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ABSTRACT
Pointing tasks are commonly studied in HCI research, for
example to evaluate and compare different interaction tech-
niques or devices. A recent line of work has modelled user-
specific touch behaviour with machine learning methods to
reveal spatial targeting error patterns across the screen. These
models can also be applied to improve accuracy of touch-
screens and keyboards, and to recognise users and hand pos-
tures. However, no implementation of these techniques has
been made publicly available yet, hindering broader use in
research and practical deployments. Therefore, this paper
presents a toolkit which implements such touch models for
data analysis (Python), mobile applications (Java/Android),
and the web (JavaScript). We demonstrate several applica-
tions, including hand posture recognition, on touch targeting
data collected in a study with 24 participants. We consider
different target types and hand postures, changing behaviour
over time, and the influence of hand sizes.

Author Keywords
Touch; Toolkit; Machine Learning; Gaussian Process

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI): In-
put devices and strategies (e.g. mouse, touchscreen)

INTRODUCTION AND RELATED WORK
Targeting experiments help HCI researchers to assess quanti-
tative aspects of interactions, such as speed-accuracy trade-
offs, error rates, and throughput. Participants are asked to
point at targets on the screen. The resulting data is commonly
analysed with Fitts’ Law [5]. Bi et al. [3] refined this approach
for targeting with the finger in touch interaction. Other work
modelled targeting while typing on touchscreens [1, 7, 14].
A different line of research compensated systematic patterns
of touch-to-target errors (“touch offsets”) with a polynomial
function applied across many mobile device users [6]. More
flexible offset models were trained on user-specific recorded
touch targeting histories [13]. Touch offsets were also ex-
plored to recognise users and hand postures [4], to reveal
characteristic screen regions for describing individual touch
behaviour [11], and to reduce typing errors [12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
IUI’15, March 29 - April 01 2015, Atlanta, GA, USA
Copyright 2015 ACM 978-1-4503-3306-1/15/03...$15.00
http://dx.doi.org/10.1145/2678025.2701381

Figure 1. Three visualisations of Gaussian Process touch-to-target off-
set models: a) this arrow plot shows the model’s 2D offset predictions
across the screen, revealing the user’s behavioural pattern for the right
thumb when aiming at key-sized targets; b) the contour plot shows offset
predictions for the same model in just one dimension (here: x) in colour;
and c) shows the log-determinant of the predictive covariance of a model
for full width targets, revealing the user’s “arc of thumb reach”.

These successful applications show the usefulness of mod-
elling users’ (individual) behaviour based on touch targeting
data. In comparison to Fitts’ Law, touch offset models ignore
temporal information, but instead capture targeting error pat-
terns across the screen. Hence, they provide an additional spa-
tial perspective on user behaviour (Figure 1). However, this
perspective is rarely explored, although the required touch
and target locations are typically measured in most pointing
experiments. In this paper, we present a toolkit which imple-
ments touch offset models to facilitate more widespread use
in research and practical applications.

In particular, we contribute: 1) an introduction to touch off-
set models; 2) easy-to-use implementations and visualisations
of these models for different use-cases (data analysis, practi-
cal deployment); and 3) example applications, including hand
posture recognition, analysing more than 150.000 touches
from a targeting experiment with 24 participants over two
weeks. In contrast to previous studies addressing these mod-
els [4, 11, 13], we consider several target shapes and sizes,
and also investigate the influence of different hand sizes.

TOUCH OFFSET MODELS
This section reviews touch offset models also employed in
related work, introducing and describing linear [4] and non-
linear [13] variants.

Touch Input
For the purpose of this paper and toolkit, we describe each
touch t as a point on the plane, in other words as a two-
dimensional vector, henceforth denoted as t = (x, y)T ∈ R2.
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Linear Offset Models
A linear touch offset model with quadratic basis functions is
described in related work [4]. Basis functions Φ transform
the touch location t into a higher dimensional representa-
tion. With this trick, the linear model can account for non-
linear relationships between touch and target locations across
the screen, although it is still linear in its parameters. By de-
fault, the toolkit uses the same transformation Φ as the related
work, namely Φ(t) = (1, x, y, x2, y2)T ∈ R5.

Training
Training data consists of touches and corresponding target
locations. Offsets are computed as the distances between
touches and targets. The transformed touch locations Φ(t) of
the N training examples are arranged as N rows in a design
matrix X ∈ RN×5. We then solve for the model’s parameters
wx,wy with regularised linear regression:

wx = (XTX + λI)−1XTox

wy = (XTX + λI)−1XToy
(1)

The vectors ox and oy contain the offsets along the x and
y dimension of all training examples, respectively. λ ∈ R
is the regularisation parameter. Regularisation helps to avoid
overfitting (i.e. fitting noise in the training data).

Prediction
The weights wx,wy , together with the transformation Φ, de-
fine the linear touch offset model. For a new touch location t′

the model predicts the offset µ:
µ = (µx, µy)T

µx = wT
x Φ(t′)

µy = wT
y Φ(t′)

(2)

Adding the predicted offset µ to the touch location t′ yields
a prediction for the true intended target location. Variances
associated with these predictions are given by:

σ′x
2

= σ̂2
xΦ(t′)T (XTX + λI)−1Φ(t′)

σ̂2
x =

1

N

N∑
i=1

(o
(i)
x −wT Φ(ti))

2 (3)

Analogously, σ′y
2 and σ̂2

y can be computed as well. In conclu-
sion, the predicted information can define a bivariate Gaus-
sian distribution N (t′ + µ,Σ) with:

Σ =

[
σ′x

2
0

0 σ′y
2

]
(4)

Non-Linear Offset Models
A non-linear modelling approach using Gaussian Process
(GP) regression [9] was described by Weir et al. [13]. In
contrast to the linear model, GPs offer a more flexible, non-
parametric approach. In general, GPs are defined by a mean
function µ and a covariance function C. We choose these pa-
rameters in line with the related work [13]: µ is set to constant
zero. This means that the model predicts zero offsets without
data. For C, we combine linear and squared exponential co-
variance functions, a flexible choice:

C(tm, tn) = atTmtn + (1− a) exp(−γ‖tm − tn‖22) (5)

The mixture of linear and non-linear parts is controlled by a,
and γ defines the length-scale of the Gaussian.

Training
We combine the training offsets from both dimensions into
one long vector z and stack up the covariance matrix Cmn =
C(tm, tn) of the training examples accordingly [13]:

z = [o
(1)
x , o

(2)
x , ..., o

(N)
x , o

(1)
y , o

(2)
y , ..., o

(N)
y ]T

Ĉ =

[
C αC
αC C

]
(6)

Here, α defines the dependence between x and y. We store z

and the matrix M = (Ĉ + σ2I)−1. Assuming noise variance
σ2 helps to map almost identical touches to different offsets.

Prediction
For a new touch location t′, we create the vector c, which
contains all covariances of the new touch and the training
touches. We then build its stacked up version ĉ:

c = [C(t′, t1), ..., C(t′, tN)]

ĉ =

[
c αc
αc c

]
(7)

The model’s prediction is a bivariate GaussianN (µ,Σ) with:
µ = ĉMz

Σ =

[
C(t′, t′) αC(t′, t′)
αC(t′, t′) C(t′, t′)

]
− ĉMĉT

(8)

Adding the predicted mean offset µ to the sensed touch loca-
tion t′ can improve touch location. Moreover, N (t′ + µ,Σ)
gives the full predictive distribution.

THE TOOLKIT
A full documentation is provided with the toolkit. Here, we
introduce its use in Python. The API style is inspired by the
scikit-learn machine learning library [8], due to its ease-of-
use. For efficiency, we use optimised numpy arrays [10].

Data Input
The toolkit uses a simple data format: N touches are given
in a N × 4 matrix, with columns touch x, touch y, target x,
target y. This data could be loaded from a file or database, or
collected and stored during runtime in an array. For example,
we can load data from a csv-file with these four columns:

data = loadData("pointingStudy.csv")

As a result, data is a N × 4 array containing the provided
touch and target locations.

Creating and Applying Models
As a minimal example, creating and training offset models
with default or custom hyperparameters could look like this:

model = LinearOffsetModel()
model.fit(data)

model2 = GPOffsetModel(gamma=2, noiseVar=0.001,
diag=0.9, kernelMix=0.1)

model2.fit(data)

After training, offset predictions for given touch locations can
be computed as follows:

means, covs = model.predict(newTouches)
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Here, newTouches is aN×2 array containing (new) touch lo-
cations. As a result, means is aN×2 array with the predicted
offsets for these given touches (see µ in Equations 2 and 8).
Complementary, covs is a list of N covariance matrices of
shape 2× 2 (see Σ in Equations 4 and 8).

These predictions can be used, for example, to correct the
new touch locations and thus improve touch accuracy. As ex-
plained in the previous section, correction is performed by
simply adding the predicted offsets to the touch locations:

correctedTouches = newTouches + means

Visualisation
The Python library also provides several visualisations to ex-
plore collected user data and plot the derived models. Figure 1
shows three examples for touch behaviour on a smartphone,
visualising offset predictions and variances with arrows and
contours. Plots can be created as follows:

arrowPlot(model)
contourPlot(model, dim="x")
variancePlot(model)

Implementation Aspects
We describe some aspects of our implementation to highlight
the benefits of using the toolkit compared to other options:

Optimisation: Computing many predictions is important for
data analysis tasks. For instance, consider ten-fold cross-
validation to evaluate improving touch accuracy (e.g. Fig-
ure 2). On our dataset, such an analysis takes 109s with
an implementation of the GP “textbook formulas” - but 18s
with the toolkit (measured on i7/2.8Ghz PC, 8GB RAM),
achieved by rearranging computations to better utilise matrix
routines [10].

Specialisation: Our GP implementation also respects possible
dependencies between x and y locations, following related
work [13]. Less specialised libraries may not provide these
models at all, or they do not implement this special GP vari-
ant (e.g. [8]) employed for touch modelling [13]. Moreover,
our toolkit’s visualisations allow for fast exploration and as-
sessment of the models and the captured behavioural patterns.

Mobile applications: Besides Python, the toolkit provides
models in Java/Android and JavaScript, respecting some plat-
form limitations. For example, the models can be used to im-
prove touch accuracy in apps and on websites. Detailed de-
scriptions and examples are provided with the toolkit.

EXPERIMENT AND EXAMPLE APPLICATIONS
As examples for using the toolkit, this section presents three
applications to data collected in a targeting experiment.

Dataset
We collected a dataset with over 150.000 touches from 24
participants in a targeting experiment on a Nexus 5 phone.
Each participant completed 8 tasks (2 hand postures × 4 tar-
get types). Each task showed 400 targets distributed equally
across the screen, displayed one at a time in random order.

The two hand postures were: 1) thumb, holding the phone in
the right hand, touching with the right thumb; and 2) index

Figure 2. Targets used in the study, shown to scale (left). The plots to the
right summarise the distributions of touches from our dataset around
these targets for raw touches (black) and touches corrected with offset
models (green). The models shifted touches towards the target centres,
resulting in a higher overlap of touch distributions and target bounding
boxes. Hence, users can hit their intended targets more reliably with
offset model corrections (hit rates annotated for targets with an area).

finger, holding it in the left hand, touching with the right in-
dex finger. The phone was always held in portrait orientation.
The four target types were (see Figure 2): crosshair, key-sized
(4×7mm), app-sized (9×9mm), and full width (height 9mm).
Task order was varied between participants with a 8×8 latin-
square design. Each participant repeated all tasks in a second
session one week later.

In this note, we focus on three analyses of this dataset to show
different uses of offset modelling: 1) improving accuracy, 2)
analysing the influence of hand size on targeting behaviour,
and 3) predicting hand postures.

Improving Touch Accuracy
In this first application, we address improving touch accuracy
by correcting touch locations with the models’ predictions.
We trained linear offset models on the data from the first ses-
sion of each user, and then applied these models to correct the
touches of each user collected in the second session.

Figure 2 summarises the results, showing distributions of raw
and corrected touches around the different targets for both
hand postures. Offset models correct touches towards the tar-
get centres, improving hit rates.

Analysing the Influence of Hand Size
In our experiment, we also measured participants’ hand sizes,
using images captured by placing their hands on a scanner. In
particular, we measured the distance from the tip of the index
finger to the bottom of the palm (Lunate bone). In this way,
we obtained hand sizes between 159mm and 194mm.

In this analysis, we are interested in the influence of hand
sizes on targeting patterns. In particular, we expect larger
y-offsets near the top (left) of the screen with thumb in-
put, since this region is harder to reach on a larger device
such as ours (137.8mm × 69.1mm). Sorting participants by
hand size revealed three groups. We focus on the two ex-
tremes: small-handed users (N=4, range 159mm to 171mm)
and large-handed ones (N=7, range 186mm to 194mm). Us-
ing our toolkit, we trained GP models on each groups’ thumb
touches aiming at crosshair, key-sized, and app-sized targets.

Figure 3 visualises the differences in the lengths of the
models’ predicted y-offsets: Users with small hands indeed
showed longer y-offsets in the upper left corner, but are more
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Figure 3. Differences in lengths of the predicted y-offsets of two GP mod-
els (for thumb targeting), one representing small-handed users, the other
large-handed ones. These plots show that larger hands result in target-
ing patterns with shorter y-offsets near the top of the screen. In contrast,
smaller hands are more accurate near the bottom and centre.
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Figure 4. Hand posture prediction accuracy. We deployed offset mod-
els to predict hand postures (thumb vs index finger). Our approach
achieved 94-98% accuracy within one session (a) and 87-92% across ses-
sions (b), for three of four target types. Prediction was not feasible for
full width targets, indicating little posture-specific information in offset
patterns for this target type.

accurate near the bottom of the screen. We also found interest-
ing regions to the bottom left of the centre, where users with
large hands were more accurate along the y-dimension. This
may indicate an area of comfortable bend for larger thumbs.
A future study could investigate this further, for example by
filming participants’ hands during interaction.

Predicting Hand Postures
We implemented a hand posture recogniser to predict the cur-
rently used hand posture after each touch. The general ap-
proach follows related work [4], but uses non-linear GP mod-
els from our toolkit, joint distributions to accumulate evi-
dence over time, and different target types. Intuitively, we
match observed offsets with predictions from one model per
posture to decide for the posture whose model provides the
best explanation for the observed targeting behaviour.

We evaluated this approach for two cases: within sessions -
training (testing) models with the first (second) half of the
data from one study session; and across sessions - train-
ing models on data from one session and testing them with
touches from the second session collected one week later.

Figure 4 shows that our system predicts the correct hand pos-
ture with high accuracy (within: 94-98%, across: 87-92%).
It reached >80% after 25-100 touches. These accuracies are
comparable to the results from related work on typing posture
detection [14]. Predictions were not successful for full width
targets, which indicates that the corresponding offset patterns
were less posture-specific than for the other targets.

DISCUSSION
We discuss the models regarding generalisation and usage
scenarios, along with consequences of incorrect predictions:
Generalisation: “In the wild”, behaviour will vary more (e.g.
different grip, devices, walking), leading to less precise pre-
dictions, if the model is not trained on such data. However,
related work has shown that offset patterns to some extent
transfer across users and devices [4], and that models can im-
prove accuracy even when trained across many users/devices
with data collected in a large “in the wild” study [6].
Model robustness: From related work [4, 6], and the investi-
gations of this paper, we find that simpler models seem prac-
tically more robust. On the other hand, complex non-linear
models can more accurately capture details of behaviour in
stable conditions. This can be preferable, for example, when
studying behaviour observed in a controlled lab experiment.
Prediction errors: If predictions are not accurate, the touch
location might not be shifted directly towards the target. How
serious this case is depends on the application. While improv-
ing touch accuracy obviously requires accurate predictions, a
few imprecise predictions may be acceptable if we can inte-
grate over many touches (e.g. for hand posture detection).
Usage scenarios: Besides the applications shown here, mod-
els could help to distinguish users based on touch behaviour
for continuous implicit authentication. They could also in-
form GUI layouts - place important target elements in the
user’s “comfort zone” of highest touch accuracy. The layout
could be dynamically tailored to the individual user and con-
text, as captured by a continuously updated offset model.

CONCLUSIONS AND FUTURE WORK
Targeting experiments help researchers to evaluate and com-
pare different interaction techniques or devices. We have
presented a toolkit and example applications for touch off-
set modelling. These models capture targeting error patterns
across the screen, providing a different spatial perspective on
user behaviour, which cannot be assessed with more common
evaluations, such as Fitts’ Law. We have applied the toolkit on
a large targeting dataset to improve touch accuracy, to analyse
the influence of hand size on targeting patterns, and to predict
hand postures. We hope that the presented toolkit facilitates
more widespread use of spatial touch modelling.
To the best of our knowledge, we are the first to relate touch
offset models to measured hand sizes. Future work could in-
vestigate this further, for example to predict the user’s hand
size from touch offsets, possibly combining it with models
for thumb reach from related work [2]. Predicting postures is
feasible, as shown in this paper for different target types. We
aim to deploy and evaluate the hand posture recogniser in a
typical mobile interface, such as a homescreen or keyboard.
Although we have presented the toolkit with touch interac-
tions in mind, it may also be applied to other input methods
in which users aim at targets on a two-dimensional surface
(e.g. mouse cursor, stylus interaction).

PROJECT RESOURCES
The toolkit, documentation, and study data are available at:
http://www.medien.ifi.lmu.de/touchml/
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