
Modeling Information From Wearable Sensors
Florence Balagtas-Fernandez
Department of Computer Science

University of Munich, Germany

florence.balagtas@ifi.lmu.de

Heinrich Hussmann
Department of Computer Science

University of Munich, Germany
heinrich.hussmann@ifi.lmu.de

ABSTRACT
The goal of this research is to create a modeling environment for
non-expert users to allow them to easily create applications for
mobile health monitoring. In this paper, we focus on the design
and representation of the modeling constructs that represent
information taken from wearable sensors. We want to find a way
to represent sensor information such that it is not confusing and
is easily recognizable by the non-expert user.

1. INTRODUCTION
Model-driven development is a widely accepted approach

to simplifying the development of complex systems. This
involves the development of applications by creating a high-
level model of the application and automatically transforming
this high level model to platform specific code [1]. In this
research, we apply the model-driven development approach to
simplify the creation of applications for mobile platforms. We
concentrate on applications in the domain of mobile health
monitoring, which basically involves wearable sensors [2] that
collects biological information from an individual, and a mobile
phone which stores and provides visualization of the collected
information. We are in the process of designing and developing
a modeling environment, which is suitable for non-expert users
who are defined as individuals who have limited expertise in
programming for mobile platforms. Our goal is to create a
modeling environment which is easily learnable and usable, and
would allow non-experts to model their own applications for
mobile health monitoring.

End-user creation of mobile health monitoring applications
can be beneficial to individuals, medical institutions and
research groups that focus on collecting biological data from
individuals. These types of people usually have little or no
experience at all in programming such systems, and therefore
need either the help of some programmer or have to learn
programming themselves which is not an easy task. The
following are some example scenarios that illustrate the benefits
of end-user creation of mobile health monitoring applications.
Suppose a person wants to have a health monitoring application
that would keep track of how much he spends on physical
activities with the use of a wearable device that records
movements and transmits movement information to a mobile
phone. However, he wants some customized view of the
software and additional functionalities that are not present in the
vendor-provided software of the wearable sensor. He could just
use a modeling tool that would allow him to easily create this
specialized application based on his wishes, and in turn, this tool
will create the application for him without him having to worry
about low-level programming. Another application is in clinics
that provide patients with health monitoring devices that keep

track of each patient's health. Since every patient is a unique
case, an application can be tailor-made for each individual needs
and as instructed by the doctor. Our last scenario is in the field
of medical research. Some research involves having test subjects
wear some non-invasive devices to monitor a subject's activities
or temperature for instance. The information are then analyzed
by the researchers to prove their hypotheses and formulate
conclusions based on the collected data. It would be helpful for
these researchers to have some tool that they could use to create
customized applications depending on the experiments they
have devised, and not constantly rely on a programmer to create
the application for them.

In the next section, we will discuss different applications
and technologies that are involved in health monitoring. We will
then move on to discussing a general overview of the modeling
framework that we are trying to develop, and then discuss the
possible ways to graphically model information from wearable
sensors, which is the focus of this paper.

2. RELATED LITERATURE
The advancement of technologies has allowed the creation of
small wearable devices that are relatively non-intrusive, but
which can measure biological data in real-time and allows the
transmission of the collected data through wireless means (e.g.
transmission through Bluetooth). Some example commercial
systems and researches which applies such technologies are the
Nike+iPod Sports Kit [3], MOPET wearable system [4] and
MPTrain Personal Trainer [5]. The mentioned systems are
designed to help motivate people in their fitness routines with
the use of visual feedbacks such as virtual coaches [4] or
through aural feedbacks such as voice and music [3].

Aside from fitness applications, these wearable sensors are also
used for monitoring the health of individuals with certain
ailments, in order to avoid or prevent serious complications. One
example is the Alive Heart Monitor from Alive Technologies [6]
which is a device that measures the electrocardiograph (ECG)
and acceleration signals of a person. It has Bluetooth capability
that allows it to transmit data remotely to a desktop or a mobile
device installed with the AliveECG software that comes with the
kit. A lot of research work uses the Alive Technologies products
and are shown on their website1. One particular work of interest
is the MobHealth Framework2, which consists of a set of
extensible APIs that abstracts the low level data sent by the
Alive Tech sensors and allows creating J2ME applications for
the sensors from Alive Technologies. The APIs abstract the low

1 http://www.alivetec.com/news.htm
2 http://sourceforge.net/projects/mobhealth/

level data sent by the device by providing interfaces that
represent the information in a more human-understandable form.
For instance, the BodyMovement class [7] contains codes that
represent body movements such as BodyMovement.LYING, and
BodyMovement.STANDING. This class abstracts the
information taken from the acceleration signals whose
information are represented as numbers such as 00 for lying
down and 12 to represent standing. This helps programmers by
ridding them the task of trying to decode the raw data
themselves. Although frameworks such as MobHealth help
programmers in easily creating their applications through
method calls, it is still quite difficult to use especially for non-
experts. In our proposed modeling framework, we would like to
add a layer of additional abstraction by finding ways to
graphically represent sensor information. For each type of
wearable sensor, we need to know what type of information can
be taken from it, and how this information be visually
represented such that the non-expert user will know what they
can expect in their applications.

For our research, we have taken the Alive Technologies devices
as the example target wearable device and the Java Mobile
Edition (J2ME) framework combined with the APIs provided by
MobHealth as the target code. In the next section we will first
give an overview of our conceptual modeling framework and
briefly describe the modeling tool that we are currently
developing. We will then discuss in section 4 how we propose to
model sensor data.

3. MOBIA MODELING FRAMEWORK
The Mobile Applications (Mobia) Modeling Framework is a
framework, which we are currently designing and developing in
order to simplify the development of applications for mobile
platforms. We introduce one module of Mobia which
concentrates on the development of applications for health
monitoring. These types of applications involve wearable
sensors that collect information from a person, and a mobile
phone which processes the data taken from the sensor.

Applications that involve separate devices for collecting
information are typically difficult to develop, that is why we
propose to apply the model-driven approach to the creation of
such applications. However, since the target users of framework
are non-expert users, we want to create a modeling environment
that is easily learnable and features modeling constructs that are
intuitive enough.

Figure 1 shows an overview of the components of our
conceptual framework which consists of two major components:
the Graphical Model Component and the Model Mutator
Component. The Graphical Model Component is responsible for
the visualizations of the modeling constructs. As seen in Figure
1, we have designed it to be extensible to support other types of
modules for solving other problem domains in the area of
mobile development. However, for this particular stage of our
research, we focus mainly on mobile applications involved in
mobile health monitoring. The Model Mutator Component is
responsible for processing the model and code transformation.
Figure 1 shows the possible components of the Model Mutator
which are the model processor and the model-code mapper. The
model processor handles the interpretation and checking of the
model, while the model-code mapper is responsible for mapping
the processed model to the different frameworks needed to
produce code.

Figure 1: Overview of Mobia Framework

We are currently developing a prototype called Mobia Modeler
Suite, which is a tool that allows the simple graphical modeling
of mobile applications. Since we target non-experts to be the
main users of this tool, we must find ways in order to present
information in a clear manner. The need for developing several
prototypes of the interface for the modeling environment is
important in order for us to evaluate the different possible ways
in presenting the interface to the user.

For this paper, we focus on discussing the design issues
involved in visually representing sensor data in the Mobile
Health Monitoring Module of the Mobia Modeler Suite. More
about this will be discussed in the next section.

4. MODELING SENSOR DATA
The importance of trying to represent sensor data in a modeling
environment is that, we want users to know what kind of
information they can expect from a certain device and help them
to be able to immediately visualize what they expect to appear
on their applications. Too many technical details about a certain
sensor should be abstracted from the user of the modeling tool.
We must provide a way to give the user what they initially
expect to get from a certain device, but at the same time provide
additional information that the user has not initially thought
about, but could probably use in their applications.

We have introduced the medget modeling construct to represent
a certain device in the model. This represents a wearable sensor
that can measure specific aspects of health. For research
purposes, we focus on three types of medgets: the thermometer,
the ECG meter and the actimeter, which measures temperature,
ECG and movement respectively. We also assume here that each
medget only functions as one device that measures only one
specific type of bodily function, although in reality, a medget
may measure multiple bodily functions (e.g. Alive Heart
Monitor which not only measures ECG, but movement as well
through accelerometer signals).

The following points are the things we want to identify in this
research:

• How to visually represent an individual medget and
the information it provides.

• How to show all the available medgets in the
modeling environment in a manner that it is not
confusing to the user.

• How to visualize the flow of information from a
medget to the screen.

In order to find out the answers to the points mentioned, we
made several designs for the medget constructs and a design
evaluation in a form of a survey was made. There were 14
participants to the survey, 8 of which have backgrounds in
Computer Science while the others are from Engineering,
Mathematics and Physics. The evaluation made was more of a
subjective and qualitative evaluation, relying on the participant’s
previous knowledge and expertise. Details on the approaches we
made will be discussed in the three subsections.

4.1 Representing Individual Medgets and
their Data
One of the concerns in the design of the Medget is that, what
type of information should be available to the user in the
modeling environment. We have identified three types of
information that could be presented to the user: the name of the
medget, a symbol representing it and the data it can provide. For
ease of explanation purposes, let’s take the Thermometer
medget as a concrete example. Table 1 shows the three types of
information that can be provided by a medget, and a certain
instance of it, which is the thermometer.

Table 1: Example Medget (Thermometer)

Type of Information Medget Instance
Name of Medget Thermometer

Representation Symbol

Available Data Temperature in Celcius or Fahrenheit

We want to know here, which information matters most to the
user. Figure 2 shows all the possible combinations of
information that we have presented to the user, and the
percentage of which the users have chosen. Take note here that
few of the users indicated multiple choices.

Figure 2: How much and which data does the user need?

A conclusion drawn from the said result is that, the user is not
too concerned with the name of the medget as long as the
symbols representing it is clear enough for the user. Textual
labels were suggested to be shown during a mouseover event for
instance. Another thing is the importance of showing the data
that a medget provides e.g. Celcius for the Thermometer.

4.2 Displaying All Medgets
Another thing we wanted to find out is with regards to how we
can show all the available medgets and the data they provide in
the modeling environment. For this example, let us assume that

there are three types of medgets available: medget A, medget B
and medget C. We will not name the medgets here since what is
important is how they are positioned and displayed, not
particularly the information they contain. Now, each medget can
have 1 or more types of data that it can provide which are shown
as cross symbols.

Figure 3: The Individual Display

For the Individual display shown in Figure 3, each medget and
all possible data it provides is shown as one component in the
medget palette. For instance, if there are three available data
type for each medget, then three components for that medget are
present in the palette.

Figure 4: The Grouped Display

The Grouped display shown in Figure 4 shows all the possible
data grouped according to the medget it is taken from. The
medget palette is divided into three sections for the three types
of medget, and each section contains all the possible data.

Figure 5: The Minimalist Display

The Minimalist display in Figure 5 shows a very minimal
representation of medgets in the palette (box on the right). Later
on, when the device is attached to a mobile screen (box on the
left), double clicking on the medget icon on top of the screen
will show a possible data representation for each double click.

Based on the user survey, 46% chose the Grouped display, while
31% chose the minimalist and the rest chose the individual
display. The focus is first on the medget that sends out the
information and then later on, to the type of data it provides. It is

also easier to look for what the users need when things are
grouped.

4.3 Visualizing Flow of Information
One of the design questions that we wanted to answer when
trying to visualize information for applications in mobile health
monitoring is that, how can we try to represent the flow of
information from one medget to the screen? For this one, we
have provided 3 different types of techniques.

Figure 6: Choose, Drag and Drop Approach

The first one is the Choose, Drag and Drop Approach which is
the common approach in programming or modeling
environments. Given a set of components in the palette, the user
chooses the component and then drags it to the target location.

Figure 7: Drag, Connect and Click Approach

The second one is the drag, connect and click approach, in
which the user drags an arrow from the medget to the target
screen. This arrow will signify information would flow from the
medget to the screen. After a connection between a screen and a
medget is done, the user would then click on the desired data
that would appear on the mobile screen.
Finally, the Drag, Drop and Click is an approach in which the
user drags a certain medget to the target screen and the medget
is attached to the top of the screen to symbolize connection. The
default data provided by a medget will then be shown on the
screen. Clicking on the attached medget will show a possible
data representation for each double click. For instance, if a
medget has two available data representations, the visuals will
toggle between the two each time a double click is done.

Based on the survey results, majority of the participants
preferred the Choose, Drag and Drop approach (46%). A big
factor that may have resulted from this is because it is the
concept that the participants were most familiar with. Second
choice (38%) was the drag, drop and click approach. Although
the least popular which was the drag, connect and click
approach actually symbolizes some sort of connection with the
medget in the presence of flow arrows in comparison to the real

world, the steps involved seems too deviate from existing
approaches.

Figure 8: Drag, Drop and Click Approach

In conclusion, although the other methods can be learned easily,
the most commonly encountered approach was still the most
preferred among the participants.

5. SUMMARY AND CONCLUSION
We have presented in this paper our ongoing work on creating a
user-friendly modeling environment for modeling applications
for mobile health monitoring. The main core of this paper was to
discuss how we can model sensor data taken from wearable
sensors. We presented some design ideas that involves medget
modeling constructs, how it is presented and how flow of
information be shown. Evaluation of the designs were done
through a form of a survey. Conclusions drawn from the user
survey is that, the most commonly used approach is still the
most opted approach by the users. Also, information should be
presented in the least possible way, but should be as descriptive
as possible whether it is in a graphical form or not.

6. REFERENCES
[1] Kleppe, A., J. Warmer, and W. Bast, MDA Explained: The

Model Driven Architecture: Practice and Promise. 2003,
Boston, USA: Pearson Education, Inc.

[2] Korhonen, I., J. Parkka, and M. Van Gils, Health monitoring
in the home of the future. Engineering in Medicine and
Biology Magazine, IEEE, 2003. 22(3): p. 66-73.

[3] Nike + iPod Sports Kit. http://www.apple.com/ipod/nike.
[4] Buttussi, F. and L. Chittaro, MOPET: A context-aware and

user-adaptive wearable system for fitness training. Artificial
Intelligence In Medicine, 2008: p. 153--163.

[5] Oliver, N. and F. Flores-Mangas. MPTrain: a mobile, music
and physiology-based personal trainer. in MobileHCI '06:
Proceedings of the 8th conference on Human-computer
interaction with mobile devices and services. 2006. New
York, NY, USA: ACM.

[6] Alive Technologies Products.
http://www.alivetec.com/products.htm.

[7] Mobhealth Framework.
http://sourceforge.net/projects/mobhealth.

[8] Netbeans Visual Library Platform 6.0. http://graph.netbeans.
org.

[9] The WeP Project. http://thewep.org.

