
Force Touch Detection on Capacitive
Sensors using Deep Neural Networks

Tobias Boceck
University of Stuttgart
Stuttgart, Germany
boceckts@gmail.com

Huy Viet Le
University of Stuttgart
Stuttgart, Germany
mail@huyle.de

Sascha Sprott
University of Stuttgart
Stuttgart, Germany
sprottsa@gmail.com

Sven Mayer 1,2

1University of Stuttgart, Germany
2Carnegie Mellon University, US
info@sven-mayer.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

Copyright held by the owner/author(s). Publication rights licensed to ACM.
21st International Conference on Human-Computer Interaction with Mobile Devices
and Services (MobileHCI ’19), October 1–4, 2019, Taipei, Taiwan
ACM 978-1-4503-6825-4/19/10.
http://dx.doi.org/10.1145/3338286.3344389

Abstract
As the touchscreen is the most successful input method of
current mobile devices, the importance to transmit more in-
formation per touch is raising. A wide range of approaches
has been presented to enhance the richness of a single
touch. With Apple’s 3D Touch, they successfully introduce
pressure as a new input dimension into consumer devices.
However, they are using a new sensing layer, which in-
creases production cost and hardware complexity. More-
over, users have to upgrade their phones to use the new
feature. In contrast, with this work, we introduce a strat-
egy to acquire the pressure measurements from the mutual
capacitive sensor, which is used in the majority of today’s
touch devices. We present a data collection study in which
we collect capacitive images where participants apply differ-
ent pressure levels. We then train a Deep Neural Network
(DNN) to estimate the pressure allowing for force touch de-
tection. As a result, we present a model which enables esti-
mating the pressure with a mean error of 369.0g.

Author Keywords
Force touch; pressure; interaction; input dimension mutual;
capacitive sensor; deep neural networks.

ACM Classification Keywords
H.5.2 [User Interfaces]: Haptic I/O

http://dx.doi.org/10.1145/3338286.3344389


Introduction & Background
With the iPhone 6s in 2015, Apple introduced 3D Touch1

which adds a pressure dimension to the input space. Asher
Trockman ran a large-scale study to understand the capa-
bilities of the sensor used by Apple2. In his report, he stated
that the sensor’s range is from 0g to 337g, while the accu-
racy is not feasible to determine in such a large scale set-
ting as ground-truth needs to be verified first. While this
sensor, only covers a small range, the sensor needs to
be built into the system upon production time. In Android
systems, the MotionEvent is fitted with a pressure value
already for years. Additional, the ForceTouch library3 en-
ables developers to add the pressure dimension to their
prototypes easily. However, both rely on a pressure approx-
imation based on the contact area of the finger, c.f. Boring
et al. [2]. Thus, currently, true pressure input is not possi-
ble on Android systems. Arif and Stuerzlinger [1] present a
method which does not rely on the simulated pressure, but
on the fact that the contact area groups and therefore the
touch point moves as the touch-controller predicts a differ-
ent touch point over time when more pressure is applied.

(a) Match circle (b) Match bar

(c) Fill circle (d) Fit color

Figure 1: For all for tasks the size
or color is mapped to the pressure
applied by the participants. The
goal is to match them by varying
the pressure.

In contrast, Ramos et al. [14] enabled pressure input using
a pressure sensitive pen and found that the new dimension
can enrich the input. Moreover, for stylus input, they found
that dividing pressure space into six levels is optimal. Heo
and Lee [5] presented an approach to use the accelerom-
eter to detect pressure input but could only distinguish be-
tween two levels. Hwang et al. [7] improved the recognition
and added a third level.

Inoue et al. [9] investigated using RGB images of a finger

1https://developer.apple.com/ios/3d-touch/
2https://ashertrockman.github.io/ios/2015/10/24/

3d-touch-scale.html
3https://github.com/michelelacorte/ForceTouch

to estimate the applied pressure to the surface using DNNs.
However, this approach makes pressure sensitive devices
bulky and drastically reduces mobility. On the other hand,
Philip Quinn [13] and Takada [16] used a barometric pres-
sure sensors to estimate the force on touch screens.

More recently, pressure sensors have been deployed around
the device, for example, the HTC U11 and the Google Pixel
is designed with a feature called Edge Sense, which allows
the user to press the frame of the device with its hand, to
launch applications.

An alternative is to use the capacitive images to gain more
information about the object that is touching it has a long
history. Guarneri et al. [4] classified single finger, double
fingers, and palm input using these images. Later, Le et
al. [10] improve these results using DNN. Mayer et al. [12]
also used a DNN and the capacitive images to estimate the
finger orientation.

In this paper, we present a new approach to acquire the
pressure input on a touchscreen. We developed a machine
learning (ML) model, which can estimate the pressure put
on a touchscreen by using capacitive images. We, there-
fore, first conducted a user study to collect training data.

Data Collection Study
First, we collect labeled training data. As the goal is to es-
timate pressure a.k.a. the normal force4 we need to record
the applied pressure and the capacitive image. Thus, we
run a study in which participants are asked to perform dif-
ferent pressure inputs.

4The normal force is the force perpendicular to the surface. In our
case the touchscreen.

https://developer.apple.com/ios/3d-touch/
https://ashertrockman.github.io/ios/2015/10/24/3d-touch-scale.html
https://ashertrockman.github.io/ios/2015/10/24/3d-touch-scale.html
https://github.com/michelelacorte/ForceTouch


Apparatus
We used three devices: an Android LG Nexus 5 which re-
trieves the capacitive images, a digital weighing scale to
retrieve the pressure applied by the participants, and a lap-
top to sync the data using a local network with a delay of
less than 1ms. The phone was only connected to the laptop
minimizing shunting effects [8].

As typical consumer weighing scales cannot read the scale
continuously at a high rate, we used the openscale5 by
SparkFun. After calibration, we were able to record the
scale measurements every 84ms. We used an LG Nexus
5 running Android 5.1.1 with a modified kernel to access
the 27 × 15 8-bit raw capacitive images of the Synaptics
ClearPad 3350 touch sensor without background subtrac-
tion. The modified kernel was set up to capture a capaci-
tive image every 50ms, c.f. Le et al. [11]. As a last step, we
tared the scale after placing the phone on it.

(a) Match bar

(b) Match circle

Figure 2: Example images while a
participant is performing the match
bar and fill circle task.

Task
We implemented an app which was able to receive the
weight measurements of the scale and record the weight
with the corresponding capacitive image. We implemented
four tasks (see Figure 1), each of which followed the same
pattern, namely to match some shapes or colors by apply-
ing different pressure levels on the touchscreen. The design
of the tasks was inspired by Hwang et al. [7]. In the match
circle and match bar task (see Figures 1a and 1b), the goal
was to match the red outline of a circle and bar with the
blue corresponding circle and bar by applying different pres-
sure levels. The fill circle task (see Figure 1c) was similar to
the first ones match circle task; however, the position was
varied and the pressure values were multiplied by a ran-
dom factor smaller 1 to collect higher pressure samples.

5https://github.com/sparkfun/OpenScale

For the Fit color task (see Figure 1d), the color of the in-
ner circle had to be matched to the color of the outer area.
More pressure turned the color darker.

Procedure
The participants were instructed on the goal of the study
and on how to use the data collection app. In the app, the
participant was first asked to enter demographic data. Then
the participants were told only to use their index finger to
interact with the phone (see Figure 2). They complete 15
sets of randomly selected tasks. In each set participants
were asked to complete the task five times.

Participants
We recruited participants from our university’s volunteer
pool. In total, 20 participants took part in the study (15
male, and 5 female). The age range was between 19 and
27 years (M = 23.3, SD = 1.7).

Machine learning (ML)
In our data collection study, we collected 115,134 samples
where participants applied different pressure levels on the
screen. We used mean squared error (MSE) as optimiza-
tion function and report root mean squared error (RMSE)
and mean absolute error (MAE) for readability in grams.

Pre-Processing
We first performed a blob detection using OpenCV to en-
sure a finger was present on the screen. We then removed
all images with a time difference between capacitive im-
age and weight measurement larger than 80ms and images
with no pressure reading. This results in 82, 526 samples
with an average blob size of 18.4px2 (SD = 4.1px2). As
less than 1% of the data was with pressure values above
2, 000g, we removed all samples with more than 2, 000g.
For the remaining data, we performed data augmentation to
increase the data set size and equalizing the sample sizes

https://github.com/sparkfun/OpenScale


for low vs. large pressure values. We first added random
Gaussian noise (SD = 1.5) to the images to boost the num-
ber of images per 50g bin to 7,000 images. This boosted
the data set size to 280, 000 images. As final augmenta-
tion step, we flipped images horizontally and vertically to
increase the sample size to 1, 120, 000. Finally, we pasted
the data in the upper left corner which makes our model
position invariant (see Figure 3).

0 2 4 6 8

0

2

4

6

8

(a) 100g pressure

0 2 4 6 8

0

2

4

6

8

(b) 600g pressure

Figure 3: Two capacitive sample
images of the capacitive matrix
after pre-processing.

Baseline
First, we determined a baseline performance by using well-
established ML models to determine the pressure. We first
extracted the following features: the sum of capacitance,
avg of capacitance ellipse area, ellipse width, ellipse height,
and ellipse theta. We used the same features for the base-
line as Le et al. [10]. Pearson’s correlation revealed a signif-
icant correlation between the ellipse area and the pressure
p < .001 with ρ = 0.23. Thus, we trained different basic ML
models to set a baseline. Therefore, we performed a grid
search with a 5-fold cross-validation (CV).

A kNN with k=6 performs best; however, it is the worst
baseline with a RMSE = 659.02g and MAE = 534.56g
(SD = 385.45g). DT (maxDepth = 18, minSamplesSplit
= 22) RMSE = 611.58g, and MAE = 492.70g (SD =
362.33g) was the next up. Runner up with RMSE = 593.51g,
and MAE = 511.86g (SD = 298.72g) is SVM. Finally
the best baseline predictor is a RF with 14 estimators:
RMSE = 583.36g, and MAE = 470.51g (SD = 344.88g).

Convolutional Neural Network (CNN) Training
For training, we used a 75% to 25% (15:5) participant-wise
split for train and test data set to avoid samples of the same
participant being in both training and test set. We randomly
picked 5 test participants, while with data augmentation
they made up for 26% of the data, for testing, we only used
the 16, 781 non augmented samples to reduce overfitting

RMSE MAE SD

kNN 659.02 534.56 385.45
DT 611.58 492.70 362.33
SVM 593.51 511.86 298.72
RF 583.36 470.51 344.88

CNN 471.99 369.01 294.3

Table 1: Results of the pressure prediction. Here, we present the
results of basic machine learning algorithms as well as the best
CNN model of the test set.

towards the data argumentation. We implemented a DNN
for regression using Keras 2.2.4 with TensorFlow 1.12 as
backend. We applied the trial-and-error method [3] to find
the best parameters for our models.

Representation learning algorithms learn features in part
with the labeled input data and have been shown to be
more successful than manual feature engineering. Thus,
we implemented a multilayer feedforward DNN, which is
shown in Figure 4. The training was done with a batch size
of 500 using the RMSprop optimizer with a mechanism
which reduces the learning rate by 10% when a metric has
stopped improving over 10 epochs. We found that an initial
learning rate of .001 leads to the best performance. We ini-
tialized the network weights using the Xavier initialization
scheme. For the CNN layer, we set padding to be same,
the kernel to be 3 × 3, and as an activation function, we
used a ReLU function. We used dropout layers during train-
ing between all hidden layers with a dropout level of 50%.
Further, we performed batch normalization after each CNN
layer. Finally, for both fully connected dense layers we used
LeakyReLU as activation function with a L1/L2 regulariza-
tion of .02 and .15 respectively.



Our CNN achieved an MAE = 396.5g (SD = 278.3g) while
the RMSE is 484.5g. For the test set the model achieved
MAE = 369.0g (SD = 294.3g) with an RMSE of 472.0g
after 500 epochs. Train results are expectantly worse due to
the use of LeakReLU and Dropout, we did this to counteract
overfitting when using our heavily augmented data set.

1
5 2
7 3
2

2
7

1
5

1
5 2
7 3
233

7

1
3 4
8

33

1
2
8

6
4

d
en
se

d
en
se

M
ax
p
oo
lin
g

1

1

33

M
ax
p
oo
lin
g

Figure 4: The best performing
Convolutional Neural Network
(CNN) structure to estimate the
pressure put on a mutual
capacitive sensor by a human
finger.

Discussion
While we improved over our baseline approaches, we did
not achieve the same sensitivity as for instance, the dedi-
cated pressure sensor in today’s iPhones. However, Huber
et al. [6] estimate a just-noticeable difference (JND) for in-
car interaction at 118g (50%). Moreover, they state that two
levels need to be at least 292g different to be considered
different (25% rating), and 460g for 0%. Thus, our model is
in the same range where humans can distinguish between
different pressure levels.

We treated the problem as a regression problem to con-
tinuously estimate the pressure. However, with the current
quality of our model, a continues pressure input is not fea-
sible for interaction. We argue that we can use the current
CNN to implement a classifier with two stats such as “nor-
mal press” and “force press” with pressure around 0g and
500g as target pressure level. Thus, when treating pressure
as a classification problem with two stats we can enrich the
interaction on mutual capacitive screens without adding a
extra sensing layer. This can be used for single touches,
and multi-touch, but also for force gesture input extending
gestures sets by an extra dimension.

While we present a step towards an estimation of pressure
without the need for additional hardware, there is still a re-
maining error in the estimation. One reason includes the
limitation of the touch sensor of the LG Nexus 5. With a
pixel size of 4.1 × 4.1mm, the capacitive image still has

a low-resolution which restricts the performance of the
estimation. This could improve when using precise high-
resolution touch sensors. This technology is already avail-
able in commercial smartphones, c.f. Microsoft PixelSense.

Finally, we contribute the data set, Python scripts as well as
a ready to deploy model at GitHub6 under the MIT license
to enable future evaluation with new models and other esti-
mation approaches.

Conclusion and Future Work
We presented an approach to detect force touch through a
finger onto a mutual capacitive sensor. First, we collected a
data set and used state-of-the-art DNN techniques to out-
perform our baseline estimation. We trained a DNN with 3
CNN layers followed by 2 fully connected dense layers.

While our research enables force touch detection without
an additional sensing layer, future work is needed to enable
accurate pressure input. Thus, as the next steps, we aim
to collect a larger dataset for performance improvements.
Related work such as Schweigert et al. [15] shows that exe-
cuting the model on a phone is feasible, however deploring
the pressure model to a phone is a logical next step.

Acknowledgement
This work was supported by the German Research Foun-
dation (DFG) within Cluster of Excellence in Simulation
Technology (EXC 310/2) at the University of Stuttgart.

REFERENCES
1. Arif, A. S. and Stuerzlinger, W. Pseudo-pressure

Detection and Its Use in Predictive Text Entry on
Touchscreens. In Proc. of OzCHI ’13. DOI:
http://dx.doi.org/10.1145/2541016.2541024

6https://github.com/interactionlab/ForceTouchDetection

http://dx.doi.org/10.1145/2541016.2541024
https://github.com/interactionlab/ForceTouchDetection


2. Boring, S., Ledo, D., Chen, X. A., Marquardt, N., Tang,
A., and Greenberg, S. The Fat Thumb: Using the
Thumb’s Contact Size for Single-handed Mobile
Interaction. In Proc. of MobileHCI ’12. DOI:
http://dx.doi.org/10.1145/2371574.2371582

3. Coulibaly, P., Anctil, F., and Bobée, B. B. Daily reservoir
inflow forecasting using artificial neural networks with
stopped training approach. Journal of Hydrology
(2000). DOI:
http://dx.doi.org/10.1016/S0022-1694(00)00214-6

4. Guarneri, I., Capra, A., Castorina, A., Battiato, S., and
Farinella, G. M. PCA based shape recognition for
capacitive touch display. In Proc. of ICCE ’13. DOI:
http://dx.doi.org/10.1109/ICCE.2013.6487033

5. Heo, S. and Lee, G. Forcetap: Extending the Input
Vocabulary of Mobile Touch Screens by Adding Tap
Gestures. In Proc. of MobileHCI ’11. DOI:
http://dx.doi.org/10.1145/2037373.2037393

6. Huber, J., Sheik-Nainar, M., and Matic, N. Multi-Level
Force Touch Discrimination on Central Information
Displays in Cars. In Proc. of AutomotiveUI ’17. DOI:
http://dx.doi.org/10.1145/3131726.3132043

7. Hwang, S., Bianchi, A., and Wohn, K.-y. VibPress:
Estimating Pressure Input Using Vibration Absorption
on Mobile Devices. In Proc. of MobileHCI ’13. DOI:
http://dx.doi.org/10.1145/2493190.2493193

8. Ikematsu, K., Fukumoto, M., and Siio, I. Ohmic-Sticker:
Force-to-Motion Type Input Device for Capacitive Touch
Surface. In Proc. of CHI EA ’19. DOI:
http://dx.doi.org/10.1145/3290607.3312936

9. Inoue, Y., Makino, Y., and Shinoda, H. Estimation of the
Pressing Force from Finger Image by Using Neural
Network. In Proc. of EuroHaptics ’18.

10. Le, H. V., Kosch, T., Bader, P., Mayer, S., and Henze, N.
PalmTouch: Using the Palm As an Additional Input
Modality on Commodity Smartphones. In Proc. of CHI
’18. DOI:
http://dx.doi.org/10.1145/3173574.3173934

11. Le, H. V., Mayer, S., Bader, P., and Henze, N. A
Smartphone Prototype for Touch Interaction on the
Whole Device Surface. In Proc. of MobileHCI ’17. DOI:
http://dx.doi.org/10.1145/3098279.3122143

12. Mayer, S., Le, H. V., and Henze, N. Estimating the
Finger Orientation on Capacitive Touchscreens Using
Convolutional Neural Networks. In Proc. of ISS ’17.
DOI:http://dx.doi.org/10.1145/3132272.3134130

13. Quinn, P. Estimating Touch Force with Barometric
Pressure Sensors. In Proc. of CHI ’19. DOI:
http://dx.doi.org/10.1145/3290605.3300919

14. Ramos, G., Boulos, M., and Balakrishnan, R. Pressure
Widgets. In Proc. of CHI ’04. DOI:
http://dx.doi.org/10.1145/985692.985754

15. Schweigert, R., Leusmann, J., Hagenmayer, S., Weiß,
M., Le, H. V., Mayer, S., and Bulling, A. KnuckleTouch:
Enabling Knuckle Gestures on Capacitive
Touchscreens using Deep Learning. In Proc. of MuC
’19. DOI:
http://dx.doi.org/10.1145/3340764.3340767

16. Takada, R., Lin, W., Ando, T., Shizuki, B., and
Takahashi, S. A Technique for Touch Force Sensing
Using a Waterproof Device’s Built-in Barometer. In
Proc. of CHI EA ’17. DOI:
http://dx.doi.org/10.1145/3027063.3053130

http://dx.doi.org/10.1145/2371574.2371582
http://dx.doi.org/10.1016/S0022-1694(00)00214-6
http://dx.doi.org/10.1109/ICCE.2013.6487033
http://dx.doi.org/10.1145/2037373.2037393
http://dx.doi.org/10.1145/3131726.3132043
http://dx.doi.org/10.1145/2493190.2493193
http://dx.doi.org/10.1145/3290607.3312936
http://dx.doi.org/10.1145/3173574.3173934
http://dx.doi.org/10.1145/3098279.3122143
http://dx.doi.org/10.1145/3132272.3134130
http://dx.doi.org/10.1145/3290605.3300919
http://dx.doi.org/10.1145/985692.985754
http://dx.doi.org/10.1145/3340764.3340767
http://dx.doi.org/10.1145/3027063.3053130

	Introduction & Background
	Data Collection Study
	Apparatus
	Task
	Procedure
	Participants

	machine learning (ML)
	Pre-Processing
	Baseline
	Convolutional Neural Network (CNN) Training

	Discussion
	Conclusion and Future Work
	Acknowledgement
	REFERENCES 

