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Figure 1. We present a method for ten-finger typing on the back of a tablet with a capacitive multitouch sensor (a). b) Gaussian Bayes learns keys from
labelled touches and c) hand modelling assigns new unlabelled touches to fingers, represented as lines. Both models are combined in a clustering method
to predict characters for touches (d) and adapt keys when hand postures change during typing. We further improve predictions with language models.

ABSTRACT
Recent work has shown that a multitouch sensor attached to
the back of a handheld device can allow rapid typing enga-
ging all ten fingers. However, high error rates remain a pro-
blem, because the user can not see or feel key-targets on the
back. We propose a machine learning approach that can signi-
ficantly improve accuracy. The method considers hand anato-
my and movement ranges of fingers. The key insight is a com-
bination of keyboard and hand models in a hierarchical clu-
stering method. This enables dynamic re-estimation of key-
locations while typing to account for changes in hand postu-
res and movement ranges of fingers. We also show that accu-
racy can be further improved with language models. Results
from a user study show improvements of over 40% compa-
red to the previously deployed “naı̈ve” approach. We examine
entropy as a touch precision metric with respect to typing ex-
perience. We also find that the QWERTY layout is not ideal.
Finally, we conclude with ideas for further improvements.
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INTRODUCTION
Low text entry rates are a recognised problem for mobile de-
vices. Recent research has explored back-of-device interacti-
on with multitouch sensors [3, 30, 34, 35]. Potential benefits
of this concept for mobile text entry are: 1) faster typing rates
engaging all ten fingers, 2) releasing display space for appli-
cations on the front. However, realising these benefits remains
a challenge. Related work used physical keys on the back [18,
29]. Folding the layout in two rotated halves [29] retains the
finger-to-key assignments, known from three-row keyboards
like QWERTY or the Dvorak Standard Keyboard (DSK). Un-
fortunately, the demonstrated mean typing speeds were low
(15 wpm), and the addition of physical keys breaks the fami-
liar form factor of the device. The Sandwich Keyboard [28]
deployed a multitouch sensor that followed this concept wi-
thout extra buttons to keep the familiar form factor. A user
study with training showed promising typing speeds (QWER-
TY: 26 wpm, DSK: 46 wpm). Users reached about 70% of
their speeds for physical keyboards. However, error rates we-
re higher than with other methods: about 12% after 7 hours of
training. To make this approach a valuable alternative to exi-
sting text entry methods, further work is needed to decrease
the proportion of errors.

This paper provides an extended modelling framework for ty-
ping with a capacitive multitouch sensor on the back (see Fi-
gure 1). Our approach can reduce errors by over 40%. We
analyse sources of errors and propose ways to locate and re-
medy them. In contrast to previous work, our approach expli-
citly models the user’s hands and adapts keyboards to chan-
ging touch behaviour during typing without collecting new
labelled training data. Varying hand locations and angles re-
lative to the device, as well as finger tremor and movement
variance lead to different touch locations for the same key.
These factors may change dynamically between typing sessi-
ons and while typing. Addressing them is important to make
keyboards more robust with respect to mobility and individu-
al differences in behaviour and anatomy.
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Figure 2. A folded multitouch keyboard [28] on the back (a) with finger-
to-key assignments (b). Each key is associated with one character, de-
pending on the layout (e.g. QWERTY). Keys in this figure are not perso-
nalised; our approach adapts locations and sizes of keys to the user.

Approach and Related Work
The goal of this work is to improve touch classification ac-
curacy for a folded back-of-device soft keyboard (Figure 2).
Our approach utilises machine learning methods to specifi-
cally address three kinds of variability: First, we model touch
location distributions around targets, the keys (Figure 1b). Se-
cond, we account for ongoing changes in hand postures and
finger placement behaviour with keyboard updates, facilitated
by a hand model (Figure 1c). Third, we train models on user-
specific data to respect variance between users. The resulting
system predicts characters for the touches (Figure 1d).

We assume a one-to-one mapping of keys to characters. Com-
bined with the folded version of a known layout like QWER-
TY, this is argued to enable transfer of users’ existing motor
programs from physical keyboards [28]. This also defines the
prediction task: each touch (at x,y) must be mapped to a cha-
racter. Our approach models keyboard, hands and language.

Keyboard model: Our keyboard model personalises key-
locations and sizes based on the user’s touch distributions.
Matching keys with the user’s personal touch behaviour can
be expected to improve classification. Related work on perso-
nalised key-targets for soft keyboards mostly uses a Gaussian
Bayes classifier [1, 15, 25, 36]. It models keys with (bivaria-
te) Gaussian distributions, as justified by evidence for front
screen interaction [13, 32]. For typing on a tabletop, distance-
based classification had been proposed based on a study with
expert typists [11], before the same authors switched to de-
cision trees [10]. For our approach, we evaluated these and
other methods on the back using data from novice and expert
typists. We considered different touch features and classifiers.
Gaussian Bayes was confirmed as a preferable classifier with
touch locations on the back as well. Only Support Vector Ma-
chines (SVMs) had slightly better accuracy, but at the price of
high computational costs, because multiple SVMs need to be
trained for more than two classes (keys). Without extensions,
they also lack probabilistic output. Costly computations are
undesirable for mobile devices and probabilistic predictions
can be combined with language models. Most importantly,
the Bayes model provides explicit key-locations, which can
be updated with our hand model and clustering approach.

Hand model: Our hand model estimates finger locations
from unlabelled touches and predicts which touch belongs
to which finger. It supports keyboard adaptation when hand
postures change during typing. This dynamic adaptation im-
proves touch classification. In general, adapting classifiers to
varying user behaviour requires new training data, ideally in
each session. This may be unacceptable to the user. Related
work on soft keyboards for mobile devices has proposed to
collect training data from free typing, using the current mo-

Figure 3. Sources of variance in typing touch locations.

del’s predictions to label the touches [2]. However, this im-
plies to trust the same model we want to update, which is
inappropriate if we expect dynamically changing behaviour.
Another approach trained multiple supervised models in ad-
vance, then selected the most specific one in each context to
achieve adaptation [36]. Unfortunately, this method assumed
discrete hand postures (e.g. one/two thumb), but typing po-
stures on the back are continuous (see Figure 3).

We propose a keyboard updating approach, which does not
rely on labelled touches. It has two parts. First, we utilise
touch-to-finger assignments from the hand model and know-
ledge about the layout (e.g. QWERTY) to cluster unlabelled
new touches. Second, we find the optimal pairing of existing
keys and new cluster locations to update the keyboard.

We compare our approach to two simple methods and the
Sandwich Keyboard algorithm [28]. It predicts the closest key
for each touch and compares its prediction to the ground-truth
key. If the prediction was correct, the key is moved towards
the touch location. Incorrect predictions move it away.

Language model: Language context improves classification
for ambiguous touch locations, because not all characters are
equally likely to continue previously entered text. We build
on existing work on language modelling for soft keyboards
to predict characters from both touches and language context
[13, 15, 25]. Our approach is two-fold. First, we use n-grams
to improve key disambiguation during typing as in related
work [13, 15]. Second, we infer words from touch sequences
with Hidden Markov Models (HMMs) and use dictionaries
[22, 25] to correct them. Auto-correction is a common feature
of modern devices (e.g. the Android stock keyboard [14]).

We further examine touch density and entropy of probabi-
listic keyboard models. We discuss entropy as a metric for
touch precision while typing. These methods allow us to gain
insight into differences between users and layouts.

KEYBOARD MODEL
To classify touches into keys, a formal representation of touch
events is required. We evaluated these features (Figure 4a):

• downX, downY, upX, upY: Touch locations when meeting
and leaving the surface.
• travelX, travelY, travelAngle: Distances and angle between

touch down and up.
• distanceToPrev, angleToPrev: Distance and angle between

two following touches.
• touchDuration, timeDifference: Time between down and

up and time between two following touches.

The list is not exhaustive. Other sensors may provide new fea-
tures. Our model uses upX, upY, based on feature evaluation.
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A touch classifier can learn to statistically associate touch
feature values with keys. It is trained on labelled touches,
which means that the ground-truth key for each training touch
is known. The trained classifier can then predict keys for fu-
ture unlabelled touches. We use Gaussian Bayes, which mo-
dels each key with a (bivariate) normal distribution, see Figu-
re 1b). This model is defined by Bayes’ Theorem:

p(k|t) = p(t|k)p(k)
p(t)

p(t|k) ∼ N (µ,∑) is the likelihood of touch t given key k.
p(k) models prior believe in k. p(t) is a normalisation factor:

p(t) = ∑
k∈K

p(t|k)p(k), for the set of all keys K.

The posterior p(k|t) gives the probability of keys after ob-
serving t. However, only the numerator is needed to find the
most probable key k′, which is the classification decision:

k′ = argmax
k∈K

(
p(t|k)p(k)

p(t)

)
= argmax

k∈K
(p(t|k)p(k))

To train the model, the likelihood p(t|k) ∼N (µ,∑) is deri-
ved from all touches with label k: µ is their average location,
∑ is their covariance. The prior p(k) is given by the relative
frequency of characters in the language or training text.

We propose to consider sparse training data. Keys for uncom-
mon characters may have few training touches. This leads to
poor estimates for their likelihood distributions p(t|k). We
solve this problem with a fallback to a default distribution.
If there are less than minPoints training touches for a key k,
the covariance matrix of p(t|k) is not estimated from those
touches. It is rather set to a default matrix with zero covarian-
ce and variance d. Thus, d defines a default key-size.

HAND MODEL AND KEYBOARD UPDATING
We present a simple hand model for back-of-device typing. It
uses a set of lines to represent possible fingertip locations for
each digit finger. Line orientations and locations are learned
from touches. As a result, our model captures location and
rotation of the hand relative to the device. We use this context
knowledge to facilitate keyboard updates while typing with
changing hand postures.

Each hand is represented by five straight lines. Each digit fin-
ger is modelled as one line, thumbs are not needed. However,
the index finger gets two lines; it serves two rows of keys in
the folded layout (Figure 2). The hand model θ is defined as:

θ = [θ i],θ i = (θ i
1,θ

i
2)

T ,1≤ i≤ 5

θ i defines the i-th line with intercept θ i
1 and slope θ i

2. Lines
ordered vertically (Figure 4b): θ 1,θ 2 define the index finger,
θ 3 is the middle finger, θ 4 the ring finger, θ 5 the small finger.

Learning Fingers with k-Lines
To learn the parameters of the presented hand model, we have
to fit finger-lines to touch locations. Intuitively, our method
takes a first informed guess to place initial lines. They are
then refined iteratively. Each iterative step has two parts. First,
each touch is assigned to its closest line. Second, slope and

Figure 4. A touch event (a) and the hand model (b) with lines indicating
slopes and intercepts along the touch surface edge on the back. The index
finger is modelled with two lines to account for the abducted stance used
to reach the second row of keys (compare to Figure 2).

intercept of each line are updated to fit the assigned touches.
The algorithm terminates, when no more changes occurred.

The algorithm uses an iterative optimisation method similar
to k-Means. It is referred to as k-Lines in related work [5]. A
detailed description of our procedure is given below:

1. Initialisation: Initial slopes are set to 0 (horizontal fin-
gers). Intercepts are initialised with k-Means using only y-
values of the touches. We define k lines θ i = (ci,0)T . ci is the
i-th cluster-mean of the k-Means clustering. Cluster-means
are sorted to match the finger indices described for the hand
model. Then, we start an optimisation loop with two steps.

2. Fitting touches to lines: The first step of each iteration
assigns each touch t = (tx, ty)T to its closest line:

line(t) = argmin
1≤i≤k

distance(t,θ i) = argmin
1≤i≤k

|θ i
1 +θ i

2tx− ty|√
θ i

2
2
+1

3. Fitting lines to touches: The second iterative step fits k
lines to the touches, using linear regression with basis functi-
ons. We create a design matrix X and target vector y per line:

Let Ti denote the set of all touches t assigned to the i-th line.
The N×M design matrix Xi for the i-th line is defined as:

Xi = [xnm],xnm = Φm(tn), tn ∈ Ti

Φm denotes the m-th of M basis functions. Each of the N =
|Ti| rows of Xi contains one touch, each column one fea-
ture. For straight finger-lines, we set Φ1(t) = 1 (bias) and
Φ2(t) = tx (linear term). The algorithm is flexible: Other Φ

and corresponding distance measures could model different
assumptions, for example a quadratic component: Φ3(t) = t2

x .

Next, yi is defined as the vector of the y-values of all touches
t = (tx, ty)T ∈ Ti. Finally, Xi and yi are used with least-squares:

θ
i = (XT

i Xi +λ I)−1XT
i yi

With Φ1,Φ2 as described above, θ i ∈ R2×1 represents a
straight line with intercept θ i

1 and slope θ i
2. λ penalises lar-

ge θ and restricts the model to avoid steep slopes (indicate
crossing fingers) and intercepts beyond the device borders.

4. Termination: Steps 2 and 3 are executed repeatedly, until
no further changes to the line assignments occurred since the
last iteration. For physical finger assignments, simply merge
the two clusters of the index finger lines. This completes the
desired output of the algorithm - finger assignments and the
final hand model θ . Figure 1c) shows an example result.
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Figure 5. Update example: An existing keyboard (white) is updated by
clustering the incoming unlabelled touches (grey). Their cluster means
(orange) define new key-locations. They are labelled by pairing them
with the old keys, minimising the global sum of distances. Asterisks (*)
point out examples for the importance of an optimal pairing per finger:
Simply assigning the closest of all old keys would not have worked here.

Keyboard Updating
Touch behaviour can vary between or during typing sessi-
ons (see Figure 3). A personalised keyboard model has to
adapt its keys to these changes or the mismatch of old key-
locations and new touch locations will increase touch clas-
sification errors. Collecting new labelled data to retrain the
model is not an option, because training phases interrupt the
user. New touches from the user’s ongoing free typing may
inform the model instead, but they lack labels. Hence, it is
unknown which touch should update which key.

We solve this problem with a combination of keyboard and
hand models in a clustering method. This allows the system
to use unlabelled touches to update the keyboard and avoids
to bother the user with new training phases. Our approach has
two parts. First, clustering finds unlabelled key-locations. Se-
cond, existing labelled keys are paired with the new locations.
We then move each key to its new location.

Standard clustering methods (e.g. k-Means) can not fully uti-
lise context knowledge about layout and hands. Hence, we
propose a custom hierarchical clustering algorithm:

1. Hands: If hands do not overlap, they are trivially given by
the touches’ relative locations to the device center.

2. Fingers: Our hand model is used to cluster touches of each
hand by fingers. Figure 1c) shows an example.

3. Keys: Touches of each finger are clustered into keys with k-
Means, initialised with key-locations of the existing model.

Our hand model enables the important second step; the me-
thod can search for key-clusters per finger, not just per hand.
The method needs at least one touch per key, because the
number of clusters is fixed. This can be ensured by adding
key-locations of the existing keyboard to the new touches.

After clustering, each existing key is associated with a new
cluster mean. The solution to this set-matching problem is a
pairing which minimises the sum of distances, see Figure 5.
One may try all possible pairings or use the Hungarian Me-
thod [20]. Fingers can be treated separately.

Each key is then moved to its corresponding cluster mean.
Updates can be scheduled regularly during typing. We chose
the end of sentences in this work. The updated model is then
used to classify future touches - until its next update.

LANGUAGE MODEL
In case of ambiguous touch locations, language properties can
help to infer user intention. Language models can thus com-
plement models of touch behaviour. We use n-gram models,
Hidden Markov Models (HMMs) and dictionaries. We do not
model relationships between words here (e.g. word n-grams).

We use character n-gram models as priors like related work
[12, 13] to predict p(kn|k1k2...kn−1), the probability of key
kn given the last n− 1 predictions k1,k2, ...,kn−1. The Bayes
model combines this with the touch likelihood p(t|kn):

p(kn|t) =
p(t|kn)p(kn|k1k2...kn−1)

p(t)

Training is the same as before. The n-gram model itself is
trained on a large text corpus.

We also propose word evaluation, which resembles auto-
correction: HMMs extend the Bayes model with state tran-
sitions to find the most likely state sequence (word), given
the observation sequence (touches). We refer to related work
[24] for a detailed description. Following their notation, we
set up the HMM λ = (A,B,π) with known information: In-
itial probabilities π are character frequencies of the langua-
ge (unigram model). The transition matrix A is given by a
bigram model. Emissions B are the likelihood distributions
p(t|k) from the Bayes model. In addition, dictionaries can
correct mistyped or misclassified words [22, 25]. They use
large training text to suggest candidates, which are ranked by
similarity to the input. We further rank equally similar candi-
dates by touch probability, not by training text frequency. The
input is then corrected with the best candidate.

DATA COLLECTION
To evaluate the method, we collected three datasets. They are
summarised in table 1. Dataset D1 was provided by [28] from
their Sandwich Keyboard. We refer to their work for details on
apparatus and study design. In summary, two tablets were fi-
xed back-to-back to enable touch interaction from both sides.
Experienced ten-finger typists completed a training procedure
using the folded versions of their layout over the course of 8
one-hour meetings. Each meeting contained multiple typing
sessions. A session is defined as continuous typing without
putting the tablet down. Users typed bigrams, word drills and
sentences (from [31]) shown on the front screen in a sitting
position. Errors were detected with an adaptive recogniser
and marked with red lines under the corresponding letter in
the prompt. Users reached typing speeds of 26 wpm (QWER-
TY) and 46 wpm (DSK). We used the 19 typing sessions wi-
thout keyboard visualisation on the front, no backspacing and
only sentences (about 20 per session).

We also obtained 10 typing sessions from an expert user with
70 wpm after 35 hours of training on the Sandwich Keyboard.
This dataset E was collected as a “stress test‘” for keyboard
updating. It has two special properties in comparison to the
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other datasets and is thus only used to evaluate keyboard up-
dating and hand models: First, the user consciously varied
hand postures to provoke large cross-session changes. Se-
cond, sessions consisted of 40 sentences with about 40% pan-
grams. This helps to evaluate that the concepts work for all
keys. However, we do not use this data to evaluate language
models, since pangrams distort language properties.

Dataset D2 was collected with a prototype and study design
similar to D1 [28]. It used a touch panel on the back, re-
sulting in a slimmer and lighter device. In contrast to D1, 5
novice users were recruited. They had not learned an offici-
al blind ten-finger typing method in the past. In the study,
2 used QWERTY, 3 DSK. We assigned 2 of our 5 users to
QWERTY, because DSK was better in previous work [28].
A backspace key was available and users were encouraged
to correct cognitive errors, like confusing fingers with respect
to the layout. We excluded backspaced touches from evaluati-
on. Participants completed 9 one-hour meetings similar to D1.
One of the users had only 7 meetings, due to time constraints
on the user’s side. We still use this data, since individual per-
formances are never compared between users. Users reached
13.5 wpm on average - much slower than in D1. We explain
this result with the lack of prior ten-finger typing experience.
We noticed that users still had to think about the relative lo-
cations of the keys during their last sessions, slowing them
down. We also measured average speeds with a laptop key-
board (32.8 wpm) and the default Android keyboard on the
front (21.5 wpm). As in D1, we only used data from invisible
keyboards (20 sessions, ∼ 25 sentences each). Overall, we
collected about 40,000 touches from 12 users.

RESULTS
All results were computed on the described datasets. We used
the Weka Machine Learning environment [16] for feature eva-
luation and the comparison of classifiers. Significance is re-
ported at p≤ 0.05. We use t-tests and pair conditions per ses-
sion and also per outlier filtering tolerance or cross-validation
fold, where applicable. Note that the different numbers of ses-
sions lead to different degrees of freedoms for the datasets.

Feature Selection
In single feature evaluation, classifiers were trained on one
feature at a time. This indicates a feature’s own explanatory
power, see [10]. Results are summarised in Table 2. Locati-
on features (downX, downY, upX, upY) performed best. Only
one other feature, angleToPrev, performed considerably bet-
ter than the baseline across all classifiers and datasets.

Correlation-based feature selection (CFS, [17]) examines da-
ta to select feature subsets. It selected touch location features
and angleToPrev for all sessions. For D1, timeDiff appeared
in subsets for 4 of 19 sessions, all other features were selected
in only one session each. In D2, distanceToPrev appeared in
2 of 20 sessions, timeDiff once, other features never.

Finally, we applied wrapper feature selection [19], which
greedily adds the best feature to the existing subset, using
classifiers; here Naı̈ve Bayes, decision trees, k-Nearest-
Neighbours (kNN, k = 5) and Support Vector Machines
(SVM). All selected subsets had touch location features. For

Dataset Sessions Subjects Typing experience
D1 19 3 DSK 3 QWERTY Experts
D2 20 3 DSK, 2 QWERTY Novices
E 10 1 DSK Back-of-device expert

Table 1. Overview of the datasets used in this evaluation.

Feature
Classification accuracy (%)

Dataset D1 Dataset D2
NB Tree kNN NB Tree kNN

downY 54.9 52.2 51.4 40.2 37.1 34.5
downX 48.5 45.9 44.5 40.3 38.3 36.6
upY 55.2 52.1 51.3 40.3 37.4 33.9
upX 48.3 46.2 44.5 40.9 38.1 36.9
angleToPrev 23.0 32.0 32.7 21.4 26.3 26.2
travelY 14.0 14.2 14.3 11.6 12.1 12.1
travelX 13.6 15.1 14.4 11.7 12.2 11.9
travelAngle 12.7 16.1 15.7 10.3 12.4 12.4
distanceToPrev 13.9 17.4 17.1 13.2 12.8 12.4
touchDuration 13.9 12.8 12.2 10.8 10.8 10.1
timeDifference 13.2 12.1 11.4 11.8 10.0 10.1

Majority Classifier 12.1 10.8

Table 2. Classification accuracy with 10-fold-cross-validation using on-
ly one feature, averaged over all sessions of each dataset. The majority
classifier (baseline) predicts the most common class for each session.

D1 and Bayes, subsets for 10 of 19 sessions solely comprised
of locations. With decision trees, travelY (7 sessions) and di-
stanceToPrev (6) were the most common non-location featu-
res. For D2 and Bayes, subsets for 14 of 20 sessions contained
only locations. With decision trees, travelY and angleToPrev
had 6 sessions each, followed by distanceToPrev (5). kNN
and SVM almost exclusively selected locations.

Overall, touch locations and angleToPrev were favoured by
single feature evaluation and CFS. The wrapper approach
confirmed touch locations, but not angleToPrev. In conclu-
sion, we chose only locations (upX, upY) for this work.

Touch Classification
We tested classifiers with 10-fold cross-validation per sessi-
on. Datasets were preprocessed to facilitate an evaluation of
methods, not user-skill: We removed spaces, since this key
was operated by the right thumb on the front and hence trivial
to recognise. Touches with a local outlier factor (LOF, [6])
exceeding an outlier threshold OT were removed. We expect
outliers to coincide with cognitive user-errors (e.g. confusing
finger-to-key assignments for the layout). We report results in
simple error rate. Values in the text are given for OT = 2.5, a
conservative upper bound for points in a Gaussian cluster [6].

Model comparison: Figure 6a) shows results for D1: De-
cision Tree (10.6% average error rate) and Random Forest
(10.0%) were outperformed by kNN (9.3%) and Naı̈ve Bayes
(9.1%). SVMs ranked first (linear 8.6%, radial basis functions
- RBF: 8.4%). D2 confirmed this ranking, see Figure 6b). All
results improved with stricter outlier threshold. For OT = 1.1,
more than a third of the touches were outliers. This is clearly
unlikely to reflect the true number of (cognitive) user-errors,
but indicates expectations for more precise typing. Figure 6
shows that the classifiers’ ranking was mostly independent of
outlier removal. This could not have been observed with fixed
outlier thresholds found in evaluations of touch behaviour in
related work on soft keyboards [1, 11, 36].
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a)      Dataset D1 b)       Dataset D2

Figure 6. Average error rates of different classifiers as a function of out-
lier filtering tolerance (LOF-score, [6]), computed with 10-fold cross-
validation per session. Falling grey lines indicate the ratios of outliers.

Comparison to related work: We evaluated key predictions
from the Sandwich Keyboard algorithm (SWK) as recorded
by the authors of related work [28]. We observed 10.7% (D1)
and 20.6% (D2). These results were optimistic, since they had
used ground-truth labels for adaptation during the study. We
then slightly adjusted the SWK algorithm to be able to use
a training set and perform predictions without ground-truth
labels. This modification allowed for cross-validation and a
direct comparison with Naı̈ve Bayes. It significantly outper-
formed SWK (D1: t(284) = -6.16, D2: t(299) = -11.72). Their
average error rates at OT = 2.5 were 9.1% vs 9.8% (D1) and
12.4% vs 14.4% (D2). Note that our SWK performed better
than the recorded results, since we estimated initial keys with
training sets, not just with single touches by the user.

Sparse data: We modified the Bayes model to account for
sparse data. If a key had less than minPoints training touches,
its distribution used a default variance of 400. We considered
two values (5,15) for minPoints. All values are subject to fur-
ther optimisation. minPoints = 5 significantly improved error
rates (D1: t(284) = -8.04, D2: t(299) = -9.75). minPoints = 15
only achieved this for D1 (D1: t(284) = -9.15, D2: t(299) =
2.81). There was no significant difference between the SVM
and the improved Bayes model for D1 (t(284) = 0.08). The
SVM was significantly better for D2 (t(299) = -4.56). This in-
dicates that Bayes suffered from sparse training data in com-
parison to the SVM. Our simple extension partly remedied
this problem. A practical conclusion is that enough training
data per key should be collected to make this unnecessary.

Covariance: We compared Bayes with and without covarian-
ce between x and y. Covariance significantly improved error
rates with minPoints = 15 (D1: t(284) = -4.53, D2: t(299) =
-6.66). Their average error rates at OT = 2.5 were 8.4% vs
8.6% on D1 and 12.1% vs 12.5% on D2. Covariance was wor-
se than no covariance with minPoints = 5, but this was only
significant for D1 (D1: t(284) = 2.67, D2: t(299) = 0.93). The
observation that covariance only improved classifiers with
minPoints = 15 demonstrates that estimating the additional
parameters for covariance requires more touches per key.

Classifier Error Rate MSD (%)
Dataset D1 Dataset D2

Bigram model (n = 2) 10.06 9.51
Trigram model (n = 3) 9.87 9.48
4-gram model 10.08 10.07
5-gram model 10.05 10.13
Baseline: Naı̈ve Bayes 11.50 11.14

Table 3. Performances of Naı̈ve Bayes with n-gram language models.

Classifier Error Rate MSD (%)
Dataset D1 Dataset D2

HMM 9.19 8.79
HMM & Dictionary 6.87 6.09
Naı̈ve Bayes & Dictionary 7.70 6.86
Naı̈ve Bayes, trigram & Dictionary 6.99 6.58
Baseline: Naı̈ve Bayes 11.50 11.14

Table 4. Performances for word by word touch classification.

In summary, we identified Gaussian (Naı̈ve) Bayes and Sup-
port Vector Machines as the most promising classifiers. Cova-
riance between x and y can be considered if enough training
touches per key are available (here > 15). Improvements for
sparse training data can be achieved with a default key-size.
For D1, no significant difference was found between impro-
ved Bayes and SVM. We favour Bayes; it is computationally
cheap in both training and prediction, provides probabilities
and inherent handling of more than two classes. In contrast
to SVMs, Bayes also offers explicit representations of key-
locations, which can be updated with our clustering approach.
In general, models performed better for the experienced ty-
pists (D1) than the novices (D2). This confirms that typing
skill is transferred from a traditional keyboard to the Sand-
wich Keyboard [28].

Language Models
Language enhanced character prediction was evaluated with
10-fold cross-validation. Folds consisted of whole phrases.
Outliers (OT = 2.5) were removed from training phrases, but
not from test phrases, because removing single characters
would have damaged the text for language model evaluati-
on. Spaces remained in the data for the same reason. Results
are given in error-rateMSD, the Damerau-Levenshtein (mini-
mal string) distance [9, 21] of predicted and expected text.
n-gram models were built with NLTK [4]. All models were
trained on the “big.txt” file from Peter Norvig [22]. It con-
tains >1M words from public domain sources.

Table 3 shows that all models improved the baselines. Tri-
gram models performed best with significant improvements
to the baselines (D1: t(189) = -6.22, D2: t(199) = -8.27).

We implemented HMMs and dictionaries for word prediction
in Python. Dictionaries followed Peter Norvig’s concept [22].
Table 4 shows that all approaches outperformed the baseline.
HMM & Dictionary performed best with significant impro-
vements to the baselines (D1: t(189) = -11.14, D2: t(199) = -
15.15). It also outperformed Trigrams & Dictionary, but only
significantly for D2 (D1: t(189) = -0.42, D2: t(199) = -2.38).
Without dictionaries, HMMs outperformed trigrams (see Ta-
ble 3) significantly (D1: t(189) = -3.41, D2: t(199) = -4.44).
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Figure 7. Left: a) Accuracy of touch-to-finger assignments with k-Lines,
as a function of the observed number of touches. Right: (log) average
proximity of pixels to the nearest finger-line, split by layout. Red is close.
These plots indicate that finger locations found with this hand model
were spread further apart and varied around more distinct areas of the
touch surface for b) DSK than c) QWERTY.

In conclusion, n-gram models, HMMs and dictionaries signi-
ficantly improved the Bayes classifier. Higher order n-gram
models may perform better with more training text (see [8,
27]). In contrast to our model comparison (Figure 6), this eva-
luation included spaces and outliers to keep language proper-
ties unchanged. As a result, the ranking of the datasets rever-
sed; we now observed lower error rates for D2 than for D1.
This indicates that outliers had a larger impact on data wi-
thout backspacing (D1). Since users in D2 were encouraged
to backspace cognitive errors, this also shows that outlier fil-
tering with LOF [6] can indeed remove such user-errors.

User- and Session-Specificity
We trained classifiers on touches of one session (i.e. typing
without putting the tablet down) and applied them to touches
of another one. Spaces and outliers (OT = 2.5) were removed.
The observed high error rates (Table 5) show that typing beha-
viour was user-specific, supporting personalised keyboards. It
was also session-specific. In practice, the cross-session case is
the default, since it is impractical for users to retrain their key-
board before each typing session. We conclude that updating
keyboard models across sessions is vital in this context.

Finding Fingers
We evaluated touch-to-finger assignments from our hand mo-
del. Expected text and layout defined the ground-truth. For
example, “f” is the left index finger for QWERTY. Outliers
were removed from the data (OT = 2.5).

Figure 7a) shows that accuracy improved with more touches.
For D1, up to 95.3% average accuracy was observed after 200
touches. For D2, 92.6% was reached at 290 touches. With 20
touches, the algorithm achieved 81.1% (D1) and 73.0% (D2).
With 30 touches, results for D2 already reached 82.0%. For
the expert user (E), it achieved 91.5% with 20 touches and
consistently more than 99% after 50 touches. We observed
significantly higher accuracy for DSK than QWERTY users

Classifier
Error Rate (%)

same session cross-session cross-user
D1 D2 D1 D2 D1 D2

Naı̈ve Bayes 9.14 12.40 33.96 25.49 65.40 51.80
Decision Tree 10.61 14.83 33.18 27.86 60.40 52.70
kNN (k = 5) 9.27 13.67 30.90 26.27 54.24 48.79
SVM 8.43 11.87 30.85 26.40 59.21 51.15

Table 5. Cross-user (same layout) and cross-session applications.

Method Error Rate MSD (%)
D1 D2 E

Baseline: No Updates (Naı̈ve Bayes) 28.92 20.94 39.37
Baseline: Sandwich Keyboard algorithm 24.54 19.05 28.90
Distribution Updates 28.03 19.75 38.23
Fast Location Updates 26.82 17.77 31.01
Clustering Updates 20.12 16.68 16.82

Table 6. Performance of (updated) Naı̈ve Bayes across sessions, averaged
over all possible cross-session combinations for all users.

(t(33) = 19.60). This could be seen as a limitation of the algo-
rithm, but also as one of the layout: Finger modelling revea-
led that DSK facilitates more precise movements and there-
fore clearer finger separation in this context. Figures 7b) and
c) summarise fingers by layout. Derived finger locations sho-
wed showed more cluttered fingers for QWERTY, and more
distinctive regions for DSK.

Keyboard Model Updating
We evaluated our clustering approach in comparison to the
Sandwich Keyboard algorithm and two naı̈ve methods: The
first one, Distribution Updates, adds each touch to the distri-
bution of its predicted key. The second one, Fast Location Up-
dates, adjusts the predicted key’s location, based on the ave-
rage of its existing mean and new touches. Hence, it weights
each touch of the current session as much as all touches of the
training session, leading to faster adaptation. We consider the-
se methods naı̈ve, because they use new data touch by touch.
In contrast, clustering uses all new touches in each update. Fi-
gure 8a) shows intermediate results, Table 6 final results over
the full sessions. Figure 8b) visualises key-movements.

Clustering Updates significantly improved error rates for
both baselines: No Updates (D1: t(47) = -4.95, D2: t(59) =
-16.68, E: t(89) = -16.76) and the Sandwich Keyboard algo-
rithm (D1: t(47) = -2.55, D2: t(59) = -4.54, E: t(89) = -8.51).
After 150 touches, a typical short message, clustering had al-
ready decreased error rates of Naı̈ve Bayes by 4.93% on D1,
2.19% on D2 and 10.53% on E.

In contrast, overall improvements with Distribution Updates
were small (Table 6). Fast Location Updates performed bet-
ter, but was outperformed by Clustering Updates (on all da-
tasets) and the Sandwich Keyboard algorithm (on D1 and E).

The expert user tried different hand postures as a “stress test”
for updating. Hence, cross-session variance is the highest for
E. Clustering handled it well, in contrast to the other approa-
ches (see Table 6). Experienced typists (D1) showed higher
session-specificity than novices (D2). Novices placed fingers
more slowly and consciously, because they were still learning
movements and memorising the keys. Thus, their typing be-
haviour appeared more stable across sessions. This indica-
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b)a)

Figure 8. Left (a): Error rates after x touches, averaged over all cross-session combinations. Plots are limited to the first 400 touches to ensure that they
always represent all sessions. Table 6 shows results over the full lengths. For D1, the Sandwich Keyboard algorithm started noticeably better than the
other methods after only x = 25 touches: It was used to detect and mark errors in this study. Hence, users initially adapted to this model. Clustering
updates still outperformed it after about 100 touches. Right (b): All key-movement paths from clustering updates on dataset D2, revealing that back-of-
device typing is highly dynamic. The long and overlapping traces show that touch behaviour greatly varies during typing and between users.

tes that dealing with cross-session variance may become even
more important with increasing experience, at least in this un-
restricted setting with no visual or tactile posture cues.

Regarding computational demands, an update with about 500
touches took less than 300 ms with our unoptimised Python
script on a modern laptop. We expect faster processing with
optimised and precompiled code. Clustering with our concept
can also be performed in its own thread. Keys can then be
updated almost instantaneously once the results are available.

Discussion
In our user study, Gaussian Bayes was identified as a prefer-
red keyboard model on the back. Touch locations were the
only useful features here, but the model is flexible and could
be used with other features, too. It currently handles spar-
se training data with a simple fallback threshold (minPoints).
A more complete Bayesian approach could employ conjuga-
te priors instead [15]. Future model comparisons could al-
so rigorously optimise hyperparameters. New sensors or raw
touch data present further interesting opportunities [26].

We observed accurate touch-to-finger assignments with our
hand model, especially for DSK users (> 95%). The cur-
rent model neglects more complex hand properties like finger
joints, but can be learned solely from touch data. We used it to
adapt key-locations to changing hand postures during typing.
Updating the full key-distributions (i.e. shape, size) is left to
further investigation.

Language models greatly improved classification accuracy,
despite their limitations. We did not consider relationships
between words and used only character n-grams. We ex-
pect further improvements with extended language modelling
techniques and more training text.

All methods were evaluated offline on collected user data.
Our dataset contained only 12 users, but we observed an in-
teresting range of typing experience and up to 9 hours of trai-
ning per participant. Next, we plan to test our approach online
to explore how users and adaptive keyboards interact.

ANALYSING PERSONALISED KEYBOARD MODELS
The described Bayes model was used to predict keys for tou-
ches. We present two simple methods to further analyse the
information captured in such a probabilistic model and facili-
tate a keyboard-wide analysis of typing touch behaviour.

Keyboard Touch Likelihood
Intuitively, touches are more likely to belong to the typing
process if they appear in regions where many typing touches
have been observed so far. We refer to this touch density as
keyboard touch likelihood, because it is high if the touch is
close to any key. Hence, this models a keyboard’s surface.
Figure 9 shows examples.

For a touch location t ∈R2×1, and distributions p(t|k) for the
set of keys K, the keyboard touch likelihood Lt is defined as:

Lt =
1
|K| ∑k∈K

p(t|k)

Formally, this describes a Gaussian Mixture Model. Key-
boards could filter touches with low L, since they are unlikely
to be aimed at keys. Unintended touches on the back may oc-
cur from carrying the device between typing sessions.

Keyboard Entropy
Observing entropy of probabilistic keyboard models can re-
veal areas of ambiguous touch behaviour. Entropy is high
for ambiguous touches and low for clear key-presses. Hence,
high entropy is found where keys “overlap” and indicates ed-
ges of soft keyboards. Figure 10 shows examples.

Formally, for touch t ∈ R2×1 and model p(k|t), entropy St is:

St =−∑
k∈K

p(k|t) ln p(k|t), for the set of all keys K.

We can also compute an average, for example over all pixels,
which reflects overall ambiguity: Precise and consistent ty-
ping touch behaviour produces smaller values, sloppy typing
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a) b) c)

Figure 9. Keyboard touch log-likelihood from different sessions of: a) a
novice user, whose hands drifted upwards over the course of the session;
b) a more experienced typist; c) the expert user. Red indicates high touch
density, white marks regions below the chosen colour scale.

a) b) c)

Figure 10. Posterior entropy of Gaussian Bayes keyboard models of: a) a
novice user’s first try (average entropy 0.18), b) the same user after more
training (0.11), and c) the expert user (0.05). Red indicates high entropy
and marks regions of “overlapping” keys - the keyboard’s edges.

larger ones. Hence, this yields a metric for typing touch preci-
sion. In comparison to error rates, cognitively confusing two
keys does not matter here, as long as the key-press itself is
accurate. We propose to examine entropy to complement exi-
sting measures, like error rate and speed.

Observations on Touch Distributions
Modelling typing touch density was presented to examine soft
keyboard surfaces. We studied individual sessions (see Figu-
re 9), and observed great variations between users, which can
not only be attributed to different hand sizes. Experienced ty-
pists showed a tendency to place keys closer together than
novices. We propose a simple filter-application: Touches in
regions of low density could be ignored, since they are unli-
kely to be intended typing behaviour. Back-of-device interac-
tion seems prone to generate non-typing touches, for example
when carrying the device or putting it down.

We further proposed posterior entropy to examine soft key-
board edges and to define a metric for typing precision. We
evaluated average entropies for all sessions: The expert Sand-
wich Keyboard user (E) had a mean of 0.06. The experienced
ten-finger typists from D1 scored second with mean 0.09, fol-
lowed by the novice typists from D2 with mean 0.16. One-
way ANOVA showed a significant effect of typing experience
(F2,46 = 24.46, p < 0.001). These results show that posterior
entropy can reflect touch precision, related to typing experi-
ence. Figure 10 visualises examples.

CONCLUSIONS
We presented a multi-model approach with keyboard, hand
and language models to improve error rates for back-of-
device typing. Our evaluation revealed insights into the con-
tributions of the individual modelling assumptions. Conside-
ring touch variance per key improved the previous distance-
based approach. n-grams provided useful character context,
but dictionaries achieved even larger improvements. Word
prediction was slightly better if touch sequences were first
processed by a HMM. Hence, language strongly supports in-
ference for this back-of-device soft keyboard, and a close
combination of touch and language modelling is desirable.
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Figure 11. Best practice approaches across sessions and within (cross-
validation). Our methods used clustering updates for the cross-session
cases. The baseline is given by the Sandwich Keyboard algorithm. Split-
ting the data by layout reveals a superiority of DSK users.

Finally, our hierarchical clustering method updated key-
boards while typing. The clustering approach reconsidered all
previous touches in each update. It handled unlabelled free ty-
ping data without trusting the possibly outdated current key-
board model when deriving the new key-locations. This si-
gnificantly outperformed previous adaptation methods, which
only considered new information touch by touch, and had to
trust the current model to label these new touches first. Hence,
we conclude that clustering methods can significantly impro-
ve accuracy for dynamic typing with touch, compared to only
addressing it as a static classification problem.

Best Practice Approaches
Putting the pieces together, we arrive at the following best
practices: Bayes with trigram models per touch, HMMs and
dictionary for word predictions, clustering for keyboard up-
dating across sessions. Figure 11 shows the results.

Including word correction, we reduced errors by > 40% com-
pared to previous work [28]. Using the DSK layout, this con-
stitutes the best and recommended case (4.96% within ses-
sions, 8.59% across). In comparison, previous work [28] re-
ported 9.8% for DSK users (within their final sessions), using
ground-truth labels of the touches to update the keyboard.

Outliers were not removed from the test sets here to keep the
text unchanged for language model evaluation. Thus, user-
errors likely remained in the data and these results could be
considered pessimistic from a modelling point of view.

Future Work
We expect that the lessons learned here can be useful on a
broader scale. In particular, we found that normal distributi-
ons can also model touches aiming at occluded key-targets
on the back, complementing previous work for the front [32].
Our hand model and updating method could prove interesting
for other soft keyboards, for example on tabletops. Touch
density and entropy discussed here can reveal areas of activi-
ty and potential mistakes for interfaces in which targets (e.g.
buttons) can be described with touch distributions.

We conclude with ideas for further improvements: Touch
classification and finger modelling results suggested a supe-
riority of DSK. Better layouts could be derived with optimi-
sation methods [23]. Touch offset models [7, 33] might help
to account for targeting errors. Besides machine learning, re-
fined user training and tactile (back-of-device) markers could
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improve speed and precision. Visualisations on the front
screen can help the user, too, but would cover screen space. A
static keyboard should be compared to the personalised ver-
sion to investigate more restricted typing behaviour as well.
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