
Citation: Chiossi, F.; Welsch, R.; Villa,

S.; Chuang, L.; Mayer, S. Virtual

Reality Adaptation Using

Electrodermal Activity to Support the

User Experience. Big Data Cogn.

Comput. 2022, 6, 55. https://

doi.org/10.3390/bdcc6020055

Academic Editors: Valentin Schwind

and Thomas Kosch

Received: 1 April 2022

Accepted: 5 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Virtual Reality Adaptation Using Electrodermal Activity to
Support the User Experience
Francesco Chiossi 1,* , Robin Welsch 1,2 , Steeven Villa 1 , Lewis Chuang 3 and Sven Mayer 1

1 Institute for Informatics, LMU Munich, 80337 Munich, Germany; robin.welsch@um.ifi.lmu.de (R.W.);
steeven.villa@um.ifi.lmu.de (S.V.); sven.mayer@um.ifi.lmu.de (S.M.)

2 Cognitive Psychology and Human Factors, Institute of Psychology, Faculty of Behavioural and Social Sciences,
Chemnitz University of Technology, 09107 Chemnitz, Germany

3 Humans and Technology, Institute for Media Research, Faculty of Humanities, Chemnitz University of
Technology, 09111 Chemnitz, Germany; clew@hrz.tu-chemnitz.de

* Correspondence: francesco.chiossi@um.ifi.lmu.de

Abstract: Virtual reality is increasingly used for tasks such as work and education. Thus, rendering
scenarios that do not interfere with such goals and deplete user experience are becoming progressively
more relevant. We present a physiologically adaptive system that optimizes the virtual environment
based on physiological arousal, i.e., electrodermal activity. We investigated the usability of the
adaptive system in a simulated social virtual reality scenario. Participants completed an n-back task
(primary) and a visual detection (secondary) task. Here, we adapted the visual complexity of the
secondary task in the form of the number of non-player characters of the secondary task to accomplish
the primary task. We show that an adaptive virtual reality can improve users’ comfort by adapting
to physiological arousal regarding the task complexity. Our findings suggest that physiologically
adaptive virtual reality systems can improve users’ experience in a wide range of scenarios.

Keywords: adaptive interface; biocybernetic control loop; physiological computing; social VR

1. Introduction

Virtual Reality (VR) has, in the last decade, grown from being a niche technology to one
that we see employed across diverse application domains, including work [1], training [2],
and education [3]. VR can provide an immersive simulation of the physical environment
enriched by digital artifacts, providing more control over environmental variables. On
the one hand, developers can achieve higher realism by manipulating environmental
parameters, such as increasing the number of polygons, texture details, lighting realism,
and animation [4]. This even allows for creating realistic Non-player characters (NPCs),
such as pedestrians or co-workers, with human-like agent behavior. Thus, adding a social
component to the virtual environment [5]. On the other hand, increasing the immersive
properties of VR simulations could introduce complexity that requires more user effort
to process [5–8]. This could diminish users’ cognitive spare capacity to execute primary
tasks. In other words, highly immersive VR scenarios could overload the user, potentially
hindering their ability to achieve their objectives by distracting, or even overwhelming,
the user.

Researchers have shown that experienced cognitive workload can influence human
physiological activity [2,9–11]. For instance, when we perform cognitively demanding tasks,
the physiological arousal is heightened, manifesting in increased physiological activity
such as skin conductance level (SCL) [12], heart rate [13], or pupil dilation [14]. This has
given rise to the plausible notion that VR complexity can be adapted in real-time [15] in
response to the user’s physiological activity in order to maintain an optimal physiological
arousal level and, hence, the optimal performance level [16] within the VR scenario.
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This aligns with the Motivational Intensity Model (MIM), which describes a ’tipping
point’ where allocated cognitive resources decline with overload or unachievable de-
mands [17]. The MIM model theorizes that increased cognitive effort due to increased task
demands results in increased engagement until the user reaches overload, and task disen-
gagement occurs. Here, physiological measures of mental effort can detect this [18,19]. With
this in mind, biocybernetic control loops could prevent users from reaching cognitive under-
or overload by dynamically adjusting the source that induces arousal [20]. Such systems
could accept real-time inputs from physiological sensors, such as electroencephalography
(EEG) [21], electrodermal activity (EDA) [22], or electrocardiography (ECG) [21,23], and
adapt task difficulty accordingly. EEG [24] and ECG [25] contributed to the physiological
underpinnings of MIM within biocybernetics loops. Pope et al. [26] developed a pioneering
version of such a system in which EEG signals were exploited to adapt the automation
level in a simulated aviation task to support task engagement and avoid attentional drops.
Muñoz et al. [27] implemented a training scenario to support the users’ readiness level
by adapting the task difficulty based on the computation of R-to-R intervals and ECG
frequency domain parameters. Although EDA is relatively unexplored, in our previous
work [28] on which this work is based on, we presented an initial investigation into real-
time adaptation exclusively using EDA in a Social VR scenario of which this paper presents
a more in-depth analysis.

Social environments are an emerging trend in VR that is especially critical in sup-
porting remote collaborations [5,29,30]. Social VR leverages the flexibility of VR to enable
multiple players and NPCs to interact. The inclusion of multiple agents can increase en-
vironmental complexity. In addition, it can also lead to social crowdedness, whereby the
violations of social norms (e.g., personal space) [31–33] could induce heightened physiolog-
ical arousal [34,35]. In the following, we use social crowdedness in a Social VR environment
to induce arousal [32,36]. Such environments typically have a primary task, e.g., learning,
training, or group conversations, while other characters perform their task nearby. Here,
we present an online physiologically-adaptive VR system, which adjusts the secondary task
based on the users’ EDA, allowing for optimal performance of the primary task. In detail,
the user is performing an n-back task as the primary task, simulating a high cognitive load
such as training or work. The secondary task is to engage with a stream of non-player
characters bypassing in close proximity. By adapting the stream (number of non-player
characters per minute), we change the visual complexity, which is itself linked to task
difficulty [6,7].

In this paper, we present an evaluation of our novel physiologically adaptive VR
system that aims to increase user satisfaction by optimizing the secondary task’s complexity
to maintain an optimal physiological arousal state. Our system recognized changes in EDA,
which we treat as an index for arousal and cognitive workload. Based on this, the system
then adapts the stream of non-player characters of a secondary task in real-time to minimize
EDA changes. With this, we make the following contributions: (1) we investigated the
feasibility and usability of VR adaptation based on EDA changes; (2) we show that online
adaptation of the VR environment improves the user’s perceived workload compared to a
non-adaptive system; and (3) we provide the recorded dataset of behavioral performance as
well as the EDA, EEG, and ECG physiological signals. With this, our study offers evidence
that physiologically adaptive VR environments can improve the experience by reducing
the complexity of the surroundings, which allows the user to focus on the primary task.

2. Related Work

In the following, we review three areas essential for this work: (1) current social virtual
reality experiences; (2) electrodermal activity and its link to cognitive workload; and (3)
previous physiologically adaptive systems.
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2.1. Social Virtual Reality

Social VR is an emerging research topic [29,37,38] with many facets and applications.
Generally, all instances of Social VR support social interactions between multiple users [39]
for an initial application taxonomy. Current investigations mainly focus on how the user
characters should be displayed [5,40,41] and how to facilitate user interactions with each
other [42], which are considered critical factors for a good user experience [43]. Established
findings from real-world proxemics often generalize Social VR experiences [29,44]. Hecht
et al. [44] could show that the personal space is shaped circularly in physical and virtual
environments. McVeigh-Schultz et al. [45] could show that establishing boundaries in Social
VR is important [31]. Thus, they need interactions that are genuine to Social VR ,e.g., by
restraining close-by VR teleportation. Therefore, characters respecting a personal space can
be considered as important in VR as it is in physical spaces, and Social VR needs interaction
concepts that can take into account human social capabilities to enable a satisfactory user
experience.

Note, however, that not only proxemics is relevant, but also that the level of crowded-
ness affects how people feel with respect to their environment [32]. In VR, crowd simulation
studies show that people restrain their space when walking in a crowd [46]. Dickinson
et al. [47] show that crowdedness produces negative feelings and can, thus, disrupt the user
experience in Social VR. Moreover, fine-grained experimental work from Llobera et al. [36]
can put this into context by experimentally varying the number of NPCs approaching in
VR. Here, four characters approaching produces more physiological arousal compared
to one. In line with this, Latoschik et al. [5] describe that the number of users in the VR
scene impacts subjective performance such as fluidity, synchrony, and, more importantly,
annoyance in the user when displaying more than 25 social avatars.

While it is clear that crowded Social VR scenarios can increase arousal and affect the
user experience, there are no interaction concepts that can mitigate this effect or define
what the optimal number of characters is per unit of virtual space. Nevertheless, from a
social-crowding perspective, we can infer that more users in a scene increase the user’s
arousal, which, in turn, induces overload [32,36,47]. Finally, crowdedness inherently raises
the visual complexity of the scene, defined as the amount of detail, clutter, and objects in a
scene [48].

2.2. Electrodermal Activity and Cognitive Workload

When cognitive resources are allocated, they impact physiological arousal in the form
of increased activation of the sympathetic branch of the autonomic nervous system [49,50].
This allows for the implicit evaluation of the demands posed by a VR environment to
users [51]. Across sympathetic peripheral physiological measures, EDA represents a
noninvasive, easy-to-use, and robust method for detecting the effect of cognitive workload
on arousal [52]. It provides information related to availability or decrease in efficiency of
cognitive resources such as workload detection [53], task engagement [54], and stress [51].
In particular, the relationship between workload, engagement, and arousal is consistent
with the MIM [17], where optimal task engagement correlates with increased arousal state
just before it drops, resulting in disengagement of the task at hand, cognitive overload,
and hypoarousal [55–57]. As an index of physiological arousal, EDA is characterized by
two components: phasic and tonic. Phasic activity is indexed by rapid skin conductance
responses (SCRs) reflecting discrete and stimulus-specific responses for the measurement
of novelty, significance, and intensity of the stimuli used [58]. Tonic activity has a slower
and increased response; it is an index of the general state of parasympathetic activation.

Measures of tonic activity are particularly suitable for assessing the effect of continuous
stimuli (such as long-duration stimulations or tasks) and have, therefore, been used to
assess changes in arousal under conditions of high cognitive load or stress in HCI. Son and
Park [59] estimated a driver’s cognitive workload with SCL that correlated with behavioral
performance. Mehler et al. [60] showed how SCL correlated with changes in cognitive
workload at different points in a demand curve, reflecting the spare capacity of participants’
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cognitive resources. Fairclough and Venables [12] reported that high stress increased
sympathetic activity, as indexed by tonic activity, in a high-demand multi-component task.
Similarly, when increasing task load to an effective task in immersive virtual reality, tonic
activity increased in conditions of high workload [61]. In conclusion, EDA can be widely
applied to physiologically estimate and monitor a user’s workload [62].

2.3. Physiological Adaptation

A physiologically adaptive system can monitor its user’s physiological activity and
iteratively adapt its interactions with the user to optimize some aspect of user performance
or user experience. This approach is inspired by classic control theory [63], which en-
compasses physiological data acquisition and processing (i), transformation into a system
response (ii), which then shapes the future or expected psychophysiological response from
the user (iii). Specifically, biocybernetic control loops employ negative-control loops, where
deviations from the optimal state are detected and exploited to cue changes in the system
to promote a desirable user’s state [64]. Biocybernetic loops found applications in different
domains, such as cockpit automation [65], computer-based learning [66], and robotics [67].
Nevertheless, VR applications are relatively overlooked, with a small number of exceptions,
e.g., [68]. For instance, Stach et al. [69] inferred and supported the user’s motivation from
Heart Rate Variability to provide an optimum exercise protocol in an immersive exergame.
Alternately, adapting task difficulty based on peripheral and central measures of arousal
can support task engagement in a Virtual Reality Stroop Task (VRST) [70] or in a virtual
object selection task to increase training effects based on EEG alpha frequency [71].

In the context of the cognitive workload, increasing visual complexity can induce
cognitive overload, which is reflected by increased physiological arousal [72–74]. Thus,
adapting the environment to optimize the user’s arousal can support the user in processing
information and executing actions. Visual complexity adaptation based on users’ sympa-
thetic arousal can support the user experience in various VR applications, ranging from
simulator sickness [75] to VR productivity and interruption management [76].

The goal of this paper is to evaluate if online dynamic adjustments of visual complexity
based on a peripheral physiological measure of arousal can support user experience and
performance as compared to stable levels of visual complexity in a Social VR scenario.

3. Online Physiologically-Adaptive System

Here, we propose an online adaptation of virtual environments based on EDA. More
specifically, we developed a real-time physiologically adaptive system based on the user’s
arousal as indexed by EDA. This system determines if its user can handle more visual
complexity or reduce complexity to optimize cognitive load. Consistent with prior liter-
ature [77], the online signal processing pipeline derives a mean EDA value by applying
a 20-s median moving-average filter that replaced each data point with the average of its
20 neighboring data points.

To enable the user-dependent adaptation of the system, the physiologically-adaptive
system is initialized with a baseline recording b0 · · · bi. For later baseline comparison, we
calculate ∆b as follows (Note: we denoted the mean value as x):

∆b = bj−i · · · bi − b0 · · · bi, (1)

where i is sampleRate∗windowBaseline and j is sampleRate∗ timeBaseline . The baseline period
is used to compute the baseline slope. In our implementation, this is the slope between the
averaged values of the first and last 20 s over the three minutes using the aforementioned
signal processing pipeline.

∆s = sj−i · · · si − s0 · · · si, (2)
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where i is sampleRate ∗ windowOnline and j is −sampleRate ∗ window. Thus, this determines
the current slope of physiological arousal. Due to the other external influences, such as
baseline arousal of the virtual environment, this alone is not sufficient for adaptation.

In the final step to determine how to adapt the virtual environment, we compare the
baseline measurement ∆b to the online measurement ∆s. The difference then determines
how to adapt the environment, which we define as follows:

adaptation(∆s) =

{
increase of Stream if ∆s ≤ ∆b − t
decrease of Stream if ∆s ≥ ∆b + t

(3)

where t is the threshold parameter that enables the physiological-adaptation system to
work with a delay, counteracting high-frequency changes in EDA and, thus, preventing
rapid and unstable adaptations. Moreover, for a stable adaptation, Equation (3) is only
used for adaptation every 20 s.

4. User Study

We conducted a study to evaluate whether our physiologically adaptive system can
support users’ comfort and usability in the virtual environment. To do so, participants
performed a visual working memory n-back task (primary task) [78] and a visual detection
task (secondary task). Both tasks were simulated as real-world activities in a virtual
environment. While the primary task simulates a high workload task, the secondary
task simulates situations where the user is distracted by, for instance, other players [38],
notifications [79], or graphical artifacts [80].

In the n-back (i.e., 1-back) task, participants determined if the color of a presented
sphere matched the color of the last presented sphere, see Figure 1. Participants were
presented with colored spheres that they had to place in either a left or right bucket
depending on their color (mis)match with the previous sphere. Spheres were either green,
red, blue, or black ([81]). A sound cued the appearance of each sphere. Then the participant
had to pick up the sphere within 4 s; otherwise, it would count as an error. New spheres
would appear either after 4 s or when the current sphere was placed into one of the two
buckets. We counted missing a sphere as an error.

In the secondary tasks, we asked participants to inspect the museum tickets of a
STREAM of virtual NPCs. In detail, participants were required to distinguish museum
visitors who had a ticket either in their left or right hand from those without a ticket.
Museum visitors were represented by virtual NPCs that were walking past the participant
on either the left or right side. We set the percentage of virtual NPCs who have no ticket
to be 15%, which we found to be a suitable value in the informal pilot tests for this task.
These had to be identified by clicking on them with the right input controller. All NPCs
had randomized visual characteristics (i.e., hair, shirt color), and their shirt color turned
red when clicked on. The NPCs’ distance from the user was kept at a minimum of 2.5 m to
avoid proxemics confounds with the level of arousal of participants [36].

The five non-adaptive conditions had fixed STREAMS of 7, 22, 37, 52, or 67 NPCs per
minute entering. In the adaptive condition, the system adapted the number of NPCs and
added more NPCs when the physiological activity of the user did not indicate physiological
arousal or removed NPCs. We randomized the six test conditions. Participants were
not aware whether they would experience the adaptive condition or one of the non-
adaptive conditions.
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Figure 1. Game view capture of a single trial of the VR n-back (n = 1) and the visual detection tasks.
Participants were required to place a sphere into the corresponding bucket. If the sphere matched
the color of the previous sphere one step before, participants placed it into the right bucket. If not,
the sphere had to be placed into the left bucket. The visual detection task required participants to
monitor if visitors of a museum either possessed a ticket to enter the building or not. To signal a
missing ticket after detection, the participant had to select the NPC (see Supplymentary Materials).

4.1. Participants

Eighteen volunteers (Mrange = 23− 31; Mage = 27.9, SDage = 2.9; male = 9, female = 9)
participated in our study, of which we had to exclude three from the analysis as the EDA
electrodes lost contact. We recruited the participants using our institutional mailing lists and
social networks and using convenient sampling. Exclusion criteria required participants
to not experience intense physical activity or consume any caffeine or nicotine in the
3-h pre-study period [82]. None of the participants reported a history of neurological,
psychological, or psychiatric symptoms. They were also required to submit a negative test
for SARS-CoV-2 within 48 h prior to participation.

4.2. Apparatus

We designed the virtual environment for the study in Unity (Version 2019.4.24f1),
see Figure 1, and presented it via an HTC VIVE VR headset with a display resolution
of 2160 × 1200 pixels, refresh rate of 90Hz, and an average field of view of 110°. The
environment used for the experiment is a replica of the Neue Nationalgalerie in Berlin,
Germany. The 1-back task takes place in the entrance of the building, see Figure 1 and, for
the detection task, agents with and without tickets in their hands entered the entrance.

We performed the EDA data recording according to the guidelines by Babaei et al. [82].
We placed Ag/AgCl electrodes (7 mm surface diameter) on the participant’s non-dominant
hand (inner distal phalanges of the index and middle fingers). An electrolyte solution (0.5%
NaCl) was applied to the acquisition site to ensure proper hydration and to minimize the
effect of individual differences. We attached the electrodes 10 min later, with double-sided
adhesive collars. We exploited the exosomatic recording principle with a direct current
(DC) of a constant 0.5 V voltage.

We used Equation (3) to adjust the number of NPCs in the adaptive condition. In detail,
when the EDA slope computed in the 20-s window was greater than the baseline slope
added to the threshold slope, two NPCs were removed from the scene. On the contrary,
if the EDA slope was lower, four NPCs were additionally spawned. A fixed range of



Big Data Cogn. Comput. 2022, 6, 55 7 of 19

7–67 NPCs was maintained regardless of the participants’ measured physiological activity.
These settings were determined empirically during a number of test sessions.

4.3. Measurements

We recorded three physiological measurements: (1) EDA signal via the LiveAmp
amplifier (BrainProducts GmbH, Germany), using a 250Hz sampling rate; (2) ECG (Polar
H10 chest strap, Finland) at 130 Hz; and (3) EEG signal (DSI-VR 300, Wearable Sensing, San
Diego, CA , USA) at 250 Hz. Physiological data were streamed and recorded within the
Lab Streaming Layer framework (LSL) (https://github.com/labstreaminglayer/, accessed
on 1 April 2022). We only used the EDA signal as an indicator for physiological arousal.
In addition, performance accuracy metrics were computed for both tasks. For the 1-back
task, errors were represented by the proportion of times the sphere was placed in the
wrong bucket. For the visual detection task, errors were represented by missing an NPC or
selecting an NPC with a ticket.

Responses on three standardized questionnaires and two custom Likert items were
collected to evaluate user experience and workload. First, raw subjective workload mea-
sures (NASA-TLX [83,84]). Second, perceived gamefulness of system use (Game Experience
Questionnaire (in-Game Core Module) [85]). Here, we only recorded the subscales on Com-
petence, Immersion, and Positive Affection allowing for content validity [86]. Third, the
Fast Motion Sickness scale (FMS) to control for motion sickness [87]. Finally, participants
rated two general usability statements on a 5-point Likert scale (strongly disagree - strongly
agree); questions: “I would like to use the system in the future,” and “The flow of the
people was appropriate”.

4.4. Procedure

Upon arrival, we briefed the participants on the study procedure, and we answered
any open questions, which were followed by signing the informed consent form. Next,
they performed a Snellen visual acuity test. Finally, the EDA sensor, EEG-VR headset, and
ECG chest strap were attached to the participants.

The study began with a trial phase to allow participants to familiarize themselves with
the VR environment. The VR trial phase started with participants practicing the 1-back
task until they reached an accuracy level of at least 95% within a sequence of 80 spheres.
Next, three minutes of EDA recording was performed, during which the participant was
asked to ignore the NPCs (STREAM: 37 agents/min) and to perform the 1-back task. This
provided the baseline measurement for the physiologically-adaptive system.

The testing phase consisted of six blocks for each test condition. Each block lasted
for six minutes. Visual feedback for the 1-back task was provided, and participants were
instructed to maintain 90% performance. In between blocks, participants filled in question-
naires (FMS, NASA-TLX, In-game GEQ subscales, ad-hoc questionnaires) on the previous
block and rested for 2 min to stabilize their physiological state. The entire experiment lasted
approximately one hour. We compensated participants with 10 Euros for their participation.

5. Results

We evaluated the usability of a physiologically adaptive system in a Social VR scenario.
In the following section, we report the results of our study. As no participant aborted due
to simulator sickness, however, electrodes were not attached correctly for three participants;
the following analysis is based on the data of 15 participants. Results of the analyses can be
found online on the DaRUS Open Data Platform, at [88].

5.1. Analysis

We analyzed indicators of physiological arousal, performance, and subjective experi-
ence across the adaptive and non-adaptive conditions in R [89–91]. First, we present the
results for the five non-physiologically adaptive conditions and present a comparative
analysis of the adaptive condition to determine if the physiologically adaptive condition

https://github.com/labstreaminglayer/
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produces: (1) superior performance; (2) a more enjoyable game experience; and (3) lower
levels of perceived workload. We fit a linear mixed model (estimated using a restricted
maximum likelihood approach and nloptwrap optimizer) [92,93] to predict our outcomes
as a function of STREAM. We computed the p-values using the Wald-Approximation for
the calculation of degrees of freedom. To account for the repeated-measures structure
in our data, we added a random intercept for every participant to our model. We use
Welsh-corrected t-tests for comparing means or Wilcoxon-rank tests for ranks.

5.2. Non-Adaptive Conditions

For mean EDA, the model intercept is at −0.16 (95% CI [−0.67, 0.36], t(71) = −0.60,
p = 0.551). Within this model, the effect of STREAM is statistically significant and positive
(beta = 0.004, 95% CI [0.00, 0.007], t(71) = 2.54, p < 0.01. In other words, every additional
NPC increases mean EDA by about 0.004 standardized µS units (see Figure 2). This is
consistent with the raw NASA-TLX score, see Table 1. Increasing the number of NPCs in
the simulation elevated the NASA-TLX score by about 0.1 per NPC. In contrast, STREAM

affected performance accuracy negatively in both tasks, see again Table 1. Increasing
STREAM reduced accuracy up to 10% in both the n-Back and the visual detection task.
Together with this, we supplement our analysis with a SCL computation as a measure
of tonic activity. To compute SCL, EDA data were filtered with a 3Hz, high-pass, fourth-
order Butterworth filter to remove high-frequency noise and decomposed into tonic and
phasic components by means of a non-negative deconvolution analysis [94]. For SCL, the
model intercept is at 8.89 (95% CI [7.40, 10.39], t(71) = 11.86, p < 0.001). The effect of
STREAM is statistically significant and positive (beta = 0.01, 95% CI [0.00, 0.02], t(71) = 2.54,
p < 0.013. This result implies that the addition of every NPC increases SCL by about 0.01
standardized µS units. We found that the subjective experience scales (GEQ Immersion,
GEQ Competence, GEQ Positive affect, desire to use, and Appropriateness of Stream) were
not significantly by our manipulation for all p > 0.05, see Table 1.
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Figure 2. Individual predicted standardized mean EDA from the optimal STREAM for the non-
adaptive condition (crosses) with individual regression lines, as well as the actual mean EDA (points)
at local maxima of adaptation.
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Table 1. Means across non-adaptive conditions with the slope of linear mixed models (LMM) and
their t-values estimated by Wald approximation, as well as their respective p-value.

Stream 7 Stream 22 Stream 37 Stream 52 Stream 67 LMM

M SD M SD M SD M SD M SD b t p

n-back Acc. [%]. 97.423 1.607 95.381 2.660 94.401 2.430 92.133 3.182 91.055 4.162 −0.107 −9.396 <0.001
Visual Det. Acc. [%] 97.208 3.073 95.579 4.647 94.834 2.670 93.067 3.116 90.949 2.613 −0.100 −7.083 <0.001
Raw NASA TLX 5.267 2.520 7.644 2.268 9.500 3.616 9.133 3.282 11.833 3.262 0.097 8.101 <0.001
EDA Mean (std) −0.091 1.031 −0.083 1.001 −0.034 0.896 0.003 1.083 0.166 1.056 0.004 2.536 0.014
SCL 9.078 2.974 9.102 2.888 9.242 2.585 9.348 3.127 9.819 3.047 0.012 2.535 0.014
GEQ—Competence 2.667 0.939 2.600 1.039 2.200 0.862 2.600 0.687 1.967 0.834 −0.009 −2.149 0.036
GEQ—Pos. Affec. 2.400 0.806 2.500 0.655 2.467 0.550 2.433 0.729 2.100 0.761 −0.004 −1.318 0.193
GEQ—Immersion 0.833 0.724 1.200 0.841 1.133 0.876 1.067 0.821 1.167 0.939 0.004 0.906 0.369
Stream Appropriate 1.400 0.632 1.600 0.737 2.000 0.756 1.933 0.799 1.467 0.743 0.003 0.754 0.454
Desire To Use 1.467 0.640 1.800 0.775 1.800 0.941 2.267 0.799 1.333 0.617 0.001 0.309 0.759

5.3. Adaptive Condition

On average, participants adapted to having a STREAM of 32.89 (SD = 18.6) NPCs
in their environment. This represents a medium level of STREAM, relative to the fixed
range (i.e., 7-67) that was adopted for the non-adaptive conditions. Figure 3 illustrates how
STREAM adapted over time for one participant.
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Figure 3. Adaptation across time for one participant. The pink line indicates STREAM, the green line
indicates the z-scored mean EDA signal that was used for adaptation. Grey areas indicate whether
the algorithm chose to increase (light grey) or decrease (dark grey) the STREAM in a time window
of 20 s.

The recorded measures from the non-adaptive conditions cannot be directly compared
to their counterpart in the physiologically adaptive condition. This is because STREAM

was a fixed value in the former and an adapted value in the latter. Thus, we computed
individual expected values from the five non-adaptive conditions using linear mixed
models with STREAM as a predictor and calculated the expected value as predicted from
our statistical model of the non-adaptive conditions, see Table 2 in the Prediction column
and at the local maxima in STREAM for the adaptive condition.

In other words, any aspects of the user experience that are different in the physiologi-
cally adaptive condition compared to the non-adaptive conditions would be revealed if the
actual measurement in the condition is significantly higher or lower than the corresponding
value that would be predicted from a regression of the measurements of the non-adaptive
conditions.
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5.3.1. Electrodermal Activity Measures

The physiologically adaptive condition did not significantly increase physiological
arousal in either the EDA mean or SCL according to the linear mixed model. Individual
regression predicted a mean EDA of -0.023 µS (SD = 0.957), while in the adaptive condition,
the actual mean EDA was 0.040 µS (SD = 1.074) after a stable STREAM was achieved, see
Figure 4b. Similarly, the adaptive algorithm did not significantly increase tonic arousal
as indexed by SCL. Actual SCL was 9.456 µS (SD = 3.100), reflecting predicted values of
9.275 µS (SD = 2.761), see Figure 4c. SCL and EDA results are summarized in Table 2.

(a) NASA (b) EDA (c) SCL
Figure 4. The relative difference for (a) raw NASA-TLX score difference, (b) standardized mean EDA,
and (c) averaged SCL scores.

5.3.2. Workload and Performance

The physiologically adaptive condition did not increase subjective workload. Individ-
ual regressions predicted a mean raw NASA-TLX score of 8.31 (SD = 2.25), while workload
was 8.57 (SD = 3.20) in the adaptive condition after a stable STREAM was achieved, see
Figures 2 and 4 and Table 2. This was mirrored for both the performances in the detection
task and the n-back task. The adaptive algorithm regulated performance based on the
individual linear fit to a local optimum and, thus, we found no significant differences
between the expected and actual performance for the adaptive condition as seen in Figure 5
and Table 2.

Figure 5. The relative difference for overall task accuracies in the n-Back and visual detection tasks.

Figure 6 illustrates the negative relationship between workload and mean EDA. The
algorithm allowed participants to perform tasks at their individual optimal levels of physio-
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logical arousal. Participants with relatively higher mean EDAs experience lower subjective
workload r(13) = −0.62, p = 0.013. This shows the successful adaptation of the algorithm
and that participants approached an individual local maxima in perceived workload.

Table 2. Mean predicted and actual means across measures with Welsh-corrected t-test or Wilcoxon-
signed-rank test depending on the Shapiro test and Cohen’s d. We compare the predicted value from
the LMM at an optimized Stream with the actual value at this rate of Stream.

Actual Prediction Diff t-Test/Wilcoxon Shapiro

M SD M SD M SD d t/Z p W p

n-back Acc. [%] 94.892 2.662 94.471 2.007 0.422 1.801 0.234 93.000 0.064 0.825 0.008
Visual Det. task Acc. [%] 95.478 3.837 94.696 2.766 0.781 1.706 0.458 1.774 0.098 0.944 0.440
Raw NASA 8.578 3.205 8.317 2.250 0.261 1.952 0.134 0.518 0.613 0.938 0.363
EDA Mean (std) 0.040 1.074 −0.023 0.957 0.063 0.364 0.172 0.668 0.515 0.976 0.937
SCL 9.456 3.100 9.275 2.761 0.181 1.051 −0.172 0.666 0.516 0.976 0.939
GEQ—Competence 2.767 0.623 2.441 0.374 0.326 0.436 0.746 2.890 0.012 0.933 0.298
GEQ—Positive Affection 2.300 0.978 2.396 0.262 −0.096 0.866 -0.111 52.000 0.679 0.864 0.027
GEQ—Immersion 1.500 0.707 1.067 0.334 0.433 0.574 0.755 2.924 0.011 0.903 0.105
Stream Appropriate 3.467 0.743 1.669 0.058 1.798 0.729 2.465 9.548 <0.001 0.902 0.104
Desire To Use 3.533 0.640 1.728 0.101 1.805 0.591 3.053 120.000 <0.001 0.827 0.008
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Figure 6. Standardized mean EDA at local maxima of adaptation as a function of raw NASA-TLX
for the adaptive condition. There is a significant negative correlation between EDA and workload,
r(13) = −0.62, p = 0.013.

5.3.3. Subjective Evaluation

The subjective feeling of being immersed, measured by the GEQ-immersion scale, was
increased in the adaptive condition (M = 1.556, SD = 0.705) as compared to its expected
value (M = 1.032, SD = 0.323), as predicted from the non-physiologically adaptive
conditions. STREAM was also considered to be more appropriate in the adaptive condition,
compared to the predicted value derived from the actual measures of the non-adaptive
conditions. This converges with a desire to use the system as it increased when compared to
the actual and the expected desire to use the system, see Figure 7a. In summary, participants
favored the physiologically adaptive condition in terms of STREAM appropriateness, the
desire to use, gaming immersion (GEQ), and their feelings of competence (GEQ) and
positive affection (GEQ). Those results are graphically summarized in Figure 7b.
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(a) UX (b) GEQ
Figure 7. The relative difference for (a) usability questions measured on a 5-point Likert scale and (b)
GEQ subscales (Competence, Positive Affection, and Immersion). * indicates that measurements are
significantly different from the no-adaptation baseline. Outliers were defined as data points with
a value greater than 2 SDs on the log-scale from its participant-mean. Outliers are represented as
bold dots.

6. Discussion

We presented a design of an online physiologically adaptive VR system. In detail,
our system can adapt to the complexity of a VR environment based on the user’s arousal
as measured using EDA. We tested this system in a VR environment where the adaptive
system optimizes the stream of NPCs. In our evaluation, participants completed a primary
task (n-back) and a secondary task (visual detection) while either being presented with five
static levels of STREAMS of NPCs or an adaptive STREAM of NPCs.

First, we investigated the effectiveness of the STREAM modulation. Here, we lend
credibility to earlier results on crowdedness [32,36] and visual complexity [6,7]. In detail,
a higher STREAM of NPCs impacts EDA and the task performance, albeit in both the
primary and the secondary task. Thus, the desire to use the system is negatively affected by
increasing STREAM. Thus, we found that an online adaptation of the STREAM is feasible for
modulating workload. Therefore, we investigated the effectiveness of such a physiologically
adaptive VR system. Here, we compared the baseline from the non-adaptive conditions to
the adaptive condition using a prediction model. We found significant differences between
adaptive and non-adaptive conditions for the desire to use the system, GEQ competence, and
GEQ immersion. Interestingly, participants also rated the flow significantly more appropriate
than the baseline, while we kept the range of possible flows within the same bounds. Thus,
we conclude that our physiologically adaptive VR system can improve VR experiences,
especially in complex environments such as this simulated Social VR. This is a promising
step toward online adaptive VR environments based on physiological sensor data. Our
study adds to other findings in physiological computing, namely that sympathetic arousal,
here indexed by EDA, can depict task engagement [22,95,96]. Additionally, our subjective
results are in line with studies that have adapted VR environments based on physiological
arousal. Thus, our results are in line with prior work in terms of perceived workload [24]
and task engagement [27] when interacting in a physiologically adaptive VR system. These
results are promising for the implementation of EDA measures in a biocybernetic loop for
adaptation, confirming subjective results obtained with other measures i.e., EEG and ECG.

At first, it is counterintuitive that EDA was not lower when using the adaptive system,
as the system optimizes in order to not overload the user. However, we argue that lowering
the EDA was not expected nor intended. In our implementation, we used a −2/+4 adapta-
tion i.e., if NPCs need to be removed, we removed two, while we added four in the more
adaption. Thus, this pushed the user to always take a bit more at once while reducing it
only gradually. This prevents the user from just tuning out but also keeps up the pressure
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while not overloading. Moreover, in a real-world scenario, keeping as many characters in
the environment as possible is important to not lose an understanding of the Social VR
scenario one engages in, but also to prevent lowering the level of immersion and presence.
We further see this manifested in the significantly higher rating of immersion. Here, we
argue participants were less likely to be bored or stressed, as we optimized for optimal
arousal according to the MIM [17] where flow-experience and task engagement correlate
with rising demands [97]. As a result, they focused on the environment and, thus, achieved
a higher level of immersion.

Behavioral results indicated that STREAM adaptation did not significantly impact
n-Back and detection accuracies. This might point toward an insufficient increase in task
complexity. However, it is not corroborated by either the EDA processed by our algorithm
or from the non-negative deconvolution analysis. Second, as distractor processing is influ-
enced by increased executive load [98], future studies should investigate task complexity
adaptation under increased working memory load conditions. This conclusion is shared
with the work of Dey et al. [71] and with Ewing et al. [24] when considering increased task
demands.

Our findings have a broader impact on collaborative environments; virtual agents can
assist or perform tasks within a collaboration VR environment in future VR applications.
Such systems could exploit physiologically adaptive systems to modulate the VR com-
plexity (e.g., amount of virtual coworkers or concurrent visually displayed information).
This allows supporting concurrent goals without the need to prioritize performance over
comfort while preventing cognitive overload. We argue that our results are not limited to
Social VR per se. For instance, physiological adaptation can be used to transition on the
reality-virtuality continuum [99]. Here, the VR complexity can overload the user with the
virtual component, and, thus, it could gradually fade out the digital overlay. Thus, varying
the blend of realities according to users’ physiological arousal can be the next step toward
a physiologically adaptive mixed reality system.

EDA data acquisition is low-cost and unobtrusive; skin-interfaced wearable systems
are easy to implement in real or virtual scenarios, i.e., biofuel cell-based self-powered
wearable sensors [100] or conductive fabric gloves [101]. Consequently, we argue that the
next step is to embed physiological sensing into VR controllers, allowing practitioners to
use them without a tedious setup process. This is consistent with recent developments in
entertainment computing, where a player’s emotional state as inferred from physiological
correlates was used to predict actions in a game [102] or dynamically adapt the game
narrative to induce states of arousal [103].

Limitations

EDA activity has a one-to-one relationship with the state of physiological arousal [95],
which can serve as a workload indicator. However, the adaptation pipeline used in this
study, although with a low computational cost, could benefit from more advanced and
standardized methods of EDA component deconvolution [94,104]. So far, this has not yet
been used for online adaptation.

Tonic changes occur with a slow frequency and, therefore, may not be adequate for
adaptive interactions that occur at a faster pace. Here, other physiological measures that
are experimentally more demanding, but have better time-resolution, such as EEG, could
be more suitable for adaptive systems [24]. Nevertheless, for adapting visual complexity
in our Social VR scenario, adaptation in a third of a minute was suitable with regard to
fostering immersion; here, faster adaptation could potentially break immersion as layer
characters would appear and disappear seemingly randomly.

We targeted the complexity exclusively in the visual domain. Still, evaluating multi-
modal physiologically adaptive systems could better support users’ comfort as multimodal
integration facilitates task-relevant information selection [105,106]. For example, in a social
VR scenario, the visual representation could disappear, and voices from afar could be toned
down to support the user in focusing on the primary task.
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According to Braithwaite et al. [107], about 10% of the general population do not
exert a strong electrodermal response attuned to sympathetic arousal. This is especially
relevant when considering commercial applications of EDA sensing, e.g., for adaptive
VR games where potentially 10% would not benefit from a solely EDA-based system.
Thus, supplementing EDA with other arousal measurements such as the heart rate or
eye-gaze could make measurements more robust and make the technology more accessible
to the general population. Together with this, we had to exclude three participants via
medical-grade instrumentation for high data quality due to a lack of data quality. This is
consistent with EDA guidelines [107] and could be attributed to either technical failures
and to individual variations in EDA. While we controlled for other factors such as physical
stress [108] or caffeine consumption [109], using EDA in applied scenarios can not be
shielded from such influences.

Finally, we acknowledge that only the data of 15 participants were used in the analysis.
While on the one hand, this is a low number, we could still show large effect sizes for the
appropriateness of the stream, and most importantly for the desire to use the adaptation.
As such, larger sample sizes will be needed only for the measures with small and medium
effect sizes.

7. Conclusions

Our study reports on the utility and viability of a VR system that adapts the environ-
ment to the physiological input, namely the user’s electrodermal activity. By adjusting
the visual complexity of the environment in response to the changing arousal levels of the
user, we were able to maintain an ideal working environment in a complex scenario (i.e.,
Social VR). This is the first step toward a physiologically adaptive immersive system that
supports users’ satisfaction and cognitive capacity without the need for explicit inputs
(i.e., verbal, button-presses). Future studies could use physiologically adaptive systems
to optimally blend mixed reality, enabling more use cases by ensuring signal process-
ing robustness and by integrating complementary physiological measures (i.e., EEG) or
embedding physiological sensors into the hardware of VR systems (e.g., VR-controllers).
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