
A Methodology and Framework to Simplify Usability Analysis of Mobile
Applications

Florence Balagtas-Fernandez

Media Informatics Group
University of Munich, Germany

Email: florence.balagtas@ifi.lmu.de

Heinrich Hussmann

Media Informatics Group
University of Munich, Germany

Email: heinrich.hussmann@ifi.lmu.de

Abstract—Usability analysis is an important step in software
development in order to improve certain aspects of the system.
However, it is often a challenge especially when it comes to
evaluating applications running on mobile devices because of
the restrictions posed by the device and the lack of supporting
tools and software available to collect the necessary usability
data. This paper proposes a methodology and framework to
aid developers in preparing the mobile system for usability
analysis. The focus is on the simplification of the developer’s
task in preparing the system for evaluation and the processing
of the collected usability data by automating some of the tasks
involved in the process.

I. INTRODUCTION

Performing usability studies for applications running on

mobile devices can be a difficult task. Typical user study

scenarios collect information by means of attaching an

external camera to capture a view of the mobile screen

[4][7] or through logging [8]. Using an external camera

to view the mobile device’s screen is quite challenging

because of the fact that the screen is small and most of

the time the user is occluding the screen [3]. An alternative

to this is to use screen capture software similar to the ones

available for the desktop. However, because of limitations

[12] posed by mobile devices, it is quite a challenge to find

such applications that can accurately and efficiently capture

user interaction with the mobile applications being tested.

Logging of events on the other hand can be an accurate

source of usage information. The challenge in event logging

though is in the whole process of preparing the system for

data collection and the extraction and interpretation of the

vast amount of logged data. It would be useful to have

tools that can accurately process these low-level data and

give visualizations of the information that would help in the

usability analysis of mobile applications.

In this paper, we would like to present a methodology and

framework that aims to ease the task of the developers and

analysts in the usability analysis of mobile applications. The

framework we have developed only supports applications

that use the Android1 platform as of the moment. However,

1http://code.google.com/android/

the set of APIs can be easily extended or ported to support

other platforms as well.

II. USABILITY EVALUATION OF MOBILE APPLICATIONS

The goal of usability evaluation is to find out possible

usability problems of a system and discover ways to resolve

these problems. Some related literature [12][11] that focus

particularly in evaluating usability of mobile applications

provide possible steps to guide researchers in conducting

their user studies. However, the guidelines discussed are very

generic and most of the details discussed were more on the

administrative side of the usability evaluation such as the

preparation of equipment, questionnaires, etc. Detailed steps

on the technical part (e.g. programming, processing low-

level data) are not elaborately discussed.

In this research, we focus on the more technical side of

the usability evaluation of mobile applications. We want to

identify the problems encountered during the whole process

and to find ways to ease the developer of the manual tasks

involved.

Figure 1 shows a typical set of tasks performed by the de-

veloper, which can be grouped into four phases: preparation,

collection, extraction and analysis.

The preparation phase involves setting up the application

prototypes to enable logging of information necessary for

usability evaluation. Because of the diversity of mobile

platforms, it is difficult to find a general set of Application

Programming Interfaces (APIs) that can be used to perform

such logging tasks. Some mobile platforms such as An-

droid have APIs for logging2 (i.e. class Logger). However,

the developer still has to come up with the appropriate

formatting for the logs in order to easily port it to other

applications for processing later on and also to make sure

that the logs do not take up a lot of space in the device. In

the collection phase, the task for the evaluators (who may be

the developers themselves or another person who may be a

usability analyst) is to make sure that the system was able to

collect the necessary data. The extraction phase consists of

extracting all the logged data during the collection phase and

2http://code.google.com/android/documentation.html

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.12

508

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.12

522

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.12

522

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.12

520

Figure 1. Typical developer tasks

porting the data to other applications for later analysis. The

tasks in the extraction phase can be challenging especially if

vast amount of information has to be processed. The analysis
phase involves taking the processed information from the

extraction phase and analyzing which parts of the system

the users had difficulty interacting with and what can be

done to improve this. Different tools [8][6][10] are available

to aid the simplification of analysis of the system, but not

many exist for usability analysis of mobile applications. In

the next section, we will discuss our proposed approach in

order to solve some of the problems mentioned during the

four phases.

III. EVAHELPER FRAMEWORK: AN AID TO THE MOBILE

APPLICATION DEVELOPER

In this section, we will discuss about our proposed

methodology to guide and ease the developer of the tasks in-

volved during the different phases mentioned in the previous

section. As a proof of concept, we are going to introduce

the EvaHelper (Evaluation Helper) framework which applies

the concepts proposed.

A. Preparation Phase: Deciding Which Information to Log

Zhang and Adipat [12] carried out an extensive survey

of researches focusing on the usability evaluation of mobile

applications and extracted the most common questions these

researches were trying to address. The authors provided a list

of usability attributes (e.g learnability, efficiency, memora-

bility, etc.) and the variables used to measure these attributes

Figure 2. Table from Zhang and Adipat [12]

as shown in figure 2. By observing the patterns in the

variables used as enumerated in [12], one can observe that

the most frequently used variable is time (e.g. task times).

Other common variables are events (e.g. button clicks) and

navigation (i.e. combination of the number of steps and

which components are accessed to reach a destination).

The usability attributes satisfaction, comprehensibility and

learning performance however, can be measured by means

of qualitative surveys (e.g. questionnaires) and not from

low-level information such as the ones extracted from logs.

Based on the survey [12], the following information are

sufficient to be able to get the necessary usability measure-

ments: the user-interface (UI) component being utilized, the

corresponding action or event, and the time the action was

performed.

B. Preparation and Collection Phases: Simplifying Logging
with EvaLogger

One task in the preparation phase is adding the necessary

code in the application to enable logging of information. To

help ease this task, a set of APIs that allow easy logging

509523523521

Table I
EVALOGGER METHODS

Method Name and Parame-
ters

Description

startNewLogFile(platformName) Tells the EvaHelper framework
to create a new log file for a
specific platform

setBasicLogInfo(screenName) Set the screen name for each
section of the application

log(componentName, compo-
nentType, action)

Log information

log(screenName, component-
Name, componentType,action)

Log information

logComment(anyLogMessage) Log information

of information should be provided. This set of APIs should

provide some guidelines on how the information should be

logged and into which parts of the code should the log

calls be placed. Keeping these things in mind, the EvaHelper

framework consists of the EvaLogger class which contains

a set of APIs that can be called from the mobile application.

As mentioned earlier, EvaLogger only supports applications

that uses the Android platform but can easily be extended

or ported to support other platforms. Table I shows the

methods present in the EvaLogger class. The following are

the guidelines on how to use the methods provided by the

EvaLogger class:

(1) To create a new log file, the startNewLogFile
method should be called

(2) The log methods should be called inside event listeners.

There are two ways to log information as shown in table I.

A logComment method is also included which is used to

log any type of unformatted message. This log can be used to

add additional comments to the log file. The message logged

by this method will be treated by parsers as comments and

therefore will not affect any processing done to the log files.

Logs are currently stored as comma separated values

(CSV) format. This choice was made instead of the com-

monly used XML format in order to minimize the file size

needed by the logs considering in XML, additional tags are

needed to store information.

C. Extraction Phase: Simplifying Log Output Processing
with EvaWriter

After preparing the system to collect the necessary us-

ability information and conducting the user studies, the next

step would be to extract and process the collected data

for further analysis. In the EvaHelper framework, a class

called EvaWriter is used to process the log file into some

output format. As of the moment, it can output the log

file into GraphML3 file format. GraphML is an XML-based

file format used to represent graphs. The EvaWriter class

can be easily extended to provide other output formats as

3http://graphml.graphdrawing.org

well. Currently, the EvaWriter class contains the method

printCSVDataAsGraphMLToFile which takes a CSV

file as input and transforms this CSV file into GraphML

format.

D. Analysis Phase: Usability Analysis with Graphs
Graphs are data structures that provide great represen-

tations to aid the analysis and design of systems [9]. The

choice of using graphs for visualizing user interactions in-

stead of UML activity diagrams or state diagrams is because

of its simplicity. The simple node and edge notation of

graphs is sufficient to describe such events. Using graphs as

visualizations for user interactions with mobile applications

is viable since user interfaces and interactions are always of

rather low complexity as compared to desktop applications.

Another advantage of using graphs is that, algorithms (e.g

graph traversal) are readily available that can be used to

analyze the system. Different graph formats can be utilized,

however for the purpose of this study, we used the GraphML

format because of its flexibility and because of the available

parsers that can read such files (e.g. the yEd Graph Editor4,

the Prefuse5 Visualization Toolkit).
User interaction with the mobile application can be rep-

resented as a nested directed graph. Each UI component

(e.g. button) accessed by the user is represented as a node

in the graph. These UI components are nested inside a

screen node in which they belong to. The edges of the

graph represent the transitions/actions done by the user and

are labeled with: a sequence number, the action/event and

the time duration between each action/event. The arrows

represent the direction of the next action. Figure 3 shows an

example of the output graph viewed using the yEd editor.
One way to measure learnability, efficiency and memo-

rability of the system is by measuring the time it takes for

the user to accomplish a task [12]. Using colored edges [10]

or different edge lengths can also be used to visualize the

time spent by users to go from one part of the application to

the next. One way to measure error, effectiveness and again,

memorability, is by taking note of the number of steps the

user has to make in order to accomplish or deviate from the

task (e.g. button clicks, going from one screen to the next)

[12]. The sequence number on the edges of the graph can

be used to get this information. Simplicity can be measured

by the amount of effort the user has to make in order to find

a solution [12]. Another is by studying the current design of

the actual screen in the mobile application and comparing it

with the output graph to see which UI components were not

utilized and can possibly be discarded in order to keep the

interface simple. Another recommendation to improve the

visualization of the graph is to use different colored nodes

depending on the level of activity [2] (e.g. frequently used

nodes are shown in red color).

4http://www.yworks.com
5http://prefuse.org

510524524522

Figure 3. Graph format of the user interaction

E. EvaHelper Control Center: Guiding the Developer
through Tool Integration

We proposed that there should be a central application

in which all of the tools mentioned can be easily accessed.

As a proof of concept, we have developed an example of

such application which we called EvaHelper Control Center.

From the control center, the different tools needed in the

different phases of collecting and processing the usability

data can be accessed. The buttons in the control center are

purposefully arranged in a sequence which indicates the

order in which the different tasks should be performed.

For example (see Figure 4), the emulator is first started

in order to run the application being evaluated. This is

the phase where usability data is collected. In cases where

the real mobile device is used, this button can be ignored.

The second button which runs the Dalvik Debug Monitor

Service (DDMS) is used to see the debug messages and

to access the files from the device (either the emulator

or the real mobile device). The third button is then used

to access the log file created during the user study. The

last button which says ’Open Log in yEd’, formats the

log file to GraphML and automatically opens the formatted

file in the yEd Editor for further analysis (analysis phase).

What we want to emphasize in this section is that, although

we recommend that the use of third party tools should be

supported, there should also be a way to integrate these

different tools in the form of another application such as the

EvaHelper control center described. The control application

should be designed in a way that it can guide the developer

in the different phases of the usability evaluation through the

different layout of the components, proper documentation of

the functionalities and better integration of the different tools

involved.

IV. APPLICATION POSSIBILITIES FOR FUTURE WORK

In this section, we will discuss how our methodology can

be extended and what other application possibilities can be

done to improve it.

A. Simplifying Log Code Insertion through Automation

The proposed approach in this paper involves manual

coding of the log calls in the application. However, this can

be a very tedious task especially when huge amounts of

Figure 4. EvaHelper Control Center

Figure 5. Example Interface for the Automatic Log Insertion Tool

code are involved. To remedy this problem, we recommend

automatic log code insertion to rid the developer of the

manual tasks. As an example (see Figure 5), an interface

in which all the UI components in the application and the

possible events associated with it are shown in the tool. The

events that the developer wants to be logged can be selected

from the tool which then performs the necessary parsing and

code transformations to add the log code to the application.

B. Separating Logging Concerns with Aspect-Oriented Pro-
gramming

Another approach that can be done to simplify the log-

ging part is by applying the aspect-oriented programming.

Aspect-oriented programming (AOP) is a technique which

aims to separate cross-cutting concerns through the use of

modularized code called aspects [5]. The current approach

with EvaHelper is that, the developer has to manually

add code to all of the classes that needs to be logged.

Instead of doing this approach, the idea of aspect-oriented

programming can be applied. A separate module can be

created to take care of the logging issues. AspectJ6 which

is an aspect-oriented Java-based framework can be applied

for mobile applications based on Java platforms such as

Android and Java ME. Applying the guidelines mentioned in

6http://www.eclipse.org/aspectj/

511525525523

the methodology in section III-B, join points can be declared

at the part where the developer wants to add logs (e.g. inside

event listeners).

V. RELATED WORK

Paterno et al. [8] proposed a methodology and environ-

ment that allows the remote evaluation of mobile applica-

tions. The system features a Mobile Logger that collects the

information from the mobile device, and a tool called Multi-

Device RemUsine that processes the logged information and

provides the necessary visualizations to analyze the usability

of the application. Another similar approach by Au et al. [2]

was done to test usability of handheld applications. Different

aspects considered in testing the usability of handheld device

applications and a proposed a list of functional requirements

that automated usability testing tools should have in order

to be effective were discussed. The Handheld device User

Interface Analysis (HUIA) testing framework was then de-

veloped that meets most of the requirements proposed.

In the area of web-based applications, usability analysis

tools and visualizations are also important research areas.

Waterson et al. [10] developed a tool called WebQuilt that

collects information about how users interact with a web

system and provides the necessary visualization that would

allow web design teams to analyze the usability of the

system. Graphs were used for the visualization. However,

low-level data such as mouse movement and scrolling are

not captured. Atterer et al. [1] on the other hand presents the

UsaProxy system that collects fine-grained user interaction

data (e.g. mouse movements, keyboard input) aside from the

basic usage data to allow detailed usability analysis of web

pages. Tools such as the UsaProxy from Atterer et al. [1]

and WebQuilt from Waterson et al. [10] allows gathering

of web-based usability information without modifying the

code from the web pages through a proxy-based logging

system. Unfortunately, this technique cannot be applied to

applications on mobile platforms unless there is an observing

communication channel that observes action between the

application and the user.

VI. SUMMARY AND CONCLUSION

In this paper, we have discussed an approach to simplify

the tasks involved in collecting usability information for

mobile applications. We focused on helping the developer on

the technical side of the usability evaluation, which involves

preparation of the system for collecting usability data, and

extracting and formatting that data into information which

can be easily analyzed later on. Various problems regarding

collecting usability data from mobile applications were

discussed, and our proposed methodology and framework

were described in order to solve some of these problems. In

this research, we try to emphasize the importance of having

the appropriate tools in the form of APIs and guidelines in

order to simplify the developers’ tasks. The use of third party

tools in order to analyze usability data was also emphasized

since such tools are already good at what they do, and also

ease the burden from the developer in creating additional

tools just for analyzing the collected data. Integration of the

different tools involved in the whole process of usability

testing and analysis were also discussed. Automatic code

modification to further simplify the tasks involved is also a

possible future work.

REFERENCES

[1] R. Atterer, M. Wnuk, and A. Schmidt, “Knowing the user’s
every move: user activity tracking for website usability eval-
uation and implicit interaction,” in Proceedings of the 15th
international conference on World Wide Web. ACM, 2006.

[2] F. T. W. Au, S. Baker, I. Warren, and G. Dobbie, “Auto-
mated usability testing framework,” in Proceedings of the
ninth conference on Australasian user interface - Volume 76.
Australian Computer Society, Inc., 2008.

[3] F. Balagtas-Fernandez, J. Forrai, and H. Hussmann, “Eval-
uation of user interface design and input methods for ap-
plications on mobile touch screen devices,” in Proceedings
of the 12th IFIP TC13 International Conference on Human-
Computer Interaction (INTERACT), 2009.

[4] H. B.-L. Duh, G. C. B. Tan, and V. H.-h. Chen, “Usability
evaluation for mobile device: a comparison of laboratory
and field tests,” in Proceedings of the 8th conference on
Human-computer interaction with mobile devices and ser-
vices. ACM, 2006.

[5] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented
programming: Introduction,” Commun. ACM, vol. 44, no. 10,
pp. 29–32, 2001.

[6] M. Y. Ivory and M. A. Hearst, “The state of the art in
automating usability evaluation of user interfaces,” ACM
Comput. Surv., vol. 33, no. 4, pp. 470–516, 2001.

[7] T. Kallio and A. Kaikkonen, “Usability testing of mobile
applications: A comparison between laboratory and field
testing,” Journal of Usability Studies, vol. 1, pp. 4–16, 2005.

[8] F. Paterno, A. Russino, and C. Santoro, “Remote evaluation
of mobile applications,” Task Models and Diagrams for User
Interface Design, pp. 155–169, 2007.

[9] G. Taentzer, “Agg: A tool environment for algebraic graph
transformation,” Applications of Graph Transformations with
Industrial Relevance, vol. Volume 1779/2000, pp. 333–341,
2000.

[10] S. Waterson, J. Hong, T. Sohn, J. Landay, J. Heer, and
T. Matthews, “What did they do? understanding clickstreams
with the webquilt visualization system,” ACM International
Working Conference on Advanced Visual Interfaces, 2002.

[11] S. Weiss, Handheld Usability. John Wiley and Sons Ltd,
2002.

[12] D. Zhang and B. Adipat, “Challenges, methodologies, and
issues in the usability testing of mobile applications,” Inter-
national Journal of Human-Computer Interaction, vol. 18,
no. 3, pp. 293–308, 2005.

512526526524

