Katie Wray: Sketching Tangible Interfaces: Cre-
ating an Electronic Palette for the Design Community. Published by the
IEEE Computer Society in IEEE Computer Graphics and Applications,
2009.

[4] Bjorn Hartmann, Scott R. Klemmer, Michael Bernstein, Leith Abdulla,
Brandon Burr, Avi Robinson-Mosher, Jennifer Gee: Reflective Physical
Prototyping through Integrated Design, Test, and Analysis. UIST06, Oc-
tober 1518, 2006, Montreux, Switzerland.

[5] Saul Greenberg and Michael Boyle: Customizable Physical Interfaces
for Interacting with Conventional Applications. UIST02, October 27-30,
2002, Paris, FRANCE.

[6] Saul Greenberg and Chester Fitchett: Phidgets: Easy Development of
Physical Interfaces through Physical Widgets. UIST 0l Orlando FI.A.

[7] Margot Brereton and Ben McGarry: An Observational Study of How
Objects Support Engineering Design Thinking and Communication: Im-
plications for the design of tangible media. CHI ’2000 The Hague, Ams-
terdam.

[8] Snyder C (2003): Paper prototyping: the fast and easy way to design and
refine user interfaces. Morgan Kaufmann Publishers, San Francisco.

[9] Nils Dahlbck, Arne Jnsson, Lars Ahrenberg: Wizard of Oz studies: why
and how. Proceedings of the 1st international conference on Intelligent
user interfaces, 1993, Orlando, Florida, United States.

[10] Joan M. Greenbaum, Morten Kyng: Cardboard Computers: Mocking-it-
up or Hands-on the Future. Design at work: cooperative design of com-
puter systems, Routledge, 1991.

[11] Ayah Bdeir: Electronics as material: littleBits. Proceedings of the
Third International Conference on Tangible and Embedded Interaction
(TEI’09), Feb 16-18 2009, Cambridge, UK.

[12] http://arduino.cc/
[13] http://www.parallax.com/tabid/295/Default.aspx
[14] http://www.littlebits.cc/index.html
[15] http://www.seeedstudio.com/depot/electronic-brick-c-48.html
[16] http://www.phidgets.com/
[17] http://mindstorms.lego.com/en-us/default.aspx
[18] http://www.buglabs.net/products
[19] http://www.partly-cloudy.com/misc/
[20] http://www.buglabs.net/applications
[21] http://www.thisispete.com/weatherclock/
[22] http://grouplab.cpsc.ucalgary.ca/Videos/2006-WatchDog-Friesen-1.02
[23] http://thieumsweb.free.fr/english/mole/
[24] http://beagleboard.org/
[25] http://www.mat.ucsb.edu/ dano/CUI/
[26] http://www.infusionsystems.com
[27] http://www.makingthings.com/
[28] http://www.nerdkits.com/kits/
[29] Saul Greenberg: Teaching human computer interaction to programmers.

interactions, Volume 3 , Issue 4 (July/Aug. 1996).

All websites accessed on January 13th, 2010.

101

Prototyping in Physical Computing - Sketching in Software

Adalie Hemme

Abstract— The following paper introduces different software tools that help developers and designers to build prototypes for physical
computing. It shows the importance of sketching in software and describes how different kind of people can use software toolkits
and frameworks according to their needs. Most toolkits, mentioned in this paper, are based on visual programming, to reach highly
diverse user groups from children, parents, all kinds of domain experts, designers, developers to regular programmers. They can
be used to built mobile phones and all kind of information applications. The procedure, that most toolkits work with, is to connect
physical hardware to a port in a software workbench, in which a duplicate of the pice of hardware is generated. These duplicate
can be arranged in the same way the hardware is set up and not present hardware can mostly be simulated by the software. In the
workbench the behavior of the devices can than be authored and controlled for the specific triggers on the hardware. Some toolkits
offer complex tools that test and analyze workflows, so the prototypes can be adjusted to fit all the user needs. In my work I want
to give a rough insight, to help understand these software tools, that mirror virtually physical computing prototypes and show the
diversity of tools for the different fields in which physical computing is possible, and the diversity of users, that can profit by sketching
prototypes for their needs.

Index Terms—Physical Computing, Visual Programming, Prototyping, Software toolkits and frameworks

1 INTRODUCTION

Prototyping is very important in all kind of development processes. In
Phyisical Computing it might even be more important. Almost every
object in our world can be part of a physical computing device, be-
cause it contains so many different fields. Therefore the development
process is complex and costly and errors can make expensive hard-
ware pieces unusable. Here Software is needed to sketch the entire
functionality of the object of interest in a virtual workbench. This will
help everybody who wants to build physical computing devices. By
building a prototype designers and programmers can sketch their full
creativity in form and functionality of objects. Software tookits make
it easier and cheaper to evaluate the usability and functionality of de-
vices and they minimize the time for devolpment. Another advantage
of prototypes is that changes can be made much faster, by adjusting
the functionality in the workbench, therefore development errors in
the final product can be avoided[1].

Physical Computing means building interactive physical systems,
software and hardware. Phsysical Systems integrate digital informa-
tion with everyday physical objects [10]. Tangible Interfaces are used
in Physical Computing, referring to added sensor technologies to elec-
tronic devices. Additionally any kind of sensory interface is accepted,
like force sensors, accelerometers, and microphones. This physical in-
put can control graphical or audio output in physical computing. Ubiq-
uitous Computing is another part of physical computing. Integrating
computer elements in a wide range of previously analog devices, en-
larging the computer technologies to enter our everyday objects [14].
Examples are smart refrigerators, which know what food needs to be
added, or chairs that know, who is sitting on it, measuring the weight
and profile of the people announced to it. Technologies for Physical
Computing are becoming more relevant in economics and therefore
the tools, which help prototype new objects are getting more and more
important [4].

Developing Physical Computing objects is spread upon very tech-
nical and hardware based fields. A prototyping tool should accom-
plish both: programming interactions and devices, designing highly
usable interfaces and fitting the needs and knowledges of different
user groups. Finding a tool that fulfils all these requirements is hard
to develop and to find. These tools need to be designed such that

• Adalie Hemme is studying Media Informatics at the University of Munich,
Germany, E-mail: Adalie.Hemme@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Prototyping, 2009/2010

both designers and programmers are enabled to work easily with them,
without getting help from the other side, or having to read lots of in-
structions to use the tools. To enable people to interact with digital
information by integrating it with everyday physical object is great.
Programmers will have to think differently, they need to abstract the
physical input, which is very different from user interface development
[16].

Considering Graphical User Interfaces (GUIs) there are many tools,
that help to prototype GUIs. About 20 years ago, when substantial
raster-graphics expertise was required, there have not been many tools,
helping to reduce the development time and ease users to work with
the programs. Now there are already some tools, that enable program-
mers, who have few hardware experience, to work with physical input,
as GUI toolkits have enabled programmers. who are not raster graph-
ics experts. to build GUIs [16].

In this paper, some of the toolkits and frameworks that assist proto-
typing in Physical Computing are introduced. Focusing on software,
that primarily supports visual programming, for the connected hard-
ware. The software toolkits can be classified by the user groups they
are made for and by the different kinds of domains, that can be build
with them.

2 OVERVIEW OF TOOLKITS AND FRAMEWORKS

To build physical computing systems, which interact between humans
and the digital world, tools are needed to help developers and design-
ers to realize their ideas. Developers usually have a rough understand-
ing of design issues, and designers can often not estimate, how hard
it will be to implement their ideas. Therefore tools are required, to
help developers to build applications and visual programmers to build
application logics. That makes it easier to communicate with each
other and implement changes on the product. Therefore toolkits have
to respond to this existing gap, between designers and programmers,
so that both sides can use the software and hardware tools, without
having an detailed understanding of the foreign field [11].

To try out prototypes some hardware usually needs to be attached.
This hardware should evaluate, if they work the way their behavior
was authored to in the software. Examples for hardware are:

• Sensors, to enable systems and devices to perceive their environ-
ment and allow the reaction to the perceived facts by processing
the gathered information.

• Actuators, which react to changes in the environment or in the
context, to get the appropriate feedback in place. The are many
different actuators from LEDs to robotic devices. It is important
to choose the right actuator that fits the applications needs.

102

• Displaying Technology, like small and large sized displays, and
projection technologies for public screens, and flexible energy
saving screens for eBooks or wearable computing.

Existing sets of hardware to sketch prototypes with, are already
available and widely used, like Arduino, Smart It’s, the Calder toolkit,
Phidgets, or Lego Mindstorms [13][2]. Many software frameworks al-
ready work with these hardware sets or have their own hardware set
[7]. There are many ways to connect the mentioned hardware sets
to the software toolkits. WLAN, Bluetooth, IrDA, GPRS, UMTS or
ZIG-Bee are common technologies, next to USB or FireWire. The
hardware sets used depends on the needs for the prototype and on the
costs willing to spend [11].

The hardware pieces are connected by arranging the parts, that are
needed for the prototype. The behavior and functionality of the sin-
gle hardware pieces to each other and the environment, can then be
programmed with code, or arranged using visual programming with
an appropriate software. To try out the prototype with its sketched
functionality, the hardware needs to be used the way it was designed
for. With pressing buttons or using slides, the prototypes behavior can
either be seen on the device, if it has visual or audio output, or in the
software workbench on the computer.

As physical computing is becoming more and more economical,
sketching with software is not only important to lower the costs and
development time, it is also interesting for just sketching out individ-
ual ideas or new business ideas. With the prototypes in gereral the
design and usability can be improved, due to the ability to fully test
the prototype and adjust it to the best. With building more prototypes,
the developers are getting more familiar with the toolkits, so the en-
tire development process is becoming shorter, and costs can also be
reduced this way. In addition there is less communication needed be-
tween the different employees, as they do not need to help each other
that much, because the toolkits are enabling them to build prototypes,
in fields they are not really familiar with. For example a designer can
save time and money by putting the hardware together like this [2].

3 ANALYSIS OF THE EXISTING SOFTWARE FOR DESIGNERS
(VISUAL PROGRAMMING) AND PROGRAMMERS

In this section six different toolkits are introduced and their function-
ality is roughly explained. The frameworks are mainly aimed at users
that can program a little bit or have a design background and which
are familiar with a small technical understanding. They are made for
different reasearch needs. The Papier Mâché is a special architecture
that helps create software event abstractions, in which everyday ob-
jects are detected, by different input technologies as input of interest
for designers. The framwork focuses on identity-based input and dis-
crete events, to assist designers to rapidly exchange input technologies
(see section 3.1) [6]. The d.tools framework is specified on devices
like mp3 players, phones, and digital cameras (see section 3.2) and
uses its own hardware components. The Quartz Composer (see sec-
tion 3.4) is not a Physical Computing toolkit, but it is a good visual
programming toolkit and reimplemented in some frameworks like the
iStuff mobile. The iStuff mobile is for sketching with mobile phones
(see section 3.5). And the NETLab toolkit is designed for students and
designers, to sketch with sensors to author motors and projections (see
section 3.6).

3.1 Papier Mâché
Papier Mâché is an open-source Java toolkit written using the Java
Media Framework and Advanced imaging API’s. It is made to abstract
a collection of input from everyday objects which are tracked by a
camera, tagged with barcodes, or have RFID tags. The developer has
two tasks prototyping with Papier Mâché, declaring the input he is
interested in and mapping this input to application behavior. With
Papier Mâché a developer can easily implement an object with one
technology and later retarget the object to another technology [16].

A developer first has to select input types, like RFID or vision,
which gets acquired and interpreted in the input layer and generates
a physical object out of it. Developers do not have to deal with the

connection of input devices or with events generated by them. The
hardware connected to the computer that the developer will be working
with, needs to implement the Input Device marker interface. This is
a design pattern, with which an interface is created without any meth-
ods. So each input device gets its own API to deal with the underlying
hardware. Hence, the implementing class is responsible for providing
input acquisition. There are specific classes, for the different kinds of
hardware devices, implementing the marker interface with the API for
the Papier Mâché toolkit support. Special functionality can be added
for specific hardware, which inherits its major behavior from the gen-
eral hardware type. Hardware input behavior can although be simu-
lated, when it is not available through the FilesImageInput class. The
PhobProducer (Physical Object Producer) generates events, once
a input source is selected, representing the adding, updating and re-
moval of an object., which he obtains in the sensor view. All technolo-
gies produce the same events by holding different information about
the objects. RFID has the tag and the reader IDs, where Vision has
the size, colour, location, orientation, and the bounding box of the
object, which applications can use to determine the application behav-
ior. When a RFID tag is placed in the range of a user a PhobAdded
event occurs, if the reader does not report an objects presence, it is
detected as removed. Vision Events are interpreted by camera calibra-
tion, image segmentation, and event creation and dispatching, while
using edge detection or background and object segmentation [16].

There are three levels of handling behavior of detected objects

• PhobEvent instances carry information about the objects, being
new physical input, detected by a PhobProducer.

• AssociationFactory instances, which are interfaces to create As-
sociation Elts, provide mechanisms for creating and modifying
application logics.

• BindingManager, it receives all PhobEvents automatically and
uses the AssociationFactory to create AssociationElts. It al-
though manages the flow of events and creates behaviors. In
addition it contains a map data structure with past and present
bindings, when a new event is detected he compares it with the
classifier, which invokes application behavior for matching ele-
ments.

The developers goal is to instantiate parameterized classifiers and
behaviors, to build applications, which can often be created by pa-
rameterize existing library classes. More complex functionality can
be implemented by building an own application with custom behav-
ior. The library includes some media manipulation actions like pause,
rewind, and fast forward, which can be used on media clips for the
behavior of applications. The library has three classes of physical de-
vices. First the electronic tags, like RFID. Second the barcodes, which
must be manually tagged before they can be used. With this way any
object can be appropriate for use. The third class is image analysis, it
is much more flexible, because it can simply use an object as an image
or it can be used for pure capture or pure recognition [16].

The application developer has a monitoring window shown as a
three-level-tree (see figure 1), which shows the current state of the
system. The first level shows the PhobProducer types, like RFID, bar-
code or vision. The next level shows the instances of objects creat-
ing input events from the PhobProducer, and the third level shows the
currently visible objects. Papier Mâché offers Wizard of Oz (WOz)
control to use not available input for the PhobProducer, where events
can be created as if they came from a sensor. Furthermore provides
the graphical interface from Papier Mâché authoring information, next
to the monitoring information. Working with the authoring facilities,
being realized by xml, allows the developer to create and modify the
runtime code of the applications. For adding a new classifier for a new
behavior, the input technology needs to be selected, to create a new
binding between a class of physical input and an application behav-
ior. Hence, for custom behavior developers can implement their own
AssociationElts and then specify only the input parameters they are
interested in, like ”filtering” objects by a specific shape, colour, or size
[16].

103

Fig. 1. Papier Mâché Monitoring window [16]

3.2 D.tools
D.tools is a design tool, build by the University of Stanford, and can be
installed as a full Eclipse plug-in. Its an iterative-design-centred ap-
proach to prototyping physical user interfaces for mobile phones, dig-
ital cameras, music players and similar devices. In Addition to phys-
ical programming the toolkit is usind textual programming to provide
a higher ceiling. D.tools has a hardware interface, which is extensible
to prior system libraries. It offers three points to extend hardware to.
The hardware to Computer interface, the intrahardware communica-
tion level, and the circuit level. Integrating design, test, and analysis
of information appliances makes it easier to evaluate the prototypes.
While a user is running a test all events are shown in the workbench
and on the hardware, d.tools logs all device events and state transitions
on video and automatically classifies these hardware events and shows
the analogue state chart to the hardware events. Single user or multiple
user videos can be analysis at the same time, where the logs from the
videos can be compared, a interaction patterns get visible and a history
about all the transitions is displayed. The logs of multiple users can
be compared in video matrix, where the rows correspond to the users
and the columns show categories like hardware events or comprise of
states [7].

Fig. 2. d.tools workbench with connected hardware [7]

D.tools is rather made for designers, who can place physical con-
troller, sensors and output devices directly on their prototype. The
library includes many input and output technologies. The software
representation of the I/O components can be graphically arranged in
the design mode. The behavior of these components can be graph-
ically authored and then being tested on the physical devise, which
is always connected to the visual interaction model. D.tools includes
a framework to visually program hardware behavior. The hardware
is connected to a d.tools hardware interface, which is the first step
in the design process. The connected devices announce themselves
automatically to the framework, where graphical duals are created of
themselves. Hardware component that are not available, can be in-
cluded as a visual-only input and act as a Wizard of Oz during the test

time, or the designer can try to manipulate the hardware or they can
try to imitate hardware events by using a simulation tool. Designers
can create, reform, and arrange input and output devices in the device
editor. In Addition they are able to create their appearance by using
a large library of buttons, slides, LED’s, and all kinds of components.
Interaction graphs are build to create the prototypes behavior (see fig-
ure 2). They have to describe the content for the outputs, including
screen images, sounds, LED behaviors for all the different states. The
control flow of an application is represented by transitions, they are
represented as arrows between two states in the workbench and define
the rules for a change in the states, while some hardware event occurs
or a timer is running out. The visual workflows are somehow self-
explaining, but with increasing functionality text notes are useful and
can be placed everywhere on the state charts. Instead of numbering
the range of sensors and other hardware devices, the designer can run
a real time simulation for the device of interest and set the upper and
lower threshold while for example moving a slider [7].

For very complex prototypes d.tools offers parallel state charts, to
give one button different functions depending on the priorities or con-
text. Furthermore it is extending state charts with writing Java code to
visual states to specify their behavior. For this d.tools uses eclipse to
help writing correct code [7].

3.3 Exemplar
Exemplar was although developed by the University of Stanford and
works as a full Eclipse plug-in and is able to communicate with the
d.tools hardware interface, Wiring and Arduino. Its helps prototyping
rapidly sensor based interactions. Exemplar offers new techniques to
author sensor based interactions through programming by demonstra-
tion using a graphical direct manipulation interface. As sensors can
be used accelerometers, bend sensors, IR rangers, light sensors, touch
sensors and sensitive resistors. Data arrives on the Graphical User In-
terface (GUI) on the left side of the screen and can be manipulated to
discrete or continuous events on the right sight of the screen. All sen-
sor data is shown live and can be uniquely filtered and then be send to
other applications or being converted into discrete events. The event
definitions for each active sensor are shown in the GUI and marked
with individual colours [3].

3.4 Quartz Composer
Apple produced the Quartz Composer, which is a visual programming
tool provided as part of the integrated development environment for
Mac OS X’s XCode. The tool is made to enable users to build graph-
ics processing modules without writing any code. Its original func-
tion was to be a programming environment for computer graphics, 3D
graphics and animation graphics. The Quartz Composer makes the
developers work with patches, which are base processing units that
execute and produce results. On the patches are circles, which are
ports representing input and output, and are passing data through the
patches. Costum patches can be written with JavaScript to modify and
convert input events. The complexity of the program is entirely hidden
[9].

Quartz Composer is able to create editor compositions, which are
procedural motion graphics programs created by assembling patches
in a workflow for data processing and rendering (see figure 3). Com-
positions have input parameters and create output, they can be put into
any other workflow. There are three kinds of patches with different
colored title bars:

• consumer patches, which render results to a destination.

• processor patches, which process data at defined interval, or if
input values are changed.

• provider patches, which provide data from an outside source to a
composition.

Patches can be modified to custom needs or new patches can be pro-
grammed by code or with visual programming. There are also macro
patches, which can use or call other macros. Macros need sub patches,

104

Fig. 3. Quartz Composer patches with library [2]

to create objects to work with. For this Quartz Composer offers an
evaluation path, where it is graphically shown when and how often
each patch, in different levels, in a composition executes and which
macro patch is leading to another macro patch. With making custom
macros, patch collections and their connections can be packaged to
one macro, to reduce complexity [8].

3.5 iStuff Mobile
The iStuff Mobile framework helps building prototypes for mobile
phones while using existing phones. Due mobile phones in general
are not build for research needs and it is hard to extend the hardware
of an mobile phone, as it is packaged very small for the commercial
needs. iStuff mobile allows to add external hardware to the phones
with using Smart-Its sensor network modules. These new composed
hardware pieces can than communicate with an visual programming
environment. To do so a background cell phone application that al-
lows prototyping with any foreground application, a reversion of Ap-
ples Quartz Composer is needed. In Addition it is necessary to have a
sensor network proxy for configuring sensors without changing their
software. For this iStuff Mobile reused and adapted some existing and
proven software as iStuff. iStuff offers patch panel with which mes-
sages can be intercepted and be rewritten, so that incompatible compo-
nents can communicate over a network. The mappings of inputs and
outputs can be specified during the runtime, the Event Heap and the
Quartz Composer. iStuff is offering the feature, that allows to try out
interactions, current mobile phones are not able to. Therefore iStuff
Mobile can be used as software parts are distributed between differ-
ent computers. Hence the communication takes place over the Event
Heap, without having an explicit connection between the components.
Smart Its and the mobile phone are not supposed to communicate over
the Event Heap, so they use a proxy strategies, where an external pro-
cess can send and receive directly with the hardware [2].

The mobile phone application is split into two parts. The part vis-
ible to the user is the application the user interacts with. This uses
Symbian Series 60 operating system in the background. It runs the
new designed application from the designer, where events can be send
to the mobile phone proxy via Bluetooth (see figure 4). The back-
ground supports Bluetooth, sound playback, vibrator control, key cap-
ture, profile control, camera control and many others. It then sends the
events to the foreground application, which can be exchanged with any
other foreground application. Existing applications on the foreground
can be taken over and new applications can be programmed for the
phone using Java [2].

Fig. 4. iStuff Mobile architecture [2]

Smart Its were chosen for the sensor network support, which pro-
vide a remote procedure call interface. Therefore sensors can be re-
configured without changing the code on the sensor boards. The GUI
was designed in a way, that the user can configure and activate all dif-
ferent sensors, for light, microphone, voltage and other sensors, con-
cerning one particular scenario, at a time. Any other Network platform
can be used for the iStuff Mobile just by implementing a new Event
Heap proxy and a new plug-in for the Visual Programming platform,
to control the information flow in the GUI [2].

For Visual Programming iStuff Mobile is using a configured Quartz
Composer, where all changes are immediately added to the application
during run-time. Each iStuff proxy and new data processing modules
were added to the Quartz Composer library [2].

Some examples for new applications, which were prototyped with
the iStuff Mobile, are [2]:

• If a call or message arrives in the sound mode, the phone will
just vibrate, if a user is holding his phone in its hand, it is just
vibrating instead of ringing when a call or message arrives. This
is because of the pressure sensor is used, which detects whether
the phone is hold in the hand or in a pocked and not just laying
somewhere.

• Using Quartz Composer together with Java Script enables iStuff
Mobile to type texts without using the keys but just tilting the
phone in one of four directions by which different letters or sym-
bols can be chosen.

• Building an application for interactive displays. This is very easy
and works accurate over te camera capture point.

• Controlling different displays with a mobile phone. Thus the
presentation shows the old slide in one screen and the new slide
in another. This was realized using proxys running on different
machines, that are listening to a particular event name.

3.6 NETLab Toolkit
The New Ecology of Things Lab Toolkit (NETLab toolkit) is an open-
source set of software tool to help designers or students to sketch in
hardware in addition to create interactive objects and spaces, without
having to program. Furthermore it can be used to augment the toolkit,
the development environment is similar to Flash. The Toolkit consists
of three parts:

• Flash Widgets, which enables the drag-and-drop interface. It es-
tablishes the communication to external hardware by placing the
right components on the Flash stage and setting some options,
which make the extern hardware interact with the Flash.

• the Hub, which combines all hardware connections brings them
to and from the Flash environment. It connects the hardware
through a socket interface to the computer and handles the com-
munication tasks. The connection can be made by Make Con-
troller, Arduino, XBee and OSCs, like the Wii controller.

105

• the Media Control, which works with specialized media like
LED systems, multi-channel audio with up to eight sound chan-
nels and DMX lightning systems.

There are a lot of sensors, like wireless sensors, Wii Remote input,
controls motors and LEDs, which communicate with MIDI devices,
control sound, graphics, videos in Flash, and the DMX computer con-
trolled lighting equipment. The last mentioned can be used by de-
signers to program with drag-and-drop, which enables them to control
video projections or motors by using the connected sensors. Prototyp-
ing this fast an easily with hardware components, which is a unfamiliar
field to designers, enables them to focus on the design process. This
way they do not have to communicate with technical persons to try out
their new ideas [17].

4 TOOLKITS FOR CHILDREN AND LAYMAN

In this section two toolkits are introduced, which help children and
non-technical users to build physical computing devices. These toolk-
its are build to ease users without any technical background or inter-
est to build individual applications with an educational interest. Both
toolkits also offer a different level of programming, for which more
programming knowledge is needed, to build more complex applica-
tions or to enlarge the programming options for non technical users.
Edu Wear is primarily made for children. With the toolkit they can add
funtionality to their clothing and lern about technology (see section
4.1). The ESPranto SDK addresses different user groups, designed
with a educational interest, so that non programmers can slowly be-
come programmers, and offers a working access at all the steps fitting
the users knowledge (see section 4.2).

4.1 EduWear
EduWear is made for children to teach them constructionist studying
with making hidden technologies visible. EduWear takes cloth with
added sensors and actuators as the toolkit to be scratched with. By
taking fashion as the toolkit for augmenting the functionality of cloth-
ing. Therefore it is easier to get the childrens interest to experiment
with. It consists of a programming languages, microcontrollers, actu-
ators, sensors and connections between the cloth and the technologies
(see figure 5). Arduino is used in EduWear, the board layout is split
up in three parts. The ”programmers board” which is connected to the
computer while programming the microcontroller. The ”power board”
to load the ”main board” with the needed voltage. The ”main board” is
placed within the cloth. Instead of using ”Arduino” programming lan-
guage, because it is too difficult for children, ”Amici” is used, which
works with dragging and dropping icons to program visually. The
programmed graphic blocks are generated into Arduino code, to make
children get used to the textual programming language [15].

Fig. 5. EduWear software screenshot and the textile databus with actu-
ators and sensors [15]

Besides tilt-switches, light sensors and LED’s as actuators,
EduWear is using textile technologies. A stretch sensitive canvas
which changes the resistance while stretching the conductible yarn.
And textile switches, where two conductible layer are isolated by an-
other layer and get connected by pressure. A Data bus connects the ac-
tuators and sensors with the microcontroller. It uses conductible yarn
to the buttons witch with the sensors are fitted to the clothing [15].

4.2 ESPranto SDK
The ESPranto Software Development Kit is a sensor and actuator
based application designed for non-technical users, like teachers or
psychologists, to build educational toys, games and interactive light-
ning systems. These users usually have very specific ideas, which they
can implement with a given set of tools to build simple applications.
With increasing programming skills, that is achieved by always give
the user a feedback about the currently used tools. Users are enabled
to build more and more complex applications with more flexibility
in the choice of tools. The SDK although allows all other kinds of
users to build applications. Non-technical users like parents or teach-
ers are usually good content creators and can develop simple applica-
tions and professional content with the toolkit. Domain experts like
psychologists, game designers or therapists can build very specified
applications according to their domain knowledge easily. Technical
experts like programmers may work with the other two user groups
to construct the building blocks for their applications and build new
building blocks in general for themselves. The forth user group are
legacy programmers that want to use the ESP runtime environment to
couple with other systems not using the ESPranto. Error messages
are always matching the frame of reference for the user This is why
a non-technical person, gets non error messages, he just sees whether
his program compiles or not [18].

Fig. 6. A program in the graphical layer to simulate animal sounds [18]

The ESPranto SDK is part of the Edutainment Sensor Platform
(ESP). The platform was developed to allow users to combine different
types of sensors and actuators and create for these different hardware
combinations software. ESPranto SDK runs on a computer to build
software for the applications. The ESP runtime environment runs on
an embedded processor, which is placed into toys, and executes the
compiled code by the ESPranto SDK. The ESP runtime environment
consists of:

• drivers for the sensors and actuators. These drivers are prein-
stalled for the currently used hardware.

• the ESPranto byte code interpreter.

• an input abstraction layer. It feeds the input events from the sen-
sor drivers to the byte code interpreter.

• an output abstraction layer. It feeds the output events from the
byte code interpreter to the actuator drivers.

Due to the different types of users with different goals, needs and
skills the SDK is split up into four layers. The layers enhance a dif-
ferent level of flexibility and complexity. Applications can be made in
one layers output also they work for the layer below [18].

The graphical editing layer works by dragging and dropping puzzle
pieces, of which each is building a building block, to create a program
(see figure 6). The pieces are connected vertically to form sequences,
some although form horizontal connection to allow parametric sing.
This layer offers the least flexibility and is made for layman. Errors
are prevented by only using correctly programmed puzzle pieces. By
using ESPranto language so no semantic errors are can be created by
connecting them. Depending on the connected hardware only a correct
set of tools is offered to avoid errors [18].

106

The next layer is the macro layer. A macro can be understand as
the textual counterpart to a puzzle piece, which is interpreted into
macro before it compiles. This layer is made for domain expert that
needs more flexibility. The programming language in this layer is very
easy and can be bound very closely to a specific hardware configura-
tion. Therefor a professional programmer builds a library of macros
with the basic software building blocks. With macros statements can
be passed as parameters to ease the functionality, error messages are
given before the macros are expanded, and automatic type inference
[18].

The third layer is the ESPranto kernel layer. It consists of a small
set of basic behaviour the kernel statements, which are the same, as in
the programming language Esterel [5]. When an application compiles
from the layers above the code might be expanded into kernel state-
ments, which the compiler than expresses into byte code. The Marco
and the kernel layer are not strictly separated, both domain experts and
programmers can combine and use both layers [18].

The last layer is for legacy layer. It emerged before the SDK existed,
when the programmers build the applications using C++ and Java, to
communicate with the ESP runtime environment. This layer is useful,
when applications have to be integrated into existing software, made
with different programming languages, by making just few changes to
the interface [18].

5 OUTLOOK TO THE FUTURE

As there are many tools for different user groups, concerning on dif-
ferent development fields and kinds, some with commercial ambitions,
others with educational ambitions, they are all designed to fit the spe-
cific needs. Most of them using visual programming, to ease the pro-
gramming process using self-explaining icons, to lower the customiza-
tion with the programs. This might be easier for different user groups
like [12]:

• children, to make them learn programming in a playful way, like
EduWear focused on.

• first-time programmers, which can learn the structures and basis
concepts of programming over the graphical construction.

• End user, which can try to personalize their programs, or build
programs on their own.

• domain experts, who do not need programming skill, but need to
built programs for their studies.

• programmers, who want to try out new approaches and build fast
and error free programs quick.

Especially the ESPranto SDK was build, to fit many of the user
groups, mentioned above. With having the basic idea of more and
more non-programmers are getting involved in building content, and
enabling then with gained experience to build more complex programs
using less graphical programming. But they still want to improve the
error messages, making them more understandable for starters, and
to enlarge their area of application to more sensor and actuator based
applications [18].

Compared to that, d.tools rather concentrates on building devices
that could be economically manufactured, so they put a higher focus
on integrating support for testing and analyzing the workflow of pro-
totypes. In the future they want to be able working without an connec-
tion to the computer, by connecting components to an embedded Intel
XScale platform, which can execute interaction models and to enable
on-board graphics wither higher than 8 bit microcontrollers [7].

iStuff Mobile focuses on integrating the mobile phone more in ubiq-
uitous computing scenarios, hoping to advance the pace of innovation
and improve the quality of interface designs in ubiquitous computing
[2].

All of the mentioned tools, are planning on improving their toolkits,
by reducing errors, enabling them to be more portable to other tech-
nologies, or want to become easier to use to their desired user group.

As all the tools are free to work with or even open-source, finding
this easier to have more operators, helping them to improve the prod-
ucts. Many of the toolkits come from universities or have a research
background. Here it makes sense to keep the access open to everybody
interested in physical computing, as there are so many opportunities to
develop very diverse products, so the more people are enabled to work
with the toolkits, the faster research results can be successful. As the
field for new innovations in physical computing is so large, it might be
hard to find one toolkit, which can prototype any application. There-
fore it could be more likely that some standard prototyping toolkits
for different fields of applications might arise, instead of one universal
large tool. This would not even be useful, as physical computing can
be used by so many different user groups, with different interests and a
different educational backgrounds, and all the results are of node from
a economical and research view.

6 CONCLUSION

After finding out, that sketching in software for physical computing is
becoming more important not only for the economy the paper shows
some different toolkits and frameworks, helping to sketch prototype
primarily by visual programming. I found that prototyping is a good
way to enable non-technical users and young people to sketch with
physical computing. Nevertheless more advanced people can still
work with the visuall tools and add complexity with programming
code. I like the way of physical programming because it closes the
gap between programmers and designers, who work on research or
economical products. Most of the toolkits are free, even the one ap-
ple produces, which seems to be important for fundamental research.
This way as many people as possible have the opportunity to try out
the frameworks and help improving them. All the toolkits enabling a
wide potential user group to transform many individual ideas, which
can lead to great new projects and might lead to products that enrich
our lives. Reading the papers made me want to sketch with the toolkits,
too. In Fact some frameworks, like d.tools, were already mentioned in
many other papers. A great advantage is , that the introduced toolkits
work with similar principles, but for different user groups and applica-
tion areas.In this way interested people can easily switch to a different
toolkit, when they are interested in a different development field, like
from building child applications, to move over to build cell phone ap-
plications. But it would be more useful, if the toolkits would work
with the same programming languages, for the more advanced users
and not only use the same visual programming paradigm. In addition a
very helpful concept is ESPeranto SDK. It has different levels of entry,
for different kinds of users, to enable a learning progress for the users
and give everybody an access.

In general I would suggest to have two major toolkits for different
research fields. One for children and non-technical persons to build
less complex applications and primarily focusing on bringing these
people in touch with technologies at all. And one for very commer-
cial needs, which ease developers, to prototype mobile phones, mu-
sic players, cameras and all kinds of everyday objects, which is su-
per complex and extremely flexible and portable to all kinds of tech-
nologies and including all kind of technologies. Therefore developers
would have no need to get to use a new toolkit again, just for build-
ing different kind of applications. Another useful toolkit would be
one that enables normal people to build applications at home with the
hardware already available in the house. To which connecting cheap
sensors or actuators should be made very easy, so that everybody can
add some customized physical computing to their environment. In
the future physical computing will be more and more involved in our
lives.Besides great projects for toolkits, which provide important fun-
damental research for the future, there will probably be many more
new toolkits, focusing on different application areas, helping to let our
physical world interact with the computers.

REFERENCES

[1] J. A. J. Andrew Sears. Human-Computer Interaction: Development Pro-
cess. CRC Press, 2009.

107

[2] R. Ballagas, F. Memon, R. Reiners, and J. Borchers. istuff mobile: rapidly
prototyping new mobile phone interfaces for ubiquitous computing. In
CHI ’07: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 1107–1116, New York, NY, USA, 2007. ACM.

[3] S. K. M. M. Björn Hartman, Leith Abdulla. Exemplar, 12 2009.
[4] M. Cottam and K. Wray. Sketching tangible interfaces: Creating an elec-

tronic palette for the design community. IEEE Computer Graphics and
Applications, 29(3):90–95, 2009.

[5] G. B. D. Potop-Butucaru, S.A. Edwards. Compiling Esterel. Springer,
2007.

[6] B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer. Authoring
sensor-based interactions by demonstration with direct manipulation and
pattern recognition. In M. B. Rosson and D. J. Gilmore, editors, CHI,
pages 145–154. ACM, 2007.

[7] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B. Burr,
A. Robinson-Mosher, and J. Gee. Reflective physical prototyping through
integrated design, test, and analysis. In UIST ’06: Proceedings of the
19th annual ACM symposium on User interface software and technology,
pages 299–308, New York, NY, USA, 2006. ACM.

[8] A. INC. Quartz composer user guide, 12 2009.
[9] H. Kimura, Y. Okuda, and T. Nakajima. Cookieflavors: Rapid compo-

sition framework for tangible media. In NGMAST ’07: Proceedings of
the The 2007 International Conference on Next Generation Mobile Ap-
plications, Services and Technologies, pages 100–109, Washington, DC,
USA, 2007. IEEE Computer Society.

[10] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-mache: toolkit sup-
port for tangible input. In E. Dykstra-Erickson and M. Tscheligi, editors,
CHI, pages 399–406. ACM, 2004.

[11] A. S. Matthias Kranz. Prototyping smart objects for ubiquitous comput-
ing. Technical report, LMU Munich, 2005.

[12] P. Merkel. Visual programming im überblick. Technical report, Uni-
versiät Ulm, 04 2009.

[13] C. Moussette. Tangible interaction toolkits for designers. In Scandinavian
Student Interaction Design Research Conference, 2007.

[14] B. Myers, S. E. Hudson, and R. Pausch. Past, present, and future of user
interface software tools. ACM Trans. Comput.-Hum. Interact., 7(1):3–28,
2000.

[15] M. Reichel. Eduwear: Ein construction kit für smarte textilien und wear-
able computing. In R. Koschke, O. Herzog, K.-H. Rödiger, and M. Ron-
thaler, editors, GI Jahrestagung (1), volume 109 of LNI, pages 540–544.
GI, 2007.

[16] J. A. L. Scott R. Klemmer. Toolkit support for integrating physical and
digital interactions. In Human-Computer Interaction, volume 24, pages
315–366, 2009.

[17] P. van Allen. Netlab toolkit, 12 2009.
[18] R. van Herk, J. Verhaegh, and W. Fontijn. Espranto sdk: an adaptive pro-

gramming environment for tangible applications. In D. R. O. Jr., R. B.
Arthur, K. Hinckley, M. R. Morris, S. E. Hudson, and S. Greenberg, edi-
tors, CHI, pages 849–858. ACM, 2009.

108

