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Abstract. The interdisciplinary field of explainable artificial intelligence
(XAI) aims to foster human understanding of black-box machine learn-
ing models through explanation-generating methods. In practice, Shap-
ley explanations are widely used. However, they are often presented as
visualizations and thus leave their interpretation to the user. As such,
even ML experts have difficulties interpreting them appropriately. On the
other hand, combining visual cues with textual rationales has been shown
to facilitate understanding and communicative effectiveness. Further, the
social sciences suggest that explanations are a social and iterative pro-
cess between the explainer and the explainee. Thus, interactivity should
be a guiding principle in the design of explanation facilities. Therefore,
we (i) briefly review prior research on interactivity and naturalness in
XAI, (ii) designed and implemented the interactive explanation inter-
face SHAPRap that provides local and global Shapley explanations in
an accessible format, and (iii) evaluated our prototype in a formative
user study with 16 participants in a loan application scenario. We be-
lieve that interactive explanation facilities that provide multiple levels
of explanations offer a promising approach for empowering humans to
better understand a model’s behavior and its limitations on a local as
well as global level. With our work, we inform designers of XAI systems
about human-centric ways to tailor explanation interfaces to end users.
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1 Introduction

Many decisions in our lives are influenced or taken by intelligent systems that
leverage machine learning (ML). Whenever their predictions may have undesired
or consequential impacts, providing only the output of the black box may not
be satisfying to their users. Even if the prediction is accurate in regard to the
underlying training data, users may distrust the system, have different beliefs
regarding the prediction, or want to learn from individual predictions about a
given problem domain. Thus, a need for understanding the ML model behav-
ior arises [2]. The field of explainable artificial intelligence (XAI) develops novel
methods and techniques to make black-box ML models more interpretable. Cur-
rent XAI research mostly focuses on the cognitive process of explanation, i.e.,
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identifying likely root causes of a particular event [21]. As a result, some notion
of explanation is generated that approximates the model’s underlying predic-
tion process. Explanations may be textual, visual, example-based, or obtained
by simplifying the underlying prediction model [3]. An approach widely used in
practice is explanation by feature attribution [3]. Especially local explanations
based on Shapley values [27] are widespread [4]. Feature attribution frameworks,
such as SHAP1, merely provide visual explanations and leave their interpreta-
tion entirely to the user. As such, they are targeting mostly ML experts, such as
developers and data scientists. However, Kaur et al. [17] observed in their stud-
ies that even experts have an inaccurate understanding of how to interpret the
visualizations provided by SHAP. Even if they are correctly interpreted by ML
experts, they may still remain opaque to end users of XAI due to their techni-
cal illiteracy [6]. This applies especially to end users and subject-matter experts,
who often have little technical expertise in ML. Thus, their interpretability needs
require even more guidance and attention.

The main idea of this paper is to explore how to improve the accessibility of
Shapley explanations to foster a pragmatic understanding [23, 11] for end users
in XAI. We believe that an important aspect required to address the call for “us-
able, practical and effective transparency that works for and benefits people” [1]
is currently not sufficiently studied: providing end users of XAI with means of in-
teraction that go beyond a single static explanation and that are complemented
by explicit interpretations in natural language. As the human use of computing
is the subject of inquiry in HCI [22], our discipline “should take a leading role by
providing explainable and comprehensible AI, and useful and usable AI” [34]. In
particular, our community is well suited to “provide effective design for explana-
tion UIs” [34]. Our work contributes to the HCI community in two ways: First,
we present and describe the interactive explanation interface artifact SHAPRap
that targets non-technical users of XAI. Second, we report promising results
from a formative evaluation that indicates that our approach can foster under-
standing. With this work, we put our design rationales up for discussion with
our fellow researchers.

2 Related Work

We base our work in the interdisciplinary research field of XAI. It aims to make
black-box ML models interpretable by generating some notion of explanation
that can be used by humans to interpret the behavior of an ML model [31].
An ML model is considered a black-box if humans can observe the inputs and
outputs of the model but have difficulties understanding the mapping between
them. However, most works focus on computational aspects of generating expla-
nations while limited research is reported concerning the human-centered design
of the explanation interface. The social sciences suggest that the explanation
process should resemble a social process between the explaining XAI system
(sender of an explanation) and the human explainee (receiver of an explanation)

1 github.com/slundberg/shap
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forming a multi-step interaction between both parties, ideally leveraging natural
language [21]. Especially, in situations where people may be held accountable
for a prediction-informed decision, they may have multiple follow-up questions
before feeling comfortable to trust a system prediction. Abdul et al. emphasize
that interactivity and learnability are crucial for the effective design of explana-
tions and their visualization [1]. Widely used explainability frameworks, such as
SHAP, present their explanations in the form of information-dense visualizations,
however, they do not provide any interactivity nor guidance to support users in
their interpretation process. As a consequence, even experienced ML engineers
struggle to correctly interpret their output and often take them at face value [17].
Humans mostly explain their decisions with words [19]. Thus, it is intuitive to
provide end users of XAI with explanations in natural language. We found first
work that takes a human-centric perspective on XAI and encompasses interactiv-
ity and naturalness. Weld and Bansal [32] propose seven different follow-up and
drill-down operations to guide the interaction. Liao et al. [18] compile a catalog
of natural language questions that can technically be answered by current XAI
methods. Covering multiple of them under a ”holistic approach” allows users
to triangulate insights. Reiter [24] discusses the challenges of natural language
generation for XAI. Further, users have been shown to understand technical ex-
planations better if they are complemented by narratives in natural language [9,
10, 13]. For instance, Gkatzia et al. improved users’ decision-making by 44% by
combining visualizations with statements in natural language [13]. Sokol and
Flach [29] present Glass-Box an interactive XAI system that provides personal-
ized explanations in natural language. Similarly, Werner [33] presents ERIC an
interactive system that gives explanations in a conversational manner through
a chat-bot like interface. Forrest et al. [12] generate textual explanations from
feature contributions based on LIME [25].

3 SHAPRap

3.1 Scenario, ML Model, and XAI Method

Scenario. Our XAI system is centered in a decision-support situation in which
the human decision-maker is accompanied by an intelligent and interpretable
system. We put our study participants in the shoes of a private lender on a
fictional crowd lending platform. We centered our study in a crowd lending do-
main because we assumed that the participants can relate to decisions about
lending or investing personal money. Participants can see demographic informa-
tion, loan details, and credit history of individuals that request a loan on the
platform. Each request is accompanied by an ”AI-based intelligent prediction”
of the default risk, i.e., the probability that the borrower fails to service a loan
installment some time during the loan period. The prediction is introduced as
an ”AI-based” feature that is based on machine learning from historic cases. We
build on a tabular data set as many ML models deployed in practice build on
this type of data [4, 20]. We used the Loan Prediction2 data set which consists

2 datahack.analyticsvidhya.com/contest/practice-problem-loan-prediction-iii/
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of 614 loan requests with 13 columns. We relabeled two columns of the data set
to be consistent with our scenario3.

ML Model. We calculated the default risk prediction using a XGBoost classifier.
Tree-based ensembles, such as XGBoost, are widely used in many real-world
contexts because of their practicability [20]. However, they are considered black-
box ML models. To limit the cognitive load for participants we chose to train
our model on a subset of columns. We used only the seven categorical columns
(5 binary, 1 ternary, and 1 with four possible values). We trained a binary XGB
classifier with 100 decision trees and class probabilities as outputs. Other than
that, we used the default hyperparameters of the xgboost package. The accuracy
of the predicted default risk on our stratified validation set was 0.83.

XAI Method. In this work, we use the SHAP (SHapley Additive exPlanations) [20]
framework to compute the model’s feature contributions on a local and global
level. SHAP belongs to the class of additive feature attribution methods where the
explanation is represented as a linear function of feature contributions towards
an ML prediction. The contributions are approximated by slightly changing the
inputs and testing the impact on the model outputs. The framework unifies the
ideas of other feature attribution methods (such as LIME [25]) with Shapley val-
ues, which originate from game theory [27]. Shapley explanations quantify the
contribution of individual features values towards a prediction. For a single ob-
servation, they uniquely distribute the difference between the average prediction
and the actual prediction between its features [20]. For example, if the average
prediction over all instances in a dataset is 50% and the actual prediction for a
single instance is 75%, SHAP uniquely distributes the difference of 25 percentage
points across the features that contributed to the instance’s prediction. Despite
their vulnerability to adversarial attacks [28] and potential inaccuracies [14], we
consider Shapley explanations as relevant to end users for two reasons: (i) they
can yield local and global insights because Shapley values are the atomic units
of each explanation. As these units are additive, they may be aggregated over
multiple predictions or features to learn about the model’s global behavior, and
(ii) the consistent and model-agnostic nature of Shapley values allows XAI de-
signers to offer a uniform explanation interface to users even if the underlying
data or ML model changes.

3.2 Explanation Interface

Local Explanation View. The local explanation view resembles a spreadsheet-like
user interface that is overlaid with a heat map of Shapley values for each feature
of an instance. We support users’ rapid visual estimation of feature contributions
through preattentive processing based on a cell’s hue [15]. Each cell is shaded
depending on their direction and magnitude of contribution towards the predic-
tion (red increases the loan request’s risk of defaulting, while green decreases it).

3 we re-framed the Loan Status column to represent the default risk and the
Credit History column to represent a negative item on a credit report.
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Local Explanations
A heatmap presents the Shapley values 
for each feature of an instance and 
how it changes the default prediction.

Highlighting Outliers
Icons inform the user if the Shapley value 
for this prediction is very unusual 
compared with prior predictions.

Understanding Explanations in Context
The proximity of local and global explanations and 
the color-coding of unusual outliers allows users to grasp 
the consistency of the model’s prediction behavior.

Complementary Narratives
Many elements provide tooltips 
with narratives on mouse overs to 
support users’  interpretation.

Global Explanations
Box-plots present the 
distribution of Shapley 
values for each feature 
value in prior predictions.

Fig. 1. The components of the SHAPRap explanation interface

The local explanation view is contrastive [21] as it allows comparing variances
between feature contributions for individual instances (horizontal axis). Further,
as we show multiple local explanations next to each other, users can compare
variances or regularities within feature values across multiple instances (vertical
axis). To support this, users can sort each column by value to contrast instances
with identical feature values.

Global Explanations View. Local explanations yield how an ML model derives its
prediction for a single data instance. In contrast, global explanations help users
to get an intuition how a model derives its predictions over multiple instances or
an entire dataset (global sample). For each feature value, we provide a box-plot
of how it contributed to the prediction for all instances in the global sample. A
narrow box-plot indicates a more consistent prediction behavior, while a wider
box-plot indicates that the contributions vary for the same feature value. These
variances result from interactions with other features and may require additional
judgment (see next paragraph). The distribution of Shapley values in the global
view depends on the chosen global sample. If the sample is representative for the
population that the ML model will be confronted with in a particular domain,
the global view helps users understanding when its predictions are consistent
and therefore predictable and when they are not. In practice, the global sample
may be the entirety of predictions of an ML model after its deployment across
all users, or (if data sparsity requirements apply) a sample of predictions that an
individual user has previously been exposed to. Further, it would be possible to
let users customize the global sample (e.g., only instances above a certain pre-
diction threshold or instances with a particular feature value). In our prototype,
we displayed the distributions of the training and validation sets.

Highlighting Outliers. A post-hoc explanation by feature attribution approach,
such as SHAP, is always an approximation of the actual prediction behavior of
an ML model. Identifying inconsistent contributions and communicating them
to the user can improve their interpretation by making it easier to identify ex-
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planations that are more representative for the global model behavior. We built
around the concept of role-based explanations [5]. We classify each instance’s
feature value contribution into the roles normal (within the inter quartile range
(IQR) of the global sample), unusual (beyond IQR but within whiskers as defined
by ±1.5× IQR), and very unusual (outliers beyond the whiskers). We highlight
very unusual contributions in the global and local views as orange warning cir-
cles prompting the users to not generalize from these instances to the typical
prediction behavior of the model. Further, these outliers may serve as starting
points for analyzing feature value interactions. When hovering over an outlier,
we highlight features of this instance that are unusual and thus provide hints
which feature values may be interacting with each other.

Complementing Narratives: It is not easy to understand the concepts of additive
Shapley explanations just by looking at plots [17]. It might take some time to
interpret a plot, and the user is likely to be overwhelmed at first. Thus, we au-
tomatically created textual explanations from Shapley values using a template-
based approach and to support their interpretation of the local and global views.
We provide users with on-demand textual explanations in form of tooltips on
mouseovers for each feature box-plot, instance cell, outlier highlight, and column
header. Further, we provided background information about the local and global

Fig. 2. The explanation interface that participants were exploring.
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views during onboarding and accessible through help buttons during interaction.
This way, information redundancy can be avoided following the progressive dis-
closure paradigm [30].

4 Formative Evaluation

Method. We conducted a formative evaluation with 16 participants recruited
through the online platform Prolific. We recruited participants with at least a
graduate degree, English fluency, and an approval rate of 100%. 8 participants
self-identified as female, 8 as male and were in the age groups 18-24 (3), 24-35
(9), and 35-54 (4). 11 participants agreed to use spreadsheets at least weekly,
6 knew how to read box-plots, and 4 had practical experience with ML. Af-
ter introducing their role in the crowd lending scenario and the explanation
views, users were asked to freely explore SHAPRap for 10 to 15 minutes. Then,
they rated their level of understanding on a 7-point scale4 [8]. Afterwards, they
completed a forward prediction quiz [7]. Participants had to simulate the AI pre-
diction for 6 pre-selected loan requests with the help of the global explanation
view. We randomly chose 6 instances with unique feature value combinations
and at most two unusual contributions to assess participants’ understanding of
the typical prediction behavior. In the end, they rated the explanation satisfac-
tion scale [16] and answered three open questions. On average, participants took
28.1 minutes (SD=10.4 minutes) to complete the study and were compensated
£5 per completion (=£10.67/hour).

1 2 3 4 5 6 7
7-Point Level of Understanding
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6 Quiz: Random Guess
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Fig. 3. (left) 11 participants perceived they understood at least which features were
important for the prediction. 6 of them objectively proved their understanding via a
lower than random mean error in a forward prediction quiz. (right) Results from the
explanation satisfaction scale. The orange dots indicate the respective mean.

4 Level 1: I understand which features the AI has access to and what the AI predicts as
an output., Level 4: I understand which features are more important than others for
the AI prediction., Level 7: I understand how much individual feature values influence
the AI prediction and which feature values depend on others.
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Results. Overall, our results indicate mixed reactions but show effective gains
of pragmatic understanding for some participants. The explanation facility felt
overwhelming at first, but the complementary elements of global, local, and
textual explanations were considered as somewhat useful and sufficiently de-
tailed to get a general idea about the typical prediction behavior. After ex-
ploring SHAPRap, participants on average rated their understanding as ”I un-
derstand which features are more important than others for the AI prediction”
(mean=4.07, SD=1.67). However, applying this understanding in the quiz turn
out to be challenging for 6 participants as they scored worse than random guess
(expected error for a random guess was 1.8). For example, P5 ”understood what
the box representations meant but found it hard to actually apply this data to the
applicants. It might just require practice.” On a positive end, 6 participants rated
their gained understanding as at least level 4 and proved this with low mean er-
rors in the quiz (cf. Fig. 3). Participant P6 (no ML experience, mean error of
0.8) ”found the explanations quite complicated to follow but after studying the
table and explanations it became clearer as to which factors were being used to
measure the likelihood of defaulting on the loan.” P3 (extensive ML experience,
mean error of 0.33) found ”the explanations were detailed, and it was interest-
ing to see that credit history was the leading variable for default risk.” Multiple
participants appreciated the complementary nature of the natural language ex-
planations. Without them ”the graph was quite difficult to understand on its
own” (P6). P13 liked ”that the [textual] explanations are written simply, every-
one would understand it” and P9 appreciated that the ”language was simple”.
However, it seemed that narratives on a more aggregated or abstract level were
missing to understand the bigger picture. P4 found ”this kind of explanations
useful just to people who already have studied this but for people with different
educational background this kind of explanations are not enough.” P5 suggested
adding an executive summary for each loan request and the overall global view.
Further, some participants were overwhelmed by the non-linear behavior and in-
teractions of the ML model and seemed to expect to figure them out. P5 found
”the green and red increase/decrease for risk seemed simple and helpful at first,
but there seemed to be very random correlations between different aspects.” Sim-
ilarly, P10 stated: ”I am guessing there are so many intersecting correlations it’s
hard to read for a non-numbers person.”. This resonates with Rudin [26] that
the term explanation is misleading as it suggests a full understanding can be
reached even if we merely provide pragmatic approximations.

5 Summary

This paper presents the explanation interface SHAPRap, which supports end
users in interpreting local Shapley explanations in the global context of normal
and unusual model behavior. Further, it provides narratives using a template-
based approach. With our work, we contribute to the development of accessible
XAI interfaces that enable non-expert users to get an intuition about the prob-
abilistic decision behavior of black-box ML models.
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