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ABSTRACT

Physiologically-adaptive Virtual Reality can drive interactions and

adjust virtual content to better fit users’ needs and support specific

goals. However, the complexity of psychophysiological inference

hinders efficient adaptation as the relationship between cognitive

and physiological features rarely show one-to-one correspondence.

Therefore, it is necessary to employ multimodal approaches to

evaluate the effect of adaptations. In this work, we analyzed a mul-

timodal dataset ( EEG, ECG, and EDA) acquired during interaction

with a VR-adaptive system that employed EDA as input for adapta-

tion of secondary task difficulty. We evaluated the effect of dynamic

adjustments on different physiological features and their correla-

tion. Our results show that when the adaptive system increased

the secondary task difficulty, theta, Beta, and phasic EDA features

increased. Moreover, we found a high correlation between theta,

alpha and beta oscillations during difficulty adjustments. Our re-

sults show how specific EEG and EDA features can be employed

for evaluating VR adaptive systems.

CCS CONCEPTS

• Human-centered computing→ Human computer interac-

tion (HCI).
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1 INTRODUCTION

Physiological computing is an emerging field investigating how

physiological correlates of human affective and cognitive states

can be used as an input in adaptive systems to achieve specific

goals [24]. Virtual Reality (VR), in particular, is a fertile ground
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for such physiologically-adaptive systems as it allows for online

manipulation and adaptation of visualizations, virtual content, and

interactions [14] that would otherwise be impossible in physical

reality. Adaptive VR systems can optimize a set of behavioral, phys-

iological, and subjective measures by dynamically adjusting the

system’s current task parameters to improve performance and sup-

port users to maximize their amount of productive work or task

engagement. Physiologically-adaptive systems are now deployed in

various VR scenarios such as social VR, exergaming, and cognitive

training. Chiossi et al. [12] adapted the visual complexity of the

secondary task in the form of virtual agents based on electrodermal

activity (EDA). Campbell and Fraser [9] made use of variations in

heart rate (HR) for adapting the physical load of a VR exergame

[9], while Dey et al. [20] adjusted the amount and properties of

distractors in a visual search task based electroencephalographic

(EEG) alpha oscillations.

Central and peripheral physiological measures showed to be

able to quantify and predict workload [10, 58] across various VR

applications, such as learning [16], balance training [21] or ex-

ecutive tasks [48]. HR increased with mental workload [6] and

EDA discriminated across workload levels [42] and showed bet-

ter test-retest reliability than other physiological measures [44].

Furthermore, different EEG features behave differently upon the

involvement of specific attentional processes, i.e., external or in-

ternal attention [17, 40] or working memory [45], which might be

differentially allocated in complex tasks with different degrees of

workload [1, 15]. Based on the adaptive alpha response to task de-

mands, a decrease/increase in alpha oscillations has been associated

with cortical excitation/inhibition in WM [8, 35] and visual detec-

tion tasks [23]. Moreover, an increase in frontal-midline theta EEG

oscillations was reported when cognitive demands for updating, or-

ganizing and retrieving information were recruited [33, 55]. Finally,

beta oscillations have been shown to discriminate between differ-

ent task complexity levels [11, 25] and correlate with physiological

arousal [32, 43]. However, there is no universal physiological mea-

sure or method to index mental workload, as different physiological

measures have been shown to discriminate between different fea-

tures of task load [10]. Certain measures are more sensitive to task

demands, and others are more sensitive to task complexity.

Those challenges are shared with the ones of physiological com-

puting [24], such as psychophysiological inference, i.e., mapping a

physiological signal to a specific cognitive state of the user. There-

fore, combining different physiological measurements can allow

for a hybrid online evaluation of the adaptive system. Essentially, a
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second signal would be used to evaluate the success of the adapta-

tion, instead of just measuring the final effect of an unsuccessful

adaptation, i.e., a decrease in task performance. This solution has

been proposed to increase the reliability, proficiency, and utility

of Brain-Computer Interface (BCI) systems, otherwise known as

multimodal or hybrid BCIs [2, 30]. A first attempt was performed

by Labonte-Lemoyne et al. [38], which employed automatic facial

expression analysis as a second signal to evaluate dynamic difficulty

adjustments of a Tetris based on alpha and theta EEG oscillations.

However, they reported that the hybrid adaptive system did not

improve the participants’ experience as the hybrid system showed

more negative affect than the control condition.

Therefore, more work is needed to link behavioral performance,

workload, and physiological measures to investigate how to align

them for user’s personalization and adaptation effectively [53]. This

is specifically relevant for adaptive systems, as multimodal input

has been relatively overlooked [14] or mainly focused on alternative

channels for adaptation, i.e., speech and gesture recognition [34].

Thus, the goal of this work is to investigate which are the relation-

ships between a range of measures, extracted from physiological

signals such as EDA, ECG, and EEG, and evaluate the effect of VR

system adaptation on such measures. This is especially relevant

considering that different physiological signals might need different

time windows to react to adaptations, and therefore some might

be more suitable for faster paces of adaptations, while other might

need slower paces [28, 57]. To achieve this, we analyzed a dataset

encompassing multiple physiological signal recordings and phys-

iological adaptation. Specifically, we chose the dataset of Chiossi

et al. [12], which featured an adaptation of secondary task difficulty

based on EDA feature and co-registration of ECG and EEG data.

In this work, we shifted our focus from evaluating the adaptive

system to a detailed analysis of the relationship between the various

physiological measures, and the effect of VR system adaptation on

them. By measuring the impact of these changes over different

physiological measures, we intend to evaluate the user’s reaction to

the adaptation in real-time. Based on the logic of the physiologically-

adaptive VR system and previous work, we hypothesize that:

H1 When the adaptive system adjust for increased secondary task

difficulty, this should result in increased workload, resulting in

increased participant’s physiological arousal. We hypothesis

that to an increase in secondary task difficulty should corre-

spond an increase in physiological correlates of arousal, i.e.,

beta oscillations, skin conductance level (SCL) and average am-

plitude of non-specific skin conductance responses (nsSCRs).

H2 An increased secondary task difficulty could increase the work-

ing memory load of N-Back task, as indexed by increased theta

oscillations [55].

H3 An increased secondary task difficulty could increase the visual

load in the visual detection task, resulting in increased external

attention and therefore decreased occipital alpha oscillations

[40].

H4 As Heart Rate (HR) and Heart Rate Variability (HRV) increase

are related to increasing task [18] and visual attention demands

[5], we might expect increased HR and HRV when the system

adjusted for increased secondary difficulty.

2 DATASET PROCESSING

We utilized the dataset [13] from Chiossi et al. [12] containing be-

havioral, physiological (EEG, ECG, and EDA), and subjective data.

We refer to their paper for a detailed description of the task imple-

mentation and data collection. The dataset included 18 participants

(𝑀𝑟𝑎𝑛𝑔𝑒 = 23− 31;𝑀𝑎𝑔𝑒 = 27.9, 𝑆𝐷𝑎𝑔𝑒 = 2.9; male = 9, female = 9),

but only 15 are included as three participants were removed due to

technical issues. They recorded behavioral and physiological (ECG,

EDA, and EEG) during the task. They recorded EDA (at 250Hz)

via the GSR module by BrainProducts GmbH, Germany and ECG

(at 130 Hz) via a Polar H10 chest strap (Polar, Finland). EEG data

recording was performed at 250 Hz with a 7-channel dry electrode

cap embedded into the HTC VIVE headset from Wearable Sensing

(DSI-VR 300, San Diego, CA, USA) using the electrode positions:

FCz, Pz, P3, P4, PO7, PO8, Oz of the 10-20 system.

2.1 EDA data

We processed EDA data via the Neurokit toolbox [41]. Preprocess-

ing pipeline for EDA data encompassed first via a third-order But-

terworth filter with a 3Hz high-pass cutoff. Then, we applied a

nonnegative deconvolution analysis [4] to extract tonic and phasic

components. Specifically, we computed the average amplitude of

Non-Specific Skin Conductance Responses (nsSCRs) and the av-

erage tonic Skin Conductance Level (SCL). We identified nsSCRs

peaks using a .05 𝜇 S threshold value, upon guidelines by Society

for Psychophysiological Research [26].

2.2 ECG data

We evaluated ECG activity in the time domain, focusing on HR and

HR. As for EDA data, we used the Neurokit Python Toolbox [41].

We first filtered the ECG signal by the Finite Impulse Response

(FIR) band-pass filter (3–45 Hz, 3rd order), and then segmented by

Hamilton’s method [31] to identify the QRS complexes and extract

mean Heart Rate (HR) and Heart Rate Variability (HRV), defined as

the root mean square of the successive differences (RMSSD).

2.3 EEG data

We extracted the EEG raw data from the LSL input and processed it

via the MNE Toolbox [29]. EEG data were recorded with a sampling

frequency of 250Hz from dry electrodes placed on Fz, P3, Pz,P4, PO7,

Oz, PO8 locations (10/20 system), with reference set at linked ear-

lobes. The signal was initially notch-filtered at the power frequency

of 50 Hz and then band-passed between 1 and 70 Hz to remove high

and low-frequency drifts. We then performed a visual inspection

to identify and exclude corrupted channels. Finally, we referenced

the data to the common average reference (CAR). Finally, we com-

puted an independent component analysis (ICA) implemented in

MNE [3] to identify and correct artefactual components with an

automatic procedure via the MNE plugin "ICLabel" [39, 50]. We

then analyzed the preprocessed EEG data in three frequency bands:

Theta (4–8 Hz), Alpha (8–12 Hz), and Beta (12-30 Hz), usingWelch’s

method [60]. Alpha oscillation was computed for posterior sites,

i.e., PO8, PO7, and Oz electrodes. Theta and Beta oscillations were

extracted from midline sites, i.e. Fz and Pz. These values were then

log transformed to achieve normal distributions [52]. Moreover, we

computed the ratio of midline theta activity’s absolute power to
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posterior alpha activity’s absolute power as an implicit measure of

workload [7, 27].

2.4 Experimental task

Participants started the experiment upon informed consent signing.

The experiment required participants to be engaged in a dual-task

paradigm, encompassing a VR N-Back task (N=1) (primary) and a

visual detection (VD) task (secondary), where they had to select

Non-Playable Characters (NPCs) without a ticket. NPCs entered

and walked past the participants’ surroundings with or without a

ticket. Participants had to select NPCs without a ticket and click on

them with the trigger of the HTC VIVE controller. Specifically, par-

ticipants experienced six conditions; five non-adaptive conditions

had fixed Stream of 7, 22, 37, 52, or 67 NPCs per minute entering

the scene and one adaptive condition. In the adaptive condition,

the Stream was adapted based on user’s arousal as measured using

EDA. In more detail, Chiossi et al. [12] acquired a baseline EDA

baseline recording and computed the baseline EDA tonic compo-

nent. Then, in the adaptive condition, they adapted the secondary

task difficulty based on the variation of the tonic EDA component

every 20 seconds. Therefore, secondary task difficulty adjustments

were performed in the 20s-window by either (I) adding 4 NPCs to

the scene, i.e., increasing the visual complexity of the VD task, if

they detected that the participants showed a decreased EDA tonic

component as compared to the baseline or (II) removing 2 NPCs

from the scene, i.e., decreasing the visual complexity of the VD task,

if the online EDA tonic component was increased when compared

to the baseline, reflecting a state of higher arousal.

2.5 Data Analysis

Our analyses examined physiological indicators of cognitive work-

load and arousal collected while participants were jointly engaged

in a visual WM task and in a visual detection task. To evaluate the

effect of visual complexity adaptations, we focused our analysis on

the adaptive condition, segmenting EDA, ECG, and EEG signals

into 20 seconds epochs based on when the Stream of NPCs was

adapted. Specifically, two variations in the Stream, based on the

adaptation algorithm : (I) Increase: based on decreased arousal state

compared to baseline; (II) Decrease based on increased arousal state

as compared to baseline. The VR-physiologically adaptive system

performed an average of𝑀 = 4.89 Increase (𝑆𝐷 = 1.691) while the

Streamwas decreased on average of𝑀 = 5.06 (𝑆𝐷 = 1.89). Depend-

ing on the normality testing via Shapiro-Wilk test, we performed

paired t-test for normally distributed distributions and Wilcoxon

signed-rank test for not-parametric distributions. Second, we com-

pute Pearson correlation to investigate relationships between the

extracted physiological features.

3 RESULTS

3.1 Statistical Analysis

3.1.1 EDA Results. Results of SCL, and the average amplitude of

nsSCRs are depicted in Figure 1a. Skin Conductance Level (SCL):

Given a violation of normality (𝑊 = .83, 𝑝 < .001), a Wilcoxon

signed-rank test did not detect any significant differences in the SCL

when participants experienced a Increase compared to a Decrease
(𝑊 = 359, 𝑝 > .05). Non-specific Skin Conductance Responses
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Figure 1: EDA and ECG results. On the left, we depict the

results for Skin Conductance Level (SCL) and average nsS-

CRs amplitude. On the right, we show results for Heart Rate

(HR) and Heart Rate Variability (HRV). The only significant

difference is detected in the nsSCRs, which are increased in

the Increase.

(nsSCRs): Similarly to the SCL, also the average amplitude of the

nsSCRs was not normally distributed (𝑊 = .87, 𝑝 < .05). Therefore,

a Wilcoxon signed-rank test showed that nsSCRs showed an in-

creased amplitude when participants were exposed to a Increase
when compared to a Decrease (𝑊 = 616, 𝑝 < .001).

3.1.2 ECG Results. We display the results on ECG measures, i.e.,

Heart Rate and Heart Rate Variability, in Figure 1b. Heart Rate:

Heart rate (HR) showed a normal distribution (𝑊 = 0.97, 𝑝 > .05),

a paired t-test did not reveal any effect of Stream on HR. (𝑡 = −.62,
𝑝 > .05). Heart Rate Variability: As HR, also HRV was normally

distributed (𝑊 = 0.92, 𝑝 > .05) and not influnced either by Increase
or Decrease (𝑡 = .812, 𝑝 > .05).

3.1.3 EEG Results. The results from the comparison between the

variations in Stream on EEG features, i.e., Alpha, Theta, and Beta

oscillations, are shown in Figure 3 and topographic distribution
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Figure 2: Topographic maps for the increase and decrease

variations of secondary task difficulty for the EEG oscilla-

tions of interest. View is top looking down with nose at top.

in Figure 2. Here, we supplement our results with the ratio of

Alpha and Theta oscillations. Alpha Band: The alpha power was

normally distributed (𝑊 = 0.96, 𝑝 > .05). However, a paired sample

t-test did not reveal a statistically significant difference between

Increase and Decrease of Stream (𝑡 = 1.1, 𝑝 > .05). Theta Band:

Average Theta power showed a normal distribution (𝑊 = 0.98,

𝑝 > .05) and showed significantly increased power in the Increase
as compared to the Decrease (𝑡 = 2.06, 𝑝 < .05). Beta Band: Beta

power distribution was not normally distributed (𝑊 = .92, 𝑝 <

.05). Therefore, we submitted Beta scores to a Wilcoxon signed-

rank test, which showed a significantly increased Beta power for

a Increase (𝑊 = 440, 𝑝 < .05). Alpha-Theta Ratio: The ratio

between averaged Alpha and Theta powers lead to a not-normal

score distribution (𝑊 = 0.91, 𝑝 < .05), a Wilcoxon signed-rank test

did not detect any difference between the two Stream variation

(𝑊 = 337, 𝑝 > .05).

3.1.4 Behavioral Performance. Here, we report the results of the
variation in performance when the Stream was either increased

or decreased for both primary (N-Back) and secondary (Visual

Detection) tasks. Results are shown in Figure 4. Primary Task

Performance: Accuracy scores did not show a normal distribution

(𝑊 = .925, 𝑝 < .05). Here, aWilcoxon signed-rank test did not show

any further significance (𝑊 = 103.5, 𝑝 > .05). Secondary Task

Performance: Secondary task accuracy was normally distributed

(𝑊 = .982, 𝑝 < .05). However, as primary task performance, change

in Stream did not show any significant change (𝑊 = 301, 𝑝 > .05).

3.2 Correlation Analysis

The correlation matrix depicted in Figure 5 displays the Pearson

coefficients between EDA, ECG, and EEG measures and behavioral

performance in the N-Back (primary) and VD (secondary) tasks

together. Results suggest that 21 out of 44 correlations were sta-

tistically significant and were greater or equal to 𝑟 = .35, 𝑝 < .05.

Correlation between Beta and Theta oscillations was reported to

be strongly positive (𝑟 = .96, 𝑝 < .001), while Alpha oscillations

strongly significantly correlated with Theta (𝑟 = .7, 𝑝 < .005) and
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Figure 3: EEG oscillations results. In order, we present the

differences in alpha, theta and, beta oscillations in the two

variations of secondary task difficulty. In the last plot, we plot

the A/T Ratio. Beta and Theta oscillations are significantly

increased in the Increase.

Beta (𝑟 = .71, 𝑝 < .005). Regarding EDA features, SCL, and nsS-

CRs amplitude were significantly positively correlated (𝑟 = .63,

𝑝 < .001), and similarly SCL strongly correlated with Alpha oscilla-

tions (𝑟 = .75, 𝑝 < .005). Finally, HR and HRV showed a significant

negative correlation (𝑟 = −.683, 𝑝 < .001). HR showed low posi-

tive correlations with Theta (𝑟 = −.417, 𝑝 < .05), with A/ T Ratio

(𝑟 = .352, 𝑝 < .001) and negative with Beta oscillations (𝑟 = −.403,
𝑝 < .001). Finally, HRV showed a moderate positive correlation

with an EEG arousal correlate, i.e., Beta (𝑟 = .544, 𝑝 < .001) and

low positive correlations with Theta (𝑟 = .493, 𝑝 < .05) and A/T

Ratio (𝑟 = .352, 𝑝 < .05).

4 DISCUSSION

In this work, we evaluated the effect of secondary task difficulty

adaptation over different physiological measures coregistered dur-

ing interaction with a VR physiologically-adaptive system.
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Figure 4: Behavioral performance results. Boxplots for the

accuracy of the primary task (N-Back) and secondary task

(Visual detection task). No significant differences are detected

in the two measures.
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Figure 5: Correlation Matrix. Colors indicate the strength

of Pearson correlation coefficients. HR = heart rate; HRV =

Heart Rate Variability; SCL = Skin Conductance Level; nsS-

CRs = average amplitude of the nonspecific skin conductance

responses; Alpha = average Alpha power; Theta = average

Theta Power; Beta = average Beta power; A T Ratio = ratio

between average Alpha and average Theta power; VD Acc.

= average performance in the visual detection task; N-Back

Acc. = average performance in the N-Back task.

We first hypothesized (H1) that Increase in task difficulty for

the VD task would have increased the arousal response in the

form of beta oscillations and EDA measures, i.e., SCL and nsSCRs.

We partially verified this hypothesis by finding increased arousal

for beta and nsSCRs, but not for SCL. This difference in the EDA

can be explained by the fact that nsSCRs are a phasic component

and therefore show faster responses to environmental stimuli than

its tonic counterpart and similar time dynamics as brain patterns

[51]. We can therefore argue that for evaluation purposes, a phasic

component might be a better candidate than tonic components

to evaluate physiological reactivity to adaptations that occur at

a fast pace (∼ 20 s). Similarly, we can draft a similar conclusion

regardingH4, where ECG-relatedmeasures, i.e., HR andHRV, failed

to discriminate between the two levels of secondary task difficulty

adaptation. HR and HRV are able to discriminate to different task

demands but only at the overall task level. In fact, HR discriminated

between highest and lowest task load but in two different conditions

[56], or between tasks but not for task difficulty [59].

Regarding results from EEG oscillations, we verified H1 and

H2, but not H3. We replicate results from Deiber et al. [19], which

found increased beta and theta oscillations with increasedWM load.

Thus, an increased VD task difficulty impacted the WM load over

the N-Back task as participants had to allocate more attentional

resources to the VD task and put more effort into updating the WM

information. Theta oscillations are in fact, one of the most robust in-

dicators of WM engagement and cognitive control [36, 54, 55]. This

result is also supported by the strongest correlation we reported

in our analysis between beta and theta. Alpha oscillations, instead,

were not significantly affected by the difficulty adjustment. We

can explain this as an insufficient increase in the visual load given

the adaptation parameters chosen by Chiossi et al. [12] (-2 / +4

variation in visual complexity). Alpha increase has been classically

related to increasing visual and attentional load [37, 49], even in

adaptive systems [20]. Hence, future adaptive systems aiming at ad-

justing visual complexity and employing alpha oscillations should

optimize adaptation parameters with larger difference. Although

prior research has been exploring optimizing system behavior based

on human inputs [46], our results are related to the evaluation of

difficulty adjustments; such outcomes should motivate future re-

searchers to investigate optimizing physiological features [22] by

adapting system parameters, which could be a more reliable mea-

sure that complements subjective functions [47] using Bayesian

optimization.

Finally, correlations provided two specific interesting results,

showing high correlations between Theta and Beta oscillations,

SCL and Alpha oscillations and moderate between SCL and nsSCRs

amplitude. Even though our results are related to the evaluation

of difficulty adjustments, such outcomes should motivate future

researchers to investigate these features as input and to improve

adaptation algorithms in hybrid systems.

5 CONCLUSION

We presented an explorative analysis and evaluation of an exist-

ing dataset acquired during an interaction with a physiologically-

adaptive VR system. Our results show how theta, beta and nsSCRs

are promising indicators for evaluating the outcomes of adapta-

tions. While evaluating a variety of physiological data as input for

adaptation is undoubtedly a fundamental research goal, multimodal
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evaluation is promisingly emerging. Further research is needed to

explore the use of multiple physiological measures for adaptation

and to optimize other aspects of the system, such as the timing and

duration of system adaptations.
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