
Model-Based Automatic Usability Validation – a Tool
Concept for Improving Web-Based UIs

Richard Atterer
University of Munich, Media Informatics Group

Amalienstr. 17, 80333 Munich, Germany
richard.atterer@ifi.lmu˙de

ABSTRACT
This paper describes an approach for improving automated usabil-
ity tool support during the development of websites. Existing us-
ability and accessibility validators only analyse the HTML code
of a page when they create a report of possible problems. How-
ever, when a web engineering method is used to create a website,
additional information is available in the form of models which de-
scribe the site. An automated validator can use these models to
verify usability guidelines (such as “text on the web page should
be easy to understand by the target audience”) with higher accu-
racy. It can also perform automatic validation in situations where
existent tools only output instructions for manual inspection by the
developer. The paper systematically analyses existent guidelines
and tools, and identifies ways in which the use of a model can im-
prove verification quality. An extension to existing web engineer-
ing models is necessary to support automated checkers. It specifies
properties of the users, the technical platform and the environment
of use. A flexible approach allows the models to be used by val-
idators running inside an integrated development environment, but
also at a later time, without access to the development environment.
Finally, the prototype of a model-based automatic usability valida-
tor is presented. It features verification of a number of guidelines
which cannot be automated by existent validation approaches.

Keywords
Web usability, web engineering, automated validation, usability
model, accessibility

Categories and Subject Descriptors
H.5.4 [Information Systems]: Information Interfaces and Pre-
sentation—Hypertext/Hypermedia; H.5.2 [Information Systems]:
Information Interfaces and Presentation—User Interfaces; D.2.2
[Software]: Software Engineering—Design Tools and Techniques

1. INTRODUCTION
The usability and accessibility of a website is a major factor

which influences its success. If users have problems navigating the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NordiCHI 2008: Using Bridges, 18-22 October, Lund, Sweden
Copyright 2008 ACM 978-1-59593-704-9 ...$5.00.

site, providing input to a web application or understanding the text
on the web pages, they will quickly abandon the website even if it
provides the information or service they are looking for. As a con-
sequence, over time there have been efforts to develop guidelines
to improve the usability of a website. They range from fairly con-
crete rules (“Contrast between text and background colour should
be high enough”) to more abstract rules (“Documents written to be
read online must be concise and structured for scanning”) [18].

Today, the area of web engineering [12] provides various meth-
ods for efficient, systematic web application development. These
approaches use platform-independent abstract models to design the
web application and support derivation of the final implementation
from the models. An important aspect during this process is to en-
sure that the usability of the resulting user interface is taken into ac-
count. Existing web engineering solutions like UWE (UML-based
web engineering [16]) include steps in this direction, e.g. by rec-
ommending user tests as part of the method and generating usable
default interfaces for user interface patterns.

HTML
code

Model

Validator
Usability
Report

Figure 1: By processing not only the HTML code, but also addi-
tional information from a model, the quality of a web usability
validator’s output can be improved.

So far, tools for automatic validation of usability guidelines have
not been integrated into web engineering environments. Exist-
ing validation programs (section 2) formalize usability rules, ap-
ply them to HTML code, and then produce a report to inform the
developer of any detected problems. They only process the applica-
tion’s final HTML implementation. Thus, they lack access to more
abstract, general information about the developed application. As
a consequence, only a restricted set of usability guidelines can be
handled by the tools.

Our work takes steps towards improving this situation. It is based
on the idea of using the abstract models of web engineering ap-
proaches during automatic usability validation (figure 1). This en-
hancement enables a much broader spectrum of usability guidelines
to be formalized and validated. A prototypical validator implemen-
tation is also presented. It provides practical insights on how a
model-based validator can be realized. The intended usage sce-
nario is as follows:

• A web developer uses his web engineering IDE (integrated
development environment) to create navigation and presen-
tation models for his web application.

• Apart from the existing models, he also creates a new model
which describes properties of the users (age, disabilities etc.),
the technical platform and the environment of use.

• During his work of refining the models and creating an im-
plementation from it, automatic usability validation runs in
the background at regular intervals.

• As soon as a problem with the implementation is discovered
by automatic usability analysis, the developer is alerted to it.

With this approach, the developer can be made aware of prob-
lems with his application early during development, when correct-
ing a mistake is still much cheaper than at a later time. Creating the
new model involves extra effort, but as this paper shows, this effort
is justified because it results in accuracy improvements to the vali-
dation process. In many cases, if the application is being developed
in a systematic way, information about the target audience etc. will
already be available in a requirements catalogue.

Fully automatic validation can never replace other measures such
as user tests, but it can complement them; many problems can be
identified using a program. Furthermore, the developer can im-
prove his website without having expert knowledge about web us-
ability.

After a look at related work in section 2, this paper describes
the central parts of a model-based approach to automated usabil-
ity validation: First, this includes models which specify who the
users of the web application are and how they interact with the ap-
plication (section 3). Second, the paper explains how model infor-
mation can be employed to improve the accuracy of the validator,
to reduce false positives and false negatives, and even allow vali-
dation of guidelines which are hard or impossible to automate for
non-model-based validators (section 4). Finally, the prototypical
implementation of a number of model-based checks is presented
(section 5). Its description is followed by a discussion about the
evaluation of the concept (section 6) and some concluding remarks.

2. RELATED WORK
Automatic Usability Validation: The idea of using a model to au-
tomatically identify usability problems during development is de-
scribed in [15, section 5] in the context of GOMS models (goals,
operators, methods, selection rules) for desktop GUIs. The author
suggests a number of automatic tests which can be applied to more
complex GOMS models, such as a way to estimate the time re-
quired by users to complete a certain goal. The USAGE system [7]
allows the calculation of learning and execution times for GOMS
action sequences. Due to the use of GOMS as the only model, the
approach is limited to the detection of problems with the actions
taken by the user to achieve goals and sub-goals.

Ivory and Hearst [13] present an extensive overview of different
automatic usability evaluation methods. The tool introduced later
in this paper belongs to the category “analytical modelling” and
supports the activity “analysis” – given a model of the UI and user,
it makes a prediction about the expected usability by identifying us-
ability problems. It is interesting to note that despite analysing 132
different usability methods, the authors of [13] state in section 7:
“Our survey only revealed automation support for [analytical mod-
elling] methods that focus on user performance”. This paper tries
to fill this gap: The quantitative approach of measuring user perfor-
mance is discussed, but the main focus of our tool is a qualitative
analysis of web pages.

Figure 2: Problem: Because abstract information about pages
is not available to them, current HTML usability/accessibility
validation tools (here: ATRC accessibility checker) require the
user to check guidelines manually.

Guidelines for Improving the Usability of Web Pages: A large
number of different sets of guidelines for accessibility and usabil-
ity evaluation have been created. The most important ones to this
date are probably the W3C’s WCAG (Web Content Accessibility
Guidelines) 1.0 and 2.0 efforts, which are part of its Web Accessi-
bility Initiative [24]. Other standards which are important in prac-
tice are often heavily based on WCAG, such as the German BITV
or the American section 508 guidelines. In addition to the W3C
documents, many other sources with detailed advice exist, includ-
ing Jakob Nielsen’s Alertbox [20] and the Web Style Guide [18].
The research-based guidelines of the U.S. Department of Health
and Human Services [21] are noteworthy because they base their
recommendations on published research results. In the context of
this paper, a problem with these guidelines is that the language they
use to describe usability problems is relatively vague. Still, the sec-
tions below show that it is possible to come up with ways to auto-
matically validate many of the rules.

Existing Web Usability Validation Tools: Table 1 compares
existent web usability and accessibility validators with our tool
“Wusab” (section 5). Typically, they are implemented in the form
of a web application themselves, only a few are desktop GUI ap-
plications. After a URL has been entered in an input field, the
validator downloads the page, analyses the HTML and outputs a
summary of likely usability problems.

WebXACT (webxact.watchfire.com) is a commercial validator
which concentrates on covering as much of the WCAG and section
508 guidelines as possible. Under the name “quality”, its results
include some page content checks which can be regarded as usabil-
ity rather than accessibility checks, e.g. finding broken links and
measuring the page click depth.

WebTango ([14], webtango.berkeley.edu) takes an unusual ap-
proach: Usability guidelines are not implemented in the form of an
algorithm for each guideline. Instead, statistical methods are used
to calculate the similarity between the website that is evaluated and
a set of “known-good” websites whose accessibility and usability
has been rated by experts using manual inspection.

Kwaresmi [5] is an academic prototype with an emphasis on
quickly specifying additional tests for the validator using a special
guideline definition language.

MAGENTA (giove.isti.cnr.it/accessibility/magenta) is an ex-
ample for a tool which does not only identify problems, but which
can also correct some errors if the user wishes. This can be advan-
tageous for web developers who do not have the necessary knowl-

http://webxact.watchfire.com/
http://webtango.berkeley.edu/
http://giove.isti.cnr.it/accessibility/magenta/

Ana
lys

is
typ

e

W
eb

qu
ali

ty

sta
nd

ard
Run

-ti
me

ex
ten

sib
ilit

y

Inp
ut

Outp
ut

Int
era

cti
on

LIFT heuristics accessibility no page report no
Bobby heuristics accessibility no page report + ann. no

WebXACT heuristics acc., privacy, content no site reports no
TAW heuristics accessibility no page report + ann. no

WAVE heuristics accessibility no page annotations no
WebTango [14] statistics reference sites (a.+u.) n/a site report? no
Kwaresmi [5] heuristics accessibility yes page report no

MAGENTA heuristics accessibility yes page report repair
EvalIris [1] heuristics accessibility yes page? report no

ATRC heuristics accessibility no page report + EARL avoid false pos.
ArgoUWE [16] heuristics – (no acc./usab. tool!) no models IDE warnings repair

Wusab [2] heuristics accessibility, usability no page, models report no

Table 1: Comparison of tools for automated accessibility and usability validation of web pages. Our prototype “Wusab” is the only
tool which takes advantage of the information in web engineering models when performing usability validation.

edge to identify the correct fix for a problem. A similar, XML-
based guideline description language is used by EvalIris [1].

The ATRC Web Accessibility Checker (checker.atrc.utoronto
.ca, figure 2) is the improved web-based version of the A-Prompt
GUI application. Apart from coverage of WCAG 1.0/2.0 and re-
lated guidelines, it features output in a machine-readable format
(W3C EARL, Evaluation And Report Language). It is laudable in
its modularised and systematic approach to WCAG validation. Fur-
thermore, it can ask the user questions about a specific suspected
problem (“Does the anchor contain text that identif[ies] the link
destination?”) rather than outputting a warning for every instance
of the problem. This way, it reduces the number of false positives.

ArgoUWE [16] is listed for comparison. It is not a web usabil-
ity validator, but offers model critique for UWE’s web engineering
models. For example, it will warn if a process use case model does
not include any process nodes.

Wusab, whose idea was first introduced in [2], distinguishes it-
self from other tools in this area because it bases its web usability
report on web engineering models as well as the HTML code of the
web pages.

User and Usability Modelling: Apart from GOMS models which
describe interaction at a very detailed level, attempts have been
made to model information about users at a more abstract level.
Constantine and Lockwood [10] introduce user role models to help
the developer with the systematic analysis of software UIs. They
also advocate the popular approach to use task modelling.

UsiXML [17] is an approach whose models are useful for our
purposes. It attaches context objects to user interface models. They
describe the context in which an application is used, including as-
pects such as the hardware platform, the user, and the environment
of use. The models in section 3 are influenced by the UsiXML
context model.

For WebML, the Web Modeling Language, a related model was
proposed for web applications which automatically adapt their con-
tent to context changes [9]. The context information describes the
user, his location, the device and further aspects of the environment,
but does not provide many properties (such as user goals) that are
important for automatic usability validation. Other web engineer-
ing solutions either do not feature an explicit user model at all (such
as OO-H [8], Object-Oriented Hypertext, which only allows using
different patterns for different parts of a site), or only do so for a
specific application area (e-learning in the case of early UWE [16]
literature).

3. MODELLING USABILITY - RELATED
ASPECTS OF WEB APPLICATION USE

This section introduces model extensions which are needed by
automatic model-based usability validation tools. In web engineer-
ing, metamodels are used to describe what the model diagrams of
a website look like. To apply our extensions, we introduce a new
metamodel which allows attaching context information to a web
engineering solution’s existing models.

The context model describes the user, the technical platform (e.g.
the used browser) and the environment (e.g. “too noisy to hear any
audible clues”), and can be associated with existing model classes
which represent the pages of the application. In addition to the
context model, a few properties are also directly added to existing
presentation or navigation models (e.g. to describe the page layout),
and yet others are attached to models by means of constraints (e.g.
to specify a maximum response time of the web application). Fi-
nally, this section also discusses how to embed model information
in the final HTML implementation.

The notation used for the models is UML (Unified Modeling
Language), the de-facto standard language for modelling. The ex-
tensions are designed in such a way that they are applicable to
the models of the most important web engineering solutions, in-
cluding UWE, OO-H and (via its alternative UML-based notation)
WebML.

3.1 Context Model: User, Platform and Envi-
ronment of Use

Figure 3 shows an overview of the proposed context metamodel
classes in the usability package. They provide the basis for the in-
tegration of context and other information into different web engi-
neering models. Due to space constraints, not all details are shown
in the figure. UWE [16] is used as an example to show how to
add the new elements to an existing set of web engineering models.
With a UML «merge» operation of the usability metamodel with
the UWE metamodel, the changes can be made available for use by
the UWE method and its tools.

The model extension allows the developer to attach a Context
class to one or more UiModel classes with the appliesTo associ-
ation, where the UiModel is intended to be the superclass of an
existing web engineering class which represents a web page or a
set of pages. In figure 3, UWE’s UI View derives from UiModel
to permit that the context class EmployeeContext can be attached
to the web page MyPage. While creating a web application, the

http://checker.atrc.utoronto.ca/
http://checker.atrc.utoronto.ca/
http://www.aprompt.ca/
http://www.w3.org/2001/03/earl/

usability

UWE

Context

importance : int

User

1..*

0..*

EnvironmentPlatform

1..*

0..*

1..*

0..*

<<UI view>>

MyPage

HardwarePlatform BrowserPlatform NetworkPlatform

UiModel

 (Meta)classes of an
 existing web
 engineering approach,
 in this case UWE

UI View

<<instanceOf>>

appliesTo
0..* 0..*

<<context>>

EmployeeContext
appliesTo

1 1

<<instanceOf>>

1..*

1

1..*

1

1..*

1

Figure 3: The new usability package (top) allows attaching con-
text information to the models of an existing web engineering
approach like UWE. In the example (bottom), access to the
page MyPage is characterized by EmployeeContext.

developer will typically create context classes by looking at the use
cases of the application: There may be different contexts for differ-
ent user groups (for example normal site visitors, and employees of
the company that offers the web application), or the site may be ac-
cessed on different types of devices (e.g. desktop PCs and mobile
phones), or under varying circumstances (e.g. from home, while
travelling etc.).

The extensions were designed by analysing the weaknesses of
existing usability validators, such as the fact that they are some-
times unable to implement a guideline check. Figure 2 shows an
example: The user is asked to “Determine if the image is dec-
orative” himself. Additionally, the existing guideline documents
(see previous section) were examined with the goal of identifying
guidelines which cannot be verified by existent validators, but only
if additional information about the context of use is available.

User Model: The users are described by the properties of the User
metaclass. Apart from basic data like age and sex, this includes the
number of years of school education, the general interaction speed
(when reading, clicking etc.) and their relative level of patience
(e.g. whether they are in a hurry). Moreover, the users’ general
knowledge (or lack thereof) can be represented (for example “fairly
good background in technology”, “frequent online shopper”, “no
experience with e-learning”). This is also possible with their phys-
ical abilities (e.g. see colours, blinking UI elements allowed, phys-
ically capable of inputting text). Finally, the model specifies the
goals of the users when they access the application, such as retriev-
ing information, performing a transaction or looking for entertain-
ment. The developer can introduce new values for the knowledge,

abilities and goals properties. For instance, a particular web shop
application can have more detailed goals like buy-book.

Platform Model: As shown in figure 3, the technical platform
is subdivided into three parts. The HardwarePlatform describes
the form factor of the device (desktop PC, handheld, cellphone
etc.), the supported user abilities (e.g. audio output enables the
“hear” ability), and the available input and output devices (e.g.
colour display, audio output, keyboard) together with parameters
such as screen size. The BrowserPlatform contains details about
the browser running on the device, e.g. the rendering engine, sup-
ported output media (screen, print etc.) and whether support for
technologies like JavaScript is present. The third part, the Net-
workPlatform, specifies the speed and cost of Internet access, and
the reliability of the connection.

Environment Model: Additional influences on the user experience
can be included in the Environment metaclass. First, the environ-
ment can limit the available user abilities. For instance, the user’s
“hear” ability will not be effective if the environment is too noisy
to hear the device, or the user may not be allowed to look at it while
driving a car. The environment may also be more stressing than av-
erage, which results in less patience and greater likelihood of user
errors. Finally, general usability requirements for the web applica-
tion can be specified via name tags. For example, the tag “wcag”
can mean that the site must conform to the W3C’s WCAG, possi-
bly because it belongs to a government institution for which this is
required by law.

3.2 Extended Presentation Model
Existing web engineering approaches either include a presen-

tation model which specifies the major components that make up
pages of a certain kind (e.g. UWE), or a template document with
the same purpose which can be transformed into such a model (e.g.
WebML). For some of the tool concepts outlined later in this paper,
this model needs to be augmented with additional information. For
example, model-based usability analysis of the final implementa-
tion may include a test which checks for the presence of a de-facto
standard page layout, with e.g. a navigation menu at the left side of
the main content.

Figure 4 shows how the web engineering presentation model
of UWE is extended: A new role attribute (inspired by W3C’s
XHTML role [25]) is added to all UWE metaclasses which rep-
resent parts of the page layout. This way, a role such as “naviga-
tion”, “main content” or “ornamental” (i.e. just a part of the visual
page design) can be assigned to these layout areas. Figure 5 demon-
strates with an example how roles are assigned. The following roles
(slightly extended from [25]) were identified as being useful for
automated usability validation: main (main content), seealso (e.g.
sidebar about main content), secondary (secondary content), logo,
ad, empty, ornamental, navigation, search, login, help, contact,
other.

3.3 Extended Navigational Model
Just like the role property provides additional information about

parts of a page, a related annotation is necessary for the entire page.
Similar to the procedure for presentation models, Contexts can be
attached to navigation metaclasses. Additionally, the metaclass for
each page is augmented with a purpose property. This property
mirrors the goals of the user model – if a user and a page share at
least one goal/purpose, then the developer intends the page to be
used by the respective user group.

usability

UWE

UiModel

UI ViewPresentationClassUI Element

PresUiModel

role : string
importance : int

Context
appliesTo

0..* 0..*

Figure 4: The presentational model is extended by adding a
role attribute to metaclasses which represent layout areas. It
describes the area’s purpose, e.g. “this is the navigation menu”.

For some aspects which are related to usability, the most promis-
ing way to add them to the existing set of models is to use con-
straints in a formal constraint language such as OCL (Object Con-
straint Language). This way, the usability validator can evaluate the
constraint expression using its knowledge about the application and
its users. OCL functions which can be supported include the time it
takes to download a page (which depends on the size of the HTML
data and the type of network access of the device), the number of
bytes or the cost of downloading a page, the number of clicks or
the time it takes to traverse a navigation path, or the time it takes to
achieve a goal (such as buying an item in an online shop).

3.4 Embedding Model Information in the Im-
plementation

While it is possible to store usability-related information in the
models of a web engineering environment if the validator executes
inside an IDE, there are several reasons why it may sometimes be
convenient to add the information from the models directly to the
web application’s (X)HTML pages, or in other files which are pub-
lically available from a site’s webspace: First, it should be possible
to perform validation at a later time in the same way as allowed by
non-model-based validation services, i.e. possibly even by a third
party instead of the original developer of the site. In this case, only
the implementation will be available – the web engineering tools
should automatically embed the models to ensure they remain ac-
cessible. Second, embedding model data in a standard way allows
tools to access usability-related information independently of the
exact modelling approach used. Finally, some models, in partic-
ular the presentation model, are not stored in UML form even in
some of the UML-based web engineering environments. Thus, to
add e.g. the role property to a UML presentation model, it would
sometimes be necessary to create this model first.

When making both models and implementation available in the
same place, it is desirable to use the same web-based technologies
for both. This also facilitates further applications which make use
of the model data. For example, it would be possible to partially
automate the analysis of log data from user tests, e.g. by comparing
expected with actual times to achieve a goal.

Models which are not directly related to any single HTML
page, such as the navigation and context models, are better stored
separately from the source code of the web page rather than in
an embedded form. A reference to them can be added to ev-
ery page to which they apply. One possibility for this is the
use of the XMI (XML Metadata Interchange) format to store
the data. A variant of the <link> tag can be used in the head
of the HTML page to reference the model data, for example
<link rel=”model” href=”/navmodel.xmi” />. As XMI is a stan-
dard model interchange format, most UML-based models can be
represented with it.

Information that is directly related to a single (X)HTML page
can be embedded directly in its source code. In particular, this is
useful for the presentation model. Various approaches for embed-
ding data in HTML have been formulated over time, such as W3C’s
GRDDL [22], RDFa [23] or Microformats (microformats.org). As
many web pages are today still implemented using HTML rather
than XHTML, the prototype in section 5 implements an approach
inspired by Microformats. It is based on the idea of using the names
of CSS (Cascading Style Sheets) classes in the HTML code to se-
mantically annotate the markup. For the role property from the
extended presentation model, parts of the layout can be assigned
a role by adding a class attribute to the HTML code, e.g. <div
class=”. . . ”> if the page area is enclosed by a <div>. With the
prototype, the class name is “wusabType ” followed by a string
for the type of role, such as navigation, main content etc. In the
future, support for the XHTML role attribute [25] should probably
also be added.

4. IMPROVING GUIDELINE TEST QUAL-
ITY USING MODEL DATA

While automatic validation will never be able to replace man-
ual testing and user tests, this section attempts to demonstrate that
there is still room for improvement: The validation quality can be
improved noticeably if the validation program has access to addi-
tional information about the HTML code that it is analysing. When
existing web engineering methods are used, some useful high-level
information is created by the developer in the form of the differ-
ent web engineering models, such as the presentational and nav-
igational models of UWE [16] or OO-H [8]. However, it is also
possible to use other sources of information, for example manual
input by the developer, or extensions to models as introduced in the
previous section. Finally, log data from user tests or the live web-
site can be included in the analysis, but this is beyond the scope of
this paper.

For a number of example guidelines taken from [18] [20] [21]
[24], this section presents typical examples of usability-related in-
formation that is needed. In each case, it lists a guideline, gives sug-
gestions on how validation of the guideline could be implemented,
and specifies the required abstract information that must be pro-
vided by the model. In some cases, automatic validation becomes
possible for guidelines that cannot be handled by existent valida-
tors at all. In other cases, there is only an incremental benefit: The
accuracy of the usability report can be improved by taking model
information into account. This way, the number of false positives
(reported usability problems which do not actually exist) and false
negatives (problems that the validator fails to recognize) is reduced.

4.1 Presentational Aspects
Guideline: The maximum recommended width of page content is x
pixels (compare: [18, ch. 4] [20, 31 July 2006], partially [21, 6:8])

http://www.w3.org/2001/sw/grddl-wg/
http://microformats.org/
http://webstyleguide.com/page/dimensions.html
http://www.useit.com/alertbox/screen_resolution.html

Header

Search

Naviga−
tion

Main content
Extra

content

Ornamental background imageLogo img

Content
image

Label

Content
image

Figure 5: Model-based usability validation analyses a page (left) together with associated models, e.g. a presentation model (right).
This allows tests to become more accurate: The validator can check whether the page layout follows the de-facto standard. It can
also distinguish between normal images (non-empty alt text required) and ornamental ones (which should have alt=””).

If the content of the page is too wide, the rightmost part will be
cut off on devices whose display resolution is too low. If the valida-
tor knows about the devices that will typically be used for viewing
the site, it can select the right value for x, render the page and check
whether its width fits. However, a more indirect approach is also
imaginable: For example, if the device is just “desktop PC” without
further details, but the expected audience of the site is children, it
will often be the case that the children’s PC is an old machine with
a lower-than-average screen resolution.

Due to the increasing variety especially of mobile devices, it is
difficult to find a content width which is suitable for all screen sizes.
A tactic used by a number of sites today is to have all content visi-
ble on screens that are 1024 pixels wide, and to have some content
cut off on 800-pixel wide screens. This content is considered “less
important” for the site – most of the time, it is advertising. A val-
idator which knows about the content of the different parts of the
page layout can, for example, turn an error “page does not fit on
screen” into a warning “advertising will not fit on some screens”.
It can distinguish between important and less important content via
the presentation model’s importance property (see figure 4).

Each web page should contain items like a menu, link to the home-
page, search facility, modification date. . .
(compare: [18, ch. 2] [21, 7:1/14:5])

For a human, it is usually easy to distinguish between different
types of content on the page (e.g. between navigation and advertis-
ing), and thus to determine whether they are present. An automatic
validator can perform this task by using the presentational model
of a web engineering solution.

The layout of the page should consistently follow the de-facto stan-
dard, e.g. logo in top-left corner inside header, navigation at left
(to the left of the main content), footer at bottom. . .
(compare: [20, Top Ten Mistakes in Web Design, Nr. 8] [18, ch. 4]
[21, 6:2/7:5/14:5])

Again, using information from the presentational model, the val-
idator can determine how the different content areas are arranged
on the page, and warn if the arrangement is problematic. For exam-
ple, a warning message would be output if the model specifies that
the main navigation menu is in the top right corner of each page, as
this poses the risk of visitors not noticing the navigation.

The area occupied by different types of page content should be
within certain bounds
(compare: [20, 10 February 2003] [21, 5:9])

Related to the previous guideline, following a de-facto layout
standard also means that the area on screen occupied by naviga-
tion, main content etc. is consistent with the majority of sites on
the WWW. Based on Nielsen’s statistics, one can propose a rule
like “the main content must occupy at least 30% of the space inside
the browser window”. Using the presentation model, the validator
can find the main content, render the page and measure its size.
Only the first screen of the page (the area typically visible without
scrolling) should be taken into account to get meaningful results.

The prototype introduced in section 5 implements the three
guidelines above: It checks for the presence of certain required
page areas, for the use of a de-facto layout, and for a reasonable
subdivision of screen space.

The width of a web page’s main content should adapt to the width
of the browser window
(compare: [20, 31 July 2006] [18, ch. 4] [21, 6:8])

In order to use the available screen space optimally, it is some-
times recommended that a liquid layout is used instead of a fixed-
width layout. By rendering the page and measuring its con-
tent width, a non-model-based validator cannot reliably determine
whether the content adapts to the window width, due to the fact
that the part of the layout whose width changes is not necessar-
ily the main content – for example, it could be an empty table
column. The automatic check can be made more reliable if the val-
idator knows (from the role in the presentation model) which part
of the HTML contains the main content.

4.2 Navigational Aspects
Links for navigation paths should have certain characteristics
(compare: [21, ch. 10] [18, ch. 6])

Existing usability validators can analyse the navigational struc-
ture of the site and identify some problems, such as pages which
are unlikely to be found because too many clicks are required to
reach them from the homepage. Web engineering solutions’ navi-
gational models provide valuable additional information: They typ-
ically only specify the “most important” links offered by a page,
not the numerous links added by the standard menus or the page
footer. A validator can check whether these important links are
placed prominently enough on the page to be found. For example,
it is advantageous if the link (which can be a button, an image or a
text link) is visible without scrolling, if the text is meaningful (e.g.
no empty image alt text, not “click here”), if the screen space oc-
cupied by the link is large enough and if the link can be followed
even if JavaScript is disabled in the browser.

http://webstyleguide.com/interface/freestanding.html
http://www.useit.com/alertbox/9605.html
http://webstyleguide.com/page/head-foot.html
http://www.useit.com/alertbox/20030210.html
http://www.useit.com/alertbox/screen_resolution.html
http://webstyleguide.com/page/layout.html

Using OCL constraints as outlined above, the developer can also
express requirements such as that going through a sequence of
pages with forms should take the average visitor two minutes, that
the majority of visitors should take route A to reach a page rather
than route B, or that users should not have to wait more than 10
seconds for a page to display. Based on knowledge about average
user behaviour, a model-based validator like the one presented in
section 5 can make guesses as to whether the constraints are likely
to be met in practice. However, real users’ behaviour is influenced
by too many factors when they use the site. Thus, user tests are still
necessary. In previous work, we have introduced tool support for
this case: UsaProxy [4] is a logging solution which allows detailed
recording of user actions. By using the information supplied by
the model, semi-automated analysis of the logging data generated
during a user test becomes possible. For example, the log data can
be used to verify whether visitors do indeed need two minutes for
filling out the forms.

Navigation patterns should be implemented in appropriate ways
Models like UWE’s navigation model allow the developer to

specify patterns which describe the intended type of interaction in
a more abstract way. For example, a “guided tour” describes a se-
quence of actions which will typically be implemented as a series
of pages connected with “previous” and “next” buttons, e.g. to fill
out a number of forms. A validator can verify whether the pattern
has been implemented in an intuitive way: Does the page contain
an indication of progress, e.g. a digit for each step, with the cur-
rent step highlighted? Are the “previous/next” buttons positioned
consistently on each page? Should a long page for one step be split
into two shorter pages to prevent that the length of the individual
pages varies too much? When the page is automatically created by
a web engineering tool, many of these points will be done correctly,
but the developer may have supplied a different layout or graphical
design for the pattern, or influenced the generation in other ways.

The validator can also offer critique on the model itself, without
taking the implementation into account. In the case of the guided
tour, it might output a warning if there are too many steps in the
tour before the user can view the final page. The pattern might not
be appropriate at all; if the model states that the target audience of
the site consists of expert users who use the site every day, then it
might be desirable to prefer efficiency over intuitiveness: The users
may be faster when they fill out one large form than when they
have to click through several pages and skip over explanatory text
for form entries.

4.3 Image and Text Content
Images should have alt text, unless they are decorative
(compare: [18, ch. 4] [24, WCAG 2.0, guideline 1.1])

The alt attribute is required by the HTML standard, so it must al-
ways be present. Automatic usability validators flag its absence as
an error, and some validators even do this if the attribute is empty
(alt=””). However, empty alt text makes sense if the image in
question is only decorative in nature, an invisible spacer image, or
similar. If the validator knows from the page’s presentation model
that certain images are decorative (i.e. its role is “ornamental”), it
can allow empty alternative text. For other images on the page,
empty alt text generates a warning. Figure 5 shows an example:
Most images such as the site logo or a “start search” label are as-
sociated with functionality, but the background image at the top of
the page is ornamental.

Write texts in a style that is tailored towards the web
(compare: [20, 15 March 1997] [18, ch. 6] [21, 16:2])

Selected part of layout is
"Main content" in model

Figure 6: The Wusab prototype can perform automated usabil-
ity validation based on model information that is embedded in
the HTML or created using a web-based interface.

In order for the visitor to understand the content of the page, it
must be written in a style that is easy to parse on first sight, with
bullet lists, a short summary of the content, etc. Furthermore, the
vocabulary that is used should be known to the visitor, and the com-
plexity of sentences should not be too high. The acceptable com-
plexity of the text depends on several factors which need to be sup-
plied to the validator in a user model, such as the one introduced in
section 3.1:

• The goals (e.g. educational vs. entertainment) have an influ-
ence on the vocabulary and on how much effort readers will
invest in understanding complicated sentences.

• The age affects the way pages are read, in particular when
comparing children to adults.

• The education (e.g. “10 years of school”) is an important hint
with regard to the allowed complexity of text.

• The target audience can be highly restricted (e.g. expert users
for an intranet site, lawyers), so jargon or other unusual
words may be acceptable.

When evaluating the structure of the text, the validator can assume
that children will more patiently read introductory text paragraphs
[20, 14 April 2002] whereas adults prefer a concise style, e.g. with
bullets. The readability of a paragraph of text can be validated au-
tomatically to a certain extent. The reading level is the school grade
necessary to understand the text. It is calculated by counting char-
acters, words, syllables and sentences in the text, and entering these
values in a formula like SMOG [19]. If the result indicates that the
main audience of a website will not understand significant portions
of the text, an automated usability validator can output an error
message.

A similar approach is possible with the individual words present
in the text of the web page. Using a list of the most common words
in the respective language, and possibly additional lists for specific
user groups (e.g. the Academic Word List [11]), the validator can
identify words on the web page which its visitors are unlikely to
know. Because almost every website contains special words such
as company names, it must be possible for the web developer to
supply an additional dictionary of words which should also be as-
sumed to be known to the users.

An exemplary implementation of several different readability
and vocabulary checks is presented with the prototype in section 5.

http://webstyleguide.com/graphics/access.html
http://www.w3.org/TR/WCAG20/guidelines.html#text-equiv
http://www.useit.com/alertbox/9703b.html
http://webstyleguide.com/style/index.html
http://www.useit.com/alertbox/20020414.html
http://www.vuw.ac.nz/lals/research/awl/awlinfo.html

Results of image alternative text analysis

RESULT DESCRIPTION
ERROR 3 images on the analysed page have wrong ALT-text. If

an ornamental image (a layout image with no relevant
content) has a non-empty ALT-text, this will be confusing
for people using screen readers or other assistive tech-
nology.

OK 8 images on the analysed page have correct ALT-text

Results of area size analysis

RESULT DESCRIPTION
OK Navigation areas are less than 20%
ERROR Content area is less than 30%
OK Advertising areas are less than 20%

Results of layout position analysis

RESULT DESCRIPTION
OK One navigation area is located to the left of the main

content
OK Logo is located on top of the vertical navigation
OK No advertising found
OK Found additional content on the right
OK Placement of search area is OK

Results of scalability analysis

RESULT DESCRIPTION
OK Your website fits into a screen with a resolution of 1024

x 768 pixels
ERROR Your website does not fit into a screen with a resolution

of 800 x 600 pixels. Users will have to scroll horizontally!

Figure 7: Excerpt from the results for different guideline tests when running the prototype validator on the web page from figure 5.
Other implemented tests include a calculation of the number of years of education required to understand the text, and an analysis of
the vocabulary used by the page. With access to model information, some new tests become possible, others become more accurate.

5. WUSAB, A TOOL FOR AUTOMATED
MODEL-BASED VALIDATION

To demonstrate the feasibility of some of the ideas from sec-
tion 4, the prototype of a model-based automated usability and ac-
cessibility validator, “Wusab”, has been implemented. The pro-
gram is implemented as a Java-based web application. A developer
can enter the URL of a web page to validate, which will cause
the validator to download and analyse its HTML code. The cur-
rent implementation outputs an HTML page with a usability report
– ideally, as outlined in section 1, validation should be integrated
into a web engineering IDE so that a report is only presented to the
developer when problems are identified.

As discussed in section 3.4, several ways exist to attach the
model information to the web page. The prototype currently sup-
ports embedding the information in the HTML using class=”. . . ”
attributes. In addition to this, users are also free to edit the em-
bedded presentation model of the web page manually using a web-
based interface. This interface (see figure 6) is displayed after the
validator has downloaded the page, but before the guideline checks
are run. Initially, any already embedded information is shown and
can be changed, or a page without embedded information can be
annotated.

Figure 7 shows an example for typical output generated by
the tool. The depicted results are part of the usability report for
www.lmu.de. The prototype implements the following usability
tests:

Text vocabulary: Using word lists of the most frequent 1000 En-
glish words, the next frequent 1000 words (both based on the Gen-
eral Service List), and the Academic Word List, the validator can
determine whether texts are likely to require a college/university
education. This corresponds to a knowledge property of “science”
in the user model. In practice, further wordlists for other values of
the knowledge property would be needed to make this validator test
accurate with a wider variety of sites.

Text complexity: The complexity of the text on the web page is
analysed, and a readability grade (required years of school educa-
tion) is calculated using a number of different algorithms, including
Flesch-Kincaid, FORCAST and SMOG Grade Level [19]. The pro-
gram is careful only to take real text into account, it ignores style
information and scripts which are embedded in the page.

Text/background contrast: The CSS properties are parsed to de-
termine the contrast, and output a warning if it is not high enough.
Information from the user model can be used to adjust the warning
threshold; for instance, older users are more likely to have problems
with low contrast values.

Alternative text for images: The alt attribute must be present for
all tags. If the image is ornamental according to the pre-
sentation model, the alternative text must be empty, otherwise it
must be non-empty (figure 5). In comparison, most existing valida-
tors require all images to have alt text. At most, they advocate a
manual check for ornamental images (figure 2).

Layout analysis: The different parts of the layout should be ar-
ranged in a way which follows one of several allowed de-facto
standards appearing in the literature (section 4.1). For example,
the navigation should be to the left of the main content, and the
logo should be at the top left.

Area size analysis: The relative size (in pixels) of page areas like
the main content should be within certain limits. For instance, the
prototype considers it an error if the main content occupies less than
30% of the entire page. The thresholds are configurable, the de-
faults are derived from [20, 10 February 2003]. Both area size and
layout analysis are implemented by rendering the page in a normal
browser. Next, custom JavaScript code is executed in the context of
the rendered page, it extracts information about the different page
area rectangles from the DOM (Document Object Model) tree. The
current version of the tool loads the page into the browser which is
used to access the web service, but it would also be possible to per-
form this step using an embedded rendering engine which can run
on a server without a visible user interface.

Analysis of page width at different resolutions: The prototype
determines whether horizontal scrolling will be necessary to view
all content at resolutions of 1024×768 and 800×600, again using
custom JavaScript which is executed when the page is displayed at
these resolutions.

6. EVALUATION / DISCUSSION
Looking at the description in the previous section, it becomes

clear that many of the implemented tests only use heuristics rather
than being able to give a 100% correct result. For example, it
would be trivial to construct a page which has an excellent low
readability grade, but which contains complete nonsense neverthe-
less. Still, considering the hard-to-automate nature of the problem,

http://www.lmu.de
http://jbauman.com/gsl.html
http://jbauman.com/gsl.html
http://www.vuw.ac.nz/lals/research/awl/awlinfo.html
http://www.useit.com/alertbox/20030210.html

the results produced by the implementation are encouraging. Tests
of the prototype were performed with a variety of real-world web
pages whose presentation model was manually created using the
web-based user interface. The prototype’s reports suggest that the
output of a model-based validator can indeed be more detailed and
accurate than that of a validator which only processes the HTML
data.

However, it is hard to objectively compare the new, model-based
validation concept with existing validators that only access the
HTML code of a page.

One way would be to hand-select a set of sites which optimally
demonstrate the improved accuracy of model-based guideline tests,
but this selection of the best possible examples could be considered
unfair towards existing validators. For example, unlike other val-
idators the Wusab prototype can distinguish between ornamental
and non-ornamental images for the alt text check. Model-based
validators can also alter thresholds (e.g. for contrast or text com-
plexity) depending on user age or school education, which is bound
to produce a more accurate usability report.

An alternative approach would be to select a large random sam-
ple of sites and to compare results. Here, our model-based proto-
type would be at a disadvantage, due to the fact that it implements
only a few example guidelines, whereas commercial validators like
WebXACT have support for many more. There would be no direct
way to weigh the higher quality of a few model-based tests against
the larger number of tests with potentially lower accuracy.

A further difference which makes comparison difficult is that
models are not usually available for real-world websites. They have
to be created manually in the way that the evaluator assumes they
might have been specified. Apart from the fact that the result might
not match the original site author’s intentions, this approach would
also fail to take another advantage of model-based validation into
account: The model should be created early during development,
and repeated validation should avoid the introduction of usability
problems as early as possible, not when the site is finished.

At a conceptual level, the work of Brajnik [6] is suitable to
examine whether model-based usability validation creates higher-
quality reports. It characterizes the quality of a validator report
using the three attributes completeness, correctness and specificity.
The first two are related to the number of false positives and false
negatives in the usability report: A complete report includes all
usability problems that are present in a site, but possibly also ad-
ditional, incorrectly reported problems. A correct report only in-
cludes correctly identified problems, but not necessarily all that are
present. An ideal validator would produce reports that are both
entirely complete and correct. The third attribute, specificity, is re-
lated to the level of detail in which a problem is described by the
report. Certain characteristics of our model-based validation ap-
proach strongly suggest that all three aspects will be improved:

Greater accuracy of checks: With model-based validation, as out-
lined above many checks can be made more accurate: A model-
based validator does not include a single, fixed implementation for
a particular guideline, but parameterizes it depending on properties
of the user, the device that is used to access a site, or the environ-
ment in which it is accessed. This results in a more fine-grained
report and thus higher specificity. For instance, error messages can
be as detailed as “the word ‘specificity’ is unlikely to be understood
by your target audience”.

More checks become possible: Model-based validation permits
tests which cannot be performed reliably by existent validators

due to lack of information. For example, this includes vocabulary
checks (depends on knowledge from the user model) or page layout
analysis (depends on the role property). Thus, report completeness
is improved, as the number of false negatives drops. Additionally,
the number of false positives may also drop, since many messages
like “check manually whether the image is ornamental” (figure 2)
can be eliminated.

Fewer checks may be necessary: Complementary to the previous
point, a model-based validator also knows when not to perform cer-
tain guideline checks: For instance, if the website is not intended
to be viewed on mobile phones, it is not relevant (and thus no us-
ability problem) if the layout does not adjust to a very small screen
size. An error message to this effect could be considered a false
positive – by not displaying it, the correctness of the validator is
increased. In contrast, non-model-based tools must take a conser-
vative approach and assume that any recognized usability or acces-
sibility problem may apply for the site being evaluated. This also
means that for non-model-based tools, the number of checks can-
not be easily extended e.g. to also take mobile devices into account,
as too many irrelevant problems would be reported to site designers
who do not target mobile devices.

7. CONCLUSION
In this paper, we have described a concept to extend the func-

tionality and scope of web development environments: Automated
model-based usability validation can take place continuously in the
background while the web developer creates the models and im-
plementation of a website. This way, the validator can highlight
potential usability problems of the site at an early stage, when cor-
recting them is still easy.

When a validator has access to models which describe the web-
site to be validated, it becomes possible to verify usability guide-
lines which could previously not be checked automatically due to
lack of abstract information about the website. For example, it can
be verified whether the page uses the de-facto standard page lay-
out, which reduces the risk that new visitors get confused by the
page. Additionally, other guideline checks (which are already im-
plemented in some existent validators) can be made more accurate,
so the number of false positives is reduced. An example for such a
guideline is checking for sufficient contrast of text and background
colours – high contrast is more important for visitors with bad vi-
sion, so the guideline can be assigned a higher priority depending
on the target audience that the model specifies.

This paper proposes a model extension for the specification of
information that is relevant for usability validation. An additional
model is necessary because existent web engineering solutions’
models do not include all the data required by a usability validator.
In particular, information related to the user (age, education etc.),
the platform (e.g. device form factor, cost per minute) and the envi-
ronment (e.g. noisy) is absent. The introduced context model also
serves as an additional layer which makes the validator independent
of the web engineering solution that is actually used. Furthermore,
the model data can be useful for other, related tool concepts, such
as automated analysis of log data from user tests.

A working prototype demonstrates the central ideas of the ap-
proach. It implements tests for a number of usability guidelines.
While a direct comparison with existing validators (which do not
rely on model data) is difficult, there are strong indicators that the
tool concept is conceptually superior to usability validation which
solely relies on access to a site’s HTML data.

There is room for future work in several areas: First, additional
guidelines can be identified, and suggestions can be made as to
how to implement them with higher accuracy in a model-based
validator. Also, the integration of usability validation into web en-
gineering IDEs can be investigated. This comprises issues such
as machine-readable output of usability reports (e.g. using W3C
EARL), suppression of false positives, and possibly an extension
of the concept to not only identify problems, but also aid in solv-
ing them. Finally, an objective comparison of existing and model-
based validation should be conducted, e.g. by letting experts esti-
mate the accuracy of the two methods for a number of examples.

Fully automatic usability validation will never be able to replace
user tests or manual inspection by experts. However, as this pa-
per shows, it is possible to push the quality of usability reports
much further, allowing the evaluation of aspects which cannot be
validated by existent tools. This way, the validator can more effec-
tively support developers who have little experience with or interest
in usability issues, and the cost of design mistakes is reduced since
problems are identified earlier during development.

Acknowledgement This work was funded by the German
BMBF (intermedia project). We thank Andreas Singer and Ronald
Ecker for parts of the prototype implementation.

8. REFERENCES
[1] J. Abascal, M. Arrue, N. Garay, J. Tomás: EvalIris – A Web

Service for Web Accessibility Evaluation. In Proceedings of
the 12th International World Wide Web Conference (poster),
Budapest, Hungary, 20–24 May 2003

[2] R. Atterer, A. Schmidt: Adding Usability to Web
Engineering Models and Tools. In Proceedings of the 5th
International Conference on Web Engineering ICWE 2005,
Sydney, Australia, 36–41, Springer LNCS 3579, 2005

[3] R. Atterer, A. Schmidt, H. Hußmann: Extending Web
Engineering Models and Tools for Automatic Usability
Validation. In Journal of Web Engineering, vol. 5, no. 1
(2006), 43–64

[4] R. Atterer, M. Wnuk, A. Schmidt: Knowing the User’s Every
Move – User Activity Tracking for Website Usability
Evaluation and Implicit Interaction. In Proceedings of the
15th International World Wide Web Conference
(WWW2006), Edinburgh, Scotland, May 2006

[5] A. Beirekdar, J. Vanderdonckt, M. Noirhomme-Fraiture: A
Framework and a Language for Usability Automatic
Evaluation of Web Sites by Static Analysis of HTML Source
Code. In Proceedings of 4th International Conference on
Computer-Aided Design of User Interfaces CADUI’2002,
Valenciennes, France, May 2002

[6] G. Brajnik: Comparing accessibility evaluation tools: a
method for tool effectiveness. In Universal Access in the
Information Society journal, vol. 3, no. 3–4, Springer, 2004

[7] M. D. Byrne, Scott D. Wood, P. Sukaviriya, J. D. Foley, D. E.
Kieras: Automating Interface Evaluation. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems 1994 (CHI1994) , Boston, MA, USA, 1994

[8] C. Cachero, J. Gómez, O. Pastor: Object-Oriented
Conceptual Modeling of Web Application Interfaces: the
OO-HMethod Abstract Presentation Model. In Proceedings
of the 1st International Conference on Electronic Commerce
and Web Technologies EC-Web 2000, London, UK, 206–215,
Springer LNCS 1875, September 2000

[9] S. Ceri, F. Daniel, M. Matera, F. M. Facca: Model-driven
Development of Context-Aware Web Applications. In ACM
Transactions on Internet Technology (TOIT), vol. 7, issue 1,
February 2007

[10] L. Constantine, L. Lockwood: Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered
Design. ACM Press/Addison-Wesley, New York, USA, 1999

[11] A. Coxhead: A New Academic Word List. In TESOL
Quarterly, vol. 34, no. 2, 213–238, 2000

[12] Y. Deshpande, S. Murugesan, A. Ginige, S. Hansen, D.
Schwabe, M. Gaedke, B. White: Web Engineering. In
Journal of Web Engineering, vol. 1, no. 1 (2002), 3–17

[13] M. Y. Ivory, M. A. Hearst: The state of the art in automating
usability evaluation of user interfaces. In ACM Computing
Surveys, vol. 33, no. 4, 470–516, December 2001

[14] M. Y. Ivory, R. R. Sinha, M. A. Hearst: Empirically
Validated Web Page Design Metrics. In Proceedings of the
SIG-CHI on Human factors in computing systems, March 31
– April 5, 2001, Seattle, WA, USA, March/April 2001

[15] D. E. Kieras: A Guide to GOMS Model Usability Evaluation
Using NGOMSL. In M. Helander, T. Landauer (eds.): The
Handbook of Human-Computer Interaction. Amsterdam,
Netherlands, 1996

[16] A. Knapp, N. Koch, G. Zhang, H.-M. Hassler: Modeling
Business Processes in Web Applications with ArgoUWE. In
Proceedings of the 7th Int’l Conference on the Unified
Modeling Language (UML2004). Springer Verlag, 2004

[17] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, V.
Lopez-Jaquero: UsiXML: a Language Supporting
Multi-Path Development of User Interfaces. In Proceedings
of the 9th IFIP Working Conference on Engineering for
Human-Computer Interaction, Hamburg, Germany, 2004

[18] P. J. Lynch, S. Horton: Web Style Guide: Basic Design
Principles for Creating Web Sites, 2nd edition, Yale
University Press, March 2002

[19] G. H. McLaughlin: SMOG Grading – a New Readability
Formula. In Journal of Reading, vol. 12, 639–646, May 1969

[20] J. Nielsen: Alertbox: Current Issues in Web Usability, ISSN
1548-5552, http://www.useit.com/alertbox/,
accessed February 25th, 2008

[21] U.S. Department of Health and Human Services:
Research-Based Web Design & Usability Guidelines, 2006
ed., electronic version (usability.gov), Washington DC, USA,
ISBN 0160762707

[22] World Wide Web Commitee (W3C), Dan Connolly (ed.):
Gleaning Resource Descriptions from Dialects of Languages
(GRDDL), W3C Recommendation, September 2007,
http://www.w3.org/TR/2007/REC-grddl-20070911/

[23] World Wide Web Commitee (W3C), B. Adida, M. Birbeck
(eds.): RDFa Primer. Embedding Structured Data in Web
Pages, http://www.w3.org/TR/2007/
WD-xhtml-rdfa-primer-20071026/, W3C Working
Draft, October 2007

[24] World Wide Web Commitee (W3C): Web Accessibility
Initiative (WAI), http://www.w3.org/WAI/, accessed
March 19th, 2008

[25] World Wide Web Commitee (W3C), M. Birbeck, S.
McCarron, S. Pemberton, T. V. Raman, R. Schwerdtfeger
(eds.): XHTML Role Attribute Module, A module to support
role classification of elements, W3C Working Draft, 2007,
http://www.w3.org/TR/2007/WD-xhtml-role-20071004/

http://www.w3.org/2001/03/earl/
http://www.w3.org/2001/03/earl/
http://www2003.org/cdrom/papers/poster/p111/p111-abascal.htm
http://www2003.org/cdrom/papers/poster/p111/p111-abascal.htm
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2005icwe/atterer2005icwe.pdf
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2005icwe/atterer2005icwe.pdf
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2006jwe/atterer2006jwe.pdf
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2006jwe/atterer2006jwe.pdf
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2006jwe/atterer2006jwe.pdf
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2006www/atterer2006www.pdf
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2006www/atterer2006www.pdf
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2006www/atterer2006www.pdf
http://www.isys.ucl.ac.be/bchi/publications/2002/Beirekdar-CADUI2002.pdf
http://www.isys.ucl.ac.be/bchi/publications/2002/Beirekdar-CADUI2002.pdf
http://www.isys.ucl.ac.be/bchi/publications/2002/Beirekdar-CADUI2002.pdf
http://www.isys.ucl.ac.be/bchi/publications/2002/Beirekdar-CADUI2002.pdf
http://users.dimi.uniud.it/~giorgio.brajnik/papers/eval-method.pdf
http://users.dimi.uniud.it/~giorgio.brajnik/papers/eval-method.pdf
http://www.springeronline.com/east/journal/10209/
http://www.springeronline.com/east/journal/10209/
http://portal.acm.org/citation.cfm?id=191666.191752
http://gplsi.dlsi.ua.es/iwad/ooh_project/papers/ecweb00.pdf
http://gplsi.dlsi.ua.es/iwad/ooh_project/papers/ecweb00.pdf
http://gplsi.dlsi.ua.es/iwad/ooh_project/papers/ecweb00.pdf
http://webml.org/webml/upload/ent5/1/TOIT-Matera-05-08.pdf
http://webml.org/webml/upload/ent5/1/TOIT-Matera-05-08.pdf
http://portal.acm.org/citation.cfm?id=301248&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=301248&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=301248&dl=ACM&coll=portal
http://dzibanche.biblos.uqroo.mx/hemeroteca/tesol_quartely/1967_2002_fulltext/Vol_34_2.pdf#page=8
http://www.rintonpress.com/xjwe1/jwe-1-1/003-017.pdf
http://webtango.berkeley.edu/papers/ue-survey/p470-ivory.pdf
http://webtango.berkeley.edu/papers/ue-survey/p470-ivory.pdf
http://www.rashmisinha.com/articles/Webtango_CHI01.pdf
http://www.rashmisinha.com/articles/Webtango_CHI01.pdf
http://www.cosc.brocku.ca/~bockusd/3p94/kieras96guide.pdf
http://www.cosc.brocku.ca/~bockusd/3p94/kieras96guide.pdf
http://www.pst.ifi.lmu.de/veroeffentlichungen/knapp-et-al:uml:2004.pdf
http://www.pst.ifi.lmu.de/veroeffentlichungen/knapp-et-al:uml:2004.pdf
http://www.isys.ucl.ac.be/bchi/publications/2004/Limbourg-DSVIS-EHCI2004.pdf
http://www.isys.ucl.ac.be/bchi/publications/2004/Limbourg-DSVIS-EHCI2004.pdf
http://webstyleguide.com/
http://webstyleguide.com/
http://webpages.charter.net/ghal/SMOG_Readability_Formula_G._Harry_McLaughlin_(1969).pdf
http://webpages.charter.net/ghal/SMOG_Readability_Formula_G._Harry_McLaughlin_(1969).pdf
http://www.useit.com/alertbox/
http://usability.gov/pdfs/guidelines_book.pdf
http://www.usability.gov/pdfs/guidelines.html
http://www.w3.org/TR/2007/REC-grddl-20070911/
http://www.w3.org/TR/2007/WD-xhtml-rdfa-primer-20071026/
http://www.w3.org/TR/2007/WD-xhtml-rdfa-primer-20071026/
http://www.w3.org/WAI/
http://www.w3.org/TR/2007/WD-xhtml-role-20071004/

	Introduction
	Related Work
	Modelling Usability-Related Aspects of Web Application Use
	Context Model: User, Platform and Environment of Use
	Extended Presentation Model
	Extended Navigational Model
	Embedding Model Information in the Implementation

	Improving Guideline Test Quality Using Model Data
	Presentational Aspects
	Navigational Aspects
	Image and Text Content

	Wusab, A Tool for Automated Model-Based Validation
	Evaluation/Discussion
	Conclusion
	References

