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1 INTRODUCTION

1 Introduction

Like no other technology before it, the Extensible Markup Language (XML) has in the last years

been embraced as the new standard format for information transmission and data storage, to the

point of becoming the new “lingua francaof the Internet”: An increasing number of applications

uses XML as the format for saving documents, many web sites create and manage their content

in XML format before converting it to HTML for display in a web browser, and new protocols

use XML messages for communication.

One particular area of interest concerns itself with the use of XML for direct, automated com-

munication between different entities. In contrast to the HTML interface intended for humans,

so-called “web services” provide XML interfaces to the functionality that web sites offer (for in-

stance, placing online orders or using a search facility). The ability to access sites via a common

XML-based interface leads to new possibilities, ranging from more efficient business-to-business

interaction to special “agent” services, for example to find the best price for a product among

all the dealers it is available from, or to watch an online auction and act according to predefined

rules.

Unfortunately, existing computer languages like Java or C++ do not lend themselves well to

the task of processing XML data, e.g. as part of a web service implementation, because XML

support is only available through add-on libraries and extensions, whose use often results in

code that is difficult to read and unnecessarily complicated. This is even more unfortunate if we

consider that a specification for a complete XML data query language named XQuery is available

– however, the XML data model is so different from e.g. the Java type system that the seamless

integration of XQuery into Java would prove a very difficult task.

As a result of this, the need for a separate language for XML processing was identified. The

experimental language “XL” integrates XQuery into a general-purpose programming language

and is being developed at the chair for database systems and knowledge bases at TUM. Its goals

are to make the development of web services easy and less error-prone than with other languages

– instead of spending his time with the issues of low-level XML data access, the programmer can

concentrate on the application logic of the service.

In this diploma thesis, one of the tasks of XL is analysed and the corresponding functionality

implemented: The persistent storage of XML data (in the form of XL variables) in a database.

An XL variable can contain anything from a simple value (e.g. an integer) to a multi-gigabyte

XML data structure, and in both cases a certain set of operations must be implemented reasonably

efficiently for the language to be useful in practice. Additionally, is is also possible fortemporary

XL values to become too large to be stored in main memory. The developed program code also
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1 INTRODUCTION

addresses this problem, allowing temporary values (or parts of them) to be “swapped out” to disc

under memory pressure.

The thesis can be broken up as follows: After a general summary in section2 of the tech-

nologies mentioned above, the different ways of storing XML data in a database are discussed

in section3. As we will see, not all of them are suited for the purposes of XL – for example,

XL requires that insertions/deletions in the XML document be efficient, so the straightforward

approach of saving the XML data in a text file is not feasible. Section3.6 shows that exist-

ing database systems are not ideal for XML storage in some respects, and gives an overview of

different indexing methods and other low-level support structures.

Next, the requirements for the new XL storage subsystem are outlined (section4), followed by

a more concrete description of the component’s design (section5). Finally, section6 discusses

the details of implementing persistent data storage for XL, and sections7 and 8 describe the

testing and performance measurement efforts.
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2 OVERVIEW OF IMPORTANT TECHNOLOGIES

2 Overview of Important Technologies

2.1 XML

The Extensible Markup Language [XML ] is used widely by applications for storage and com-

munication on the Internet. The World Wide Web Consortium (W3C) created the standard and

maintains a web site (http://www.w3.org ) from which it can be downloaded free of charge.

XML is both a very simple and a very powerful format to describe data: It is simple because it

is text-based (so it can be edited with any ASCII editor) and the basic building blocks are easy to

understand and memorize. Nevertheless, it is powerful because XML documents describe tree-

like structures – together with the ability to insert references from one part of the described tree

to any other part, this makes it general enough for the representation of arbitrary data structures.

The structure and format of XML documents is very similar to HTML documents – however,

there is a major difference between the goals of these two markup languages: HTML is designed

for the purpose of rendering documents in a browser for consumption by humans, and defines

detailed semantics which describe how certain document contents influence the layout of the

rendered HTML page. In contrast, XML does not attach any meaning to the content of the

document, nor does it provide any means of rendering the content to screen; it merely provides a

standardized way of representing information.

Both HTML and XML are subsets of SGML (Standard Generalized Markup Language,

[SGML]), a markup language which is much older and slightly more complicated than XML.

However, even though it is a superset of XML, in practice SGML has mostly been used for the

description of human-readable documents, similar to HTML, and not for data exchange between

programs. This difference with regard to the intended use and the goals of SGML and XML may

be the reason why despite an initially mostly identical “feature set”, SGML has never been very

popular, whereas XML generated a lot of interest from the beginning.

The following sections provide an introduction to the document format, the logical structure

of documents and the special meaning that various character sequences have. Furthermore, a

description of XML would not be complete if the various auxiliary standards which supplement

it were not mentioned; even though many of them are not of interest for the purposes of this

thesis, an overview of the most important ones is included.

2.1.1 Document Format

The XML specification published by the World Wide Web Consortium, [XML ], is the authorita-

tive standard which describes the format.

9
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2.1 XML 2 OVERVIEW OF IMPORTANT TECHNOLOGIES

<?xml version=”1.0”?> XML declaration
<!DOCTYPE recipe SYSTEM ”recipe.dtd”> Document type declaration
<recipe>

<!– – Do try this, it really tastes great!– –> Comment
<title>Anikas Kürbisbrot</title>
<ingredients> Start tag

<ingred name=”flour” quantity=”500–1000g”/> Empty-element tags
<ingred name=”salt” quantity=”pinch”/> with CDATA attributes
<ingred name=”butter” quantity=”25g”/>
<ingred name=”sugar” quantity=”50g”/>
<ingred name=”yeast” quantity=”40g”/>
<ingred name=”pumpkin” quantity=”1 small”/>

</ingredients> End tag
<time>3h</time>
<instructions>

Add mashed pumpkin to dough, knead thoroughly.
Add water/milk <em>or</em> flour for right
consistency. Leave dough alone for some time,
knead once more, then bake at 175&#176; for 50
to 60 minutes.

PCDATA with <em> tag
and a character entity for the
degree symbol, i.e. “175◦”

</instructions>
</recipe>

Figure 1: Example for an XML document (left), with short descriptions of the different parts (right).

An XML document is a text document which contains whitespace, comments, “normal text”

and special markup which creates the tree-like document structure. Figure1 shows an example

XML file to illustrate the different parts of the document.

At the lowest level, a document is composed of a sequence of simple units, each of which can

be one of the following:

Character A single character like “x” or “∞”. All of the characters described in the ISO/IEC

10646 standard ([ISO10646], a superset of the Unicode standard) can be used.

Character entity For convenience, characters can also be described by a special sequence of

ASCII characters. Some characters can be referenced with a symbolic name (e.g. “&lt;”
for a less-than sign “<”) and all of them can be specified using their ISO 10646 character

code in decimal or hexadecimal notation (e.g. “&#60;” or “ &#x3c;” for “ <”).

Whitespace A sequence of one or more space, tab, line feed or carriage return characters. It is

worth noting that XML parsers do not distinguish between different amounts of whitespace,

or between whitespace that contains line breaks and whitespace that doesn’t. If information

10



2 OVERVIEW OF IMPORTANT TECHNOLOGIES 2.1 XML

about line breaks is to be stored, this can only be achieved by other means, such as with

special tags like the<p> (paragraph) and<br> (line break) in HTML.

Name A series of adjacent characters, starting with a letter and continuing with letters, digits

and a few other characters. Whether a sequence which matches this description is parsed

as a series of individual characters or as a name token depends on the parse context, as

described later in this section.

Literal A string of text, enclosed in single’ ’ or double” ” quotation marks. The string can

contain whitespace. Again, whether the characters are parsed as individual characters or as

a literal is dependent on the context.

2.1.2 Documents as Token Streams

In the next step, an XML parser subdivides the document into a series of slightly larger parts

which can be interpreted as a stream of tokens. A common characteristic of most of them is that

the characters “<” and “>” are used to bracket areas of text to give them special meaning. The

following different possibilities are defined in the XML standard:

Processing instruction A processing instruction can be recognized by the fact that the first char-

acter after the opening “<” and the last one before the closing “>” is a question mark. The

only processing instruction defined by the XML standard itself is a line of the form

<?xml version=”1.0”?>

at the start of a document, to identify the file as an XML document and to specify the

version of the standard it complies to. All processing instructions starting with the letters

“<?xml” are reserved for future use by XML, others can be used freely by applications.

The intended use for processing instructions is for the XML parser to pass their contents

through to the application. This feature could be used in content management systems for

web sites, where embedded commands could instruct the application to perform certain ac-

tions when the respective part of the document is processed. However, in practice systems

like JavaServer Pages [JSP] tend to use the non-standard sequence “<%. . . %>” for this,

not “<?. . . ?>”.

Comment It is often useful to make an XML processor temporarily ignore some part of the

document without removing it completely, or to add short notes which are only intended

for the person editing the document rather than the software that eventually processes it.

For this purpose, XML comments can be used. They have the form

11
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<!– – any text – –>

The comment content can be arbitrary, with the exceptions that the characters “– –” may

not appear anywhere and that the character before the closing “– –>” must not be a hyphen.

Start tag A simple start tag has the form “<recipe>”. In addition to the tag name

(“recipe”), any number of so-called attributes may be given, each of which has the form

name=”value”, e.g.

<recipe qualification=”rookie”>

The names of tags and attributes are parsed as name tokens, the attribute values are parsed

as literals. No attribute name may appear more than once in the same start tag or empty-

element tag.

End tag For each start tag in a document, a matching end tag must also be present. It is distin-

guished from the start tag by a “/” character, e.g.

</recipe>

End tags must not contain attributes.

Empty-element tag XML documents frequently contain start tags which are immediately fol-

lowed by the corresponding end tag, for example

<ingred name=”sugar” quantity=”50g”></ingred>

To improve readability, it is possible to combine these two into just one empty-element tag

<ingred name=”sugar” quantity=”50g”/>

The two forms can be used interchangeably; XML parsers are required not to distinguish

between them. Note that the “/” character is moved to the end of the tag in empty-element

tags, before the closing “>”.

Looking at the XML example in figure1, the tokens described above cover most of the docu-

ment. The only remaining part is the “normal text” enclosed by the “<instructions>” tags. The

standard distinguishes between two different kinds of such text:

PCDATA This acronym is used to describe an arbitrary sequence of text and XML tags; an

example is the contents of “<instructions>”, which contains an “<em>” tag as well as

normal text. Because of this property, such data is referred to as “mixed content” – the

term “parsed character data” was was originally used for it in SGML, but it is misleading

in the context of XML.

12
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CDATA “Character data” is text which cannot contain tags. The most obvious example for this

is the value of attributes. With a tag like

<ingred name=”sugar” quantity=”<em>lots!</em>”/>

the “<em>” tags are not recognized. This example is not even well-formed XML: The

value of the “quantity” attribute is not simply a string whose characters are “<”, “e”, “m”

etc. because a special rule in the standard forbids the use of the less-than character in

attribute values. To make it well-formed, all occurrences of “<” would have to be replaced

with “&lt;”.

2.1.3 Document Structure

The XML standard distinguishes betweenwell-formedand valid documents. A document is

considered well-formed if its structure follows the rules set by the standard (e.g. tags are correctly

nested), and a document is considered valid if the document structure additionally complies to

the rules laid out in adocument type definitionwhich is referenced or included at the beginning

of the document (e.g. restrictions for the content of elements).

Structure Constraints Imposed by the XML Standard In XML, an elementis defined as

a start tag followed by the corresponding end tag, and any content that the two tags enclose.

Alternatively, an element may also be a single empty-element tag.

As mentioned earlier, XML documents can be regarded as tree-like structures. For this reason,

it is required that all tags be nested correctly (including tags that are part of an element’s content),

and that the document only contain exactly one top-level element, ordocument root. Figure2

shows the tree implied by the example XML document from figure1.

Many of the terms used to denote relationships between elements are the same as those com-

monly used for tree graphs: The elements enclosed by another element are that element’schil-

dren, and the enclosing element is theparent. Attributes and their values could also be considered

children of the element node (and figure2 shows them as such), but [XML ] only defines these

terms for elements. Furthermore, elements precede or follow other elements indocument order

if their start and end tags occur before or after the other element’s tags in the XML document.

Structure Constraints Imposed by a User-Supplied Document Type Definition In addition

to the restrictions mandated by the XML standard, it is possible to specify further criteria for the

document content. This is done using a document type definition, or DTD, and is always specific

to a certain application of XML – for instance, it allows you to specify the set of all recipes that

13
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Figure 2: Tree view for the example XML document

look like the example from figure1. DTDs are a feature which XML inherits from SGML; a very

well-known DTD for SGML is the DTD which restricts the set of all possible SGML documents

to the set of HTML documents.

The following aspects of the document content can be customized using a document type

definition:

• Legal name(s) for the root element;

• whether an element is empty or not;

• if it is not empty, which element(s) or sequences of elements may appear as children of the

element. The element type declarations essentially represent an LL(1) grammar, so quite

detailed descriptions of the element content are possible;

• whether an element may contain PCDATA, and if so, whether child elements are allowed

(i.e. whether mixed content is possible) and what names any children may have;

• the set of legal attributes for an element.

Furthermore, DTDs allow the definition of additional character references (like “&lt;”, but

with any other sequence of letters instead of the “lt”). To improve readability, there is also a way

to give symbolic names to entity definitions and to refer to them elsewhere in the DTD with a

so-called parameter-entity reference.

DTDs can either be referenced indirectly by a document type declaration at the start of an

XML document (as in figure1), or they can be defined directly in the document; documents with

an in-lined document type definition are calledstandalone.

14



2 OVERVIEW OF IMPORTANT TECHNOLOGIES 2.1 XML

For the exact syntax of DTDs, please refer to the XML standard.

Document type definitions are a quite powerful way to provide rules for the content of XML

or SGML documents. Still, in the case of XML, they did not prove sufficient – XML Schema

(described below) introduces other, more advanced ways to specify constraints for the document

structure.

2.1.4 Standards Related to XML

As we have seen in the previous sections, the structure of XML documents is quite simple and

straightforward – an important feature which has doubtlessly promoted its widespread use. How-

ever, as a result of attempts to use XML for more complicated applications, a growing number

of related standards has evolved, and while these standards’ features make XML much more

powerful, they also introduce additional complexity.

In this section, the most important of these XML-related standards are introduced briefly,

and the motivation for their existence is explained. A detailed description of all these standards

is outside the scope of this thesis – please refer to the respective W3C documents for further

information.

XML Schema The XML Schema facility pursues the same goals as the SGML DTDs men-

tioned in the previous section: To specify rules for the structure of a document, the tags it may

contain and the way they can be nested. However, its features go far beyond those of DTDs.

As the subtitle of the ISO SGML standard indicates, SGML is only intended for the area

of “text processing” – consequently, the only primitive data type it supports are strings of char-

acters. In contrast to this, XML documents hold data of many other types. While the actual

representation of that data is still a stream of characters, the applications that process these char-

acters need to know what type to associate with it, e.g. to distinguish the case where the string

“0172–98443” is a mathematical expression from the case where it is a telephone number.

Some further features of XML schema which are not present in DTDs:

• You can specify what types of characters are allowed inside a certain tag, e.g. that telephone

numbers consist of digits and “–” characters, or that the value enclosed by a “<size>” tag

and its corresponding end tag must be one out of “small”, “ medium” or “ large”.

• A number of primitive data types are predefined, e.g.byte, float, date or int, some of

which allow additional restrictions for the represented value, such as “an integer between

5 and 100”.

15
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• You can provide several alternatives for the contents of tags, for example “The<a> tag

either contains<b/><c/> or <d/><e/> (but not e.g.<b/><d/>)”

• Types can be based on other types, so very complex data types can be described easily.

• XML schemas are themselves written as XML documents, unlike DTDs, which use a com-

pletely different notation.

XML Schema is far more complex than most other XML-related standards, so no attempt is

made here to describe it completely. The non-normative “XML Schema Primer” [XMLSchema0]

is an introduction to the XML Schema language which is easier to read than the standard itself

[XMLSchema1], [XMLSchema2].

XML Namespaces As a result of XML’s ability to represent all types of data in the same stan-

dardized structure, it becomes possible to include in one XML document data that was defined

for use by several different schemas (for example schemas defined by different companies), or

by the schemas that accompany different W3C standards.

XML namespaces [XMLNS] make it easy to integrate schemas without name clashes. Such

clashes can occur if tags with identical names are defined for different purposes in different

schemas, and those schemas used in a single document. XML namespaces avoid problems first

by assigning anamespace prefixto each schema definition, and second by qualifying names with

that prefix (simply by prepending the namespace prefixes and a colon to tag names). For example,

the XML Schema definitions can be assigned the prefix “xsd” with

<sometag xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

Within the content of the “sometag” element, XML Schema tags can now be referred to using

e.g. “<xsd:complexType>” instead of just “<complexType>”.

XML Stylesheets Even though SGML was originally intended to become the primary standard

for the representation of documents like articles, books or web pages, nothing prevents XML from

being used for this purpose as well. On the contrary, XML’s advanced features make it a more

powerful solution for text processing than SGML.

The primary task in this application of XML is the conversion of XML documents into other

formats. A typical output format (also called “presentation format”) is HTML (for online viewing

of documents), but using available tools it is also possible to produce output which is not related

to SGML in any way, such as PostScript or PDF (for printed documentation).

The Extensible Stylesheet Language [XSL] is a language for expressing “stylesheets”. A

stylesheet specifies how an XML document is to be presented, by providing rules which govern
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transformation of the document into the output format. Stylesheets are collections of templates,

each of which consists of a pattern to be compared to the element of the document and the

replacement text to use for any instances of the pattern. As usual with XML standards, the

pattern matching and replacement mechanism is quite flexible and powerful. The exact form of

the patterns and transformation rules is given in the standard for XSL Transformations [XSLT],

which is a part of XSL.

Today, XSL(T) is often preferred over SGML for document formatting, and is also being

used internally on more and more web sites to separate the content of HTML pages from their

formatting, by storing them separately (content in XML files, site layout in a stylesheet) and

generating normal HTML on the fly when pages are delivered. However, modern web browsers

also have built-in support for XSLT.

XLink and XPointer As we have seen, the XML standard does not attach any meaning to the

data represented by an XML document. Consequently, it also does not define any semantics for

hyperlinks, which would allow documents to reference other documents or parts of documents

– in contrast to e.g. HTML, where “<a>” (anchor) tags can reference points in the document

which were marked withname=”. . .” or id=”. . .” attributes.

The XLink [XLink] and XPointer [XPointer] standards provide hyperlink functionality for

XML in a very flexible way. The references can have the following characteristics:

• They can be simple links like in HTML. These links can only point to elements, and they

can only point to elements which have had a name attached to them by the author of the

document.

• They can link to data which hasnot been prepared to be a hyperlink destination.

• Links to single characters in any PCDATA parts of the document are possible.

• Not only points inside the document can be referenced, but also regions of the document.

• Using the XPath language (see next section), points or regions in a document can be de-

scribed indirectly, for example “the second-to-last<ingred> element in the document.”

XLink specifies how to add XML markup for hyperlinks to documents. The XPointer lan-

guage, whose expressions can be included in the XLink markup, is a way of specifying points or

regions in a document.

Again, the details of the standards are outside the scope of this thesis, and not all aspects

of the following example (taken from the XPointer standard) can be explained. The example
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illustrates the use of XLink with an embedded XPointer expression (which in turn uses the XPath

language) in a “<button>” tag. A program interpreting the document could follow the hyperlink

when the button is clicked.

<button
xlink:type=”simple”
xlink:href=”#xpointer(here()/ancestor::slide[1]/preceding::slide[1])”>
Previous

</button>

XPath and XQuery As soon as XML was beginning to get used to store large amounts of

data, a task which had previously been left to relational databases, the need for an XML query

language arose. Because of the inherent differences in the way data is stored in XML documents

and in relational databases, it was not possible to adapt the standard query language for relational

databases, SQL (Structured Query Language) to XML – eventually, the W3C developed the

XPath and later the XQuery language [XQuery], using ideas from a number of competing XML

query languages.

The major differences between XPath and XQuery are:

• XPath is a subset of XQuery, and significantly simpler.

• XPath operates on a set of just four types (node-set, boolean, number, string), whereas

XQuery includes full support for XML Schema.

• Since XPath was created for integration with XLink/XPointer, its queries concentrate on

selecting a contiguous part of the document, unlike XQuery which can extract arbitrary

multiple sections of the document.

• XPath always queries only one document, whereas XQuery can process several documents.

The rest of this section concentrates on XQuery because it is part of the XL language, and so is

of greater interest for our purposes.

XQuery is a functional language whose query expressions look similar to expressions in many

general-purpose programming languages – above all, the queries are not themselves formulated

in XML markup, but in a more concise notation. (However, an XML representation for queries

has been defined by the W3C in a separate standard.) The language also supports many other

features of normal programming languages, including arithmetic, comparison and logical ex-

pressions, function calls, variables, type checking and type conversions. In addition to these, spe-

cial constructs oriented towards its use on XML data have been added, including so-calledpath
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expressions(for navigation in the document tree) and the powerful FLWR expression (named

after its keywordsfor, let, where, return) which can iterate over parts of the document and bind

variables to intermediate results.

Every construct in XQuery is regarded as an expression. These expressions return sequences,

i.e. ordered collections of zero or more values, and each of the values can either be a simple

(“atomic”) value such as an integer, or it can be another sequence, a union type, a string type, a

name type or a document node. Nodes are the most interesting type, because they allow storing

and addressing any part of the XML document tree in a very convenient way.

Here is an example for an XQuery expression. It assumes that the example document from

figure1 (page10) is available on the system under the name “recipe.xml”:

<info>

{
let $recipe := document(“recipe.xml”)
return <emph>You only need

{$recipe/ingredients/ingred[@name=”pumpkin”]/@quantity}!</emph>

}
</info>

After binding the document to the variable$recipe, the embedded path expression selects the

“ ingredients” node, then all “ingred” nodes contained in it, restricts that set of nodes to all

nodes whose “name” attribute has the value “pumpkin” (only one node remains) and finally

outputs the “quantity” attribute value of that node. The resulting output is:

<info>

<emph>You only need 1 small!</emph>

</info>

The example above uses the so-calledabbreviated syntaxwhich is designed to be similar to

the syntax of URIs. An equivalent unabbreviated syntax exists for all expressions – its longer

expressions use more descriptive names for the single parts (called “location steps”) of the path

expression. In unabbreviated syntax, the part of the above expression that accesses$recipe
would look as follows:

$recipe/child::ingredients/child::ingred[attribute::name=”pumpkin”]/
attribute::quantity
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There are steps which access the parent of the current node, the root node of the document

it is stored in, its children, descendants (i.e. all children including the subtrees accessible via the

children) and its attributes and text content.

While an XQuery implementation processes a query, it moves through the document, building

up sets of nodes for each location step. One aspect of this process to keep in mind for later

sections of this thesis is that internally, the XQuery implementation can reduce all the complex

navigation through the document to only a few simple movements in the document tree. One

minimal set of operations is as follows:

• Move forward in document order. Note that this also implicitly includes moving from a

node to its first child, since only a forward step is needed.

• Move forward to the right sibling of a node. Another way of interpreting this is that it skips

the contents of the node, moving directly to the node that follows it.

• Move from a node to its parent. The special thing about this movement is that it is the

only one that does not move in document order, but backwards, because the start tag of the

parent appears earlier in the document than its child’s start tag.

Strictly speaking, even the second of these three operations is not necessary (to skip an element’s

content, an XQuery implementation could just read all the content and ignore it), but its presence

is advantageous for performance reasons.

2.2 Web Services

A web service can be defined as the interface to some program logic, accessible over the Internet

and used for application to application communication [W3C-WS]. The program typically runs

in an environment on a server machine in which a small HTTP (Hypertext Transfer Protocol)

web server is also running. The HTTP server accepts connections and passes requests coming

from these connections on to the program. Alternatively, the program may also decide to initiate

connections itself to contact other web services. Messages exchanged between different web

services are XML-based, and include information about the type of operation to be performed by

the web service, as well as any data necessary to perform it. Usually, the SOAP protocol (Simple

Object Access Protocol) is used for this purpose.

Features of Web Services Today, web services are considered by many to be a major topic in

web-based technologies for the next years – the new web service related standards are embraced

with the same startling speed as XML. The reasons for this trend are manifold, and become

clearer when you take a closer look at the features of web services:
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• The entire communication process is based on open standards of the World Wide Web

Consortium.

• Due to the W3C’s patent policy, the chances are high that none of the technologies are

covered by patents. Thus, development costs for web services can be kept low.

• It is easy to adapt existing network infrastructure to support web services – for example,

because the protocol used for communication is HTTP, no reconfiguration of the firewall is

necessary.

• The communication can take advantage of other features of HTTP, like encrypted HTTPS

connections or proxy servers.

• Because of the use of well-known protocols like HTTP, it is also easy to make web services

accessible to many operating systems.

• Web services avoid incompatibilities between online services which use different compo-

nent services, like DCOM and CORBA. (Obviously, this is achieved by introducing yet

another standard. . . )

• They are embraced by all the major players.

Aim of Web Services The intended aim of web services is to ease the integration of publically

available services. In the same way that HTML has made information and services available

to humans(irrespective of the operating system or browser they use, or the fact that they might

be visually impaired), web services are designed to make information flow betweenprograms

easy and uniform (regardless of the operating system they run on, the programming language

they were written in, etc.). This overall goal can be broken up as follows (see also [Cerami02],

[Vasudevan01]):

• The provided service can be described accurately: Any public interface provided by the

service, including the data types it uses and signature of its methods, is described by a

common XML grammar. This description is written using the Web Service Description

Language (WSDL), another XML-based standard of the W3C.

• There is a way to publish the fact that a service is available, and to search for services.

One way to achieve this is with an on-line directory of services – the UDDI, or Universal

Description, Discovery, and Integration, is the directory currently used for this purpose,

although it is possible to introduce other mechanisms for discovery of web services.
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Figure 3: Information flow between different web services: The user’s shopping agent web service locates
the best offer and places an order.

• Once a service knows about another service, it can contact it, pass information to it and

receive an answer using standard, well-defined protocols. In practice, these protocols are

HTTP for the low-level transport and SOAP (or sometimes also XML-RPC, the XML

Remote Procedure Call standard) to pass messages from one service to another.

• Optionally, the communication can be adapted to special needs of the involved parties. For

example, if sensitive data is being exchanged, an additional encryption layer using SOAP-

DSIG (SOAP digital signature) can be employed.

Scenario For the Use of Web Services In the previous explanations, the flexibility of web

services may not yet have become apparent, since always only the communication between two

services was discussed, one “client” service sending off a request and a “server” service which

processes it. However, in fact the role of a service can change; it can sometimes contact a related

service and sometimes be contacted by it, or it can always be a server to some of the services

it interacts with, and always a client to others. Networks of web services resulting from such

combinations of several services have the potential to deal with more advanced and complicated

scenarios than the traditional client/server model.

Figure3 shows an example for the interaction between several web services. Initially, an end

user decides he wishes to find online shops which offer a certain product and to buy the article

from the shop with the best offer. By running a “shopping agent” software on his computer, the
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user starts a web service which can accomplish this task without further manual intervention:

• Compile a list of shops where the product might be available.

• Localize each shop in the list.

• Contact each shop and search for the desired product in its online catalogue.

• If the product is on offer, extract the price and shipping costs and other shipping details

– for example, the shop might be in another country and might not allow international

shipping.

• Pick the best offer.

• Contact the shop with the best offer and place an order, e.g. passing credit card information

in the process.

In figure 3, the user’s web service first uses a protocol like UDDI to inquire at a directory

service about available services. UDDI can represent information about many different aspects

of web services, including how to contact them. The answer of the directory server contains

WSDL service descriptions for two services.

For simplicity, we assume that the programmatic interface to the two online shops is identical,

so the user’s “shopping agent” web service is able to contact all of them directly in the same way.

In a more realistic scenario, the WSDL interface would be different – in that case (and unless

knowledge about the different interfaces is built into the shopping agent) it would be necessary

to make accesses to the two shops through yet another web service which specializes in “online

shop services” and acts as a proxy to provide uniform access to the shops.

After searching for the product and extracting price information, the user’s web service pro-

ceeds to buy from the second shop. In contrast to earlier queries, the order and subsequent

exchange of credit card information is protected with authenticated and encrypted protocols, e.g.

SOAP-DSIG or HTTPS.

Having received the order, the shop in turn relies on other web services to provide its own

service: First, it contacts a credit card processing company to charge its customer’s credit card,

then it sends a message to the subsidiary nearest to the customer’s address. The message specifies

what product to ship and where to send it to.

Web services are still an evolving technology, with many new, often competing protocols

being developed and presented all the time, so the overview in this section has concentrated on

the basic principles rather than detailed descriptions of the various specifications and protocols.

Hopefully, the ongoing struggle to reach a consensus about the different aspects of the technology
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will result in a set of compatible, inter-operable standards rather than a fork into e.g. a “W3C web

services” and a “Microsoft web services” world.

2.3 XL

XL is an experimental “XML programming language” that has been under development at the

chair for database systems and knowledge bases at TUM since 2001. As described in [XL01]

and [XL02], XL is a high-level, imperative, portable language. It is designed specifically for the

implementation of web services and aims to eliminate problems that typically occur when other

programming languages like Java are used for web service implementations:

• A mismatch exists between the type systems of the implementation language and of XML

Schema. Rather than using features built into the language, the programmer needs to use

additional libraries for access to XML documents, to XQuery or other XML-related tech-

nologies. The use of these libraries usually results in a larger amount of code which is more

difficult to understand.

• Furthermore, if web services access a relational database (which is commonly the case for

current web service implementations), the classical “impedance mismatch” between the

relational data model and the implementation language is present.

• Additionally, the programmer is faced with the task of mapping the XML data received by

his web service to the relational data model.

XL eliminates the need to work around these issues, making it possible for the programmer to

concentrate on the application logic instead of implementation details. As a high-level language,

it is suitable for implementing even complicated web services, while at the same time being

simple enough and easy to use to make web service development proceed quickly. It uses the

same data model as XML, so it is not necessary to convert information from one representation

paradigm to another and back all the time. XL also contains direct support for a number of

features frequently needed for the development of web services, such as logging, error handling,

session management and retry of actions after timeouts. It is a superset of XQuery in the sense

that all XL expressions are XQuery expressions – this reliance on W3C standards for important

parts of the language provides a sound basis for the higher-level constructs.

The programming work carried out as part of the diploma thesis adds support for persistently

stored values: XL variables containing any of the supported data types, including XML docu-

ments, can be written to disc and re-read at a later point in time, so their value is not lost when

the XL program terminates.
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2.3.1 Goals

[XL02] lists the following major goals which influenced the design of XL. As of this writing, not

all features are fully supported, and XL as a whole should still be regarded as work-in-progress.

Briefly, some important goals are:

• Compliance with W3C standards such as XML, XML Schema, XQuery and XSLT,

• Support for conversations between web services, i.e. “sessions” whose context is kept track

of and which can last longer than the current connection,

• Support for reusing existing web services written in other languages, and composition of

these services into a larger service,

• Support for standard features of web services, such as communication via messages and

remote invocation over the Internet,

• Portability across environments (both across operating system and across database back-

ends) and thus independence from the lower-level components of the system and the pro-

tocols/APIs (e.g. JDBC) used to access them,

• Reliance on the XML data model, and optionally strong typing,

• Special declarative constructs for frequently encountered problems; programs should be as

high-level as possible,

• Support for exceptions and exception handling,

• Support for transactions, i.e. sequences of data accesses which are executed isolated and in

an atomic way,

• Access control for all data possible, with authentication support,

• Support for automatic optimization, e.g. of database queries or of expressions/statements.

The general philosophy behind XL should become apparent from these goals: XL should

provide all the features necessary for the development of web services, and these features should

be easy to use – consequently, the increasingly complex worlds of W3C standards, databases and

application logic should be connected in an elegant way with this high-level language.
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2.3.2 Language Features

Many of the constructs in XL should be very familiar from other imperative programming lan-

guages, whereas others are specific to the programming language and geared towards its use with

web services. Based on [XL02], this section introduces the main language features, concentrating

on those that do not appear in other programming languages.

Overall Structure of XL Programs At the topmost level, an XL program is composed of one

or more web services which communicate with each other by exchanging XML messages, using

the SOAP protocol over HTTP.

Each web service is defined in a file – by convention, an.xl extension is used. Within the

file, anything following the characters “ !! ” on a line is a comment and will be ignored by the

XL parser. The basic structure of the file can be seen below, a more detailed description of the

individual parts follows:

service http://localhost:3328/ !!Service declaration with service URI

!! Namespace declarations
namespace xsd = “http://www.w3.org/2001/XMLSchema”;

!! Definitions for global variables and conversation variables
let $globalvar := 0; !! Global variable with integer value
context let $contextvar := <x/>; !! Conversation variable with document type

!! Declarative web service clauses
init initOperation; !! Name of operation to run when WS starts
conversationpattern mandatory; !!Type of communication pattern

!! Operation specifications
operation initOperation

!! Optionally, more declarations likeconversationpatternhere
body

!! Statements of the operation
nothing ; !! Surprisingly, this does nothing

endbody
endoperation

endservice

Namespace Declarations As mentioned before, the XL data model is identical to the XML

data model. Consequently, it also needs to refer to Schema type definitions in W3C specifications,

access tags defined elsewhere, etc. Just like the namespace declarations in XML documents,

namespace declarations in this section of an.xl file make entities defined elsewhere accessible
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in the program’s context, and introduce a prefix for variable names:

namespace prefix = “http://url.to.associate.with.prefix/”;

Declarative Web Service Clauses This part of the file describes general properties of the entire

web service in a sequence of declarations. They specify the reaction to certain situations (such

as the web service being invoked with a non-existent operation name, the violation of invariants

or a modification to a variable that is being “watched”), the way to initiate conversations, and the

behaviour when executing operations. A variety of different declarations are supported by XL –

the complete list is available in [XL02].

An interesting aspect controlled by web service clauses is the concept of conversations. A

conversation can be viewed as a “session context” which is valid over the course of more than

one exchange of messages between two web service instances. This context is the same for

all sent and received messages which contain an identical conversation URI in their envelope.

Theconversationpattern declaration allows the programmer to select between several differ-

ent communication patterns, for example “this operation always requires a conversation to be

present” or “if no conversation opened yet, create a new one”. Usingconversationtimeout , it

is possible to have a conversation session expired (i.e. closed automatically) a certain amount of

time after the last message exchange.

Global Variables and Conversation Variables The example above already showed that there

are several ways to declare variables inside the web service declaration:

let integer $globalvar := 0; !! Global variable with integer value, integer type
context let $contextvar; !! Conversation variable with unspecified type, uninitialized

In general, a variable declaration begins withlet or context let , optionally followed by a

type for the variable (integer in the first line above), and then by the variable name. In XL,

variable names always start with a dollar sign. It is possible to initialize the variable with a

subsequent “:= $anyExpression”.

The semantics of global variables should be obvious: There is one instance of the variable,

which is accessible from all operations in the web service. Typically, this will be some kind of

“database variable” in which the web service stores larger amounts of data.

On the other hand, in the case of conversation variables one instance of the variable exists

for each conversation. When the conversation opens, XL creates a new instance for each such

variable and initializes it. Subsequent calls to other operations access this particular instance of

the variable only if the operation call is made as part of the same conversation. As soon as the

conversation terminates, its variables are also deleted.
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Expressions All expressions in XL are XQuery expressions, as described in the XQuery W3C

standard [XQuery] and also on page18. This implies that they are based on the XML data model

and that unlike with most other programming languages, powerful means to navigate through and

search in XML documents are available as built-in XL language constructs.

Statements Being an imperative programming language, XL supports the usual set of standard

control flow statements. In the examples below,$expression stands for any XL expression,

$boolExpression for an expression which evaluates to a boolean value, and any other single

statement can be used instead of thenothing statement – if several statements should be executed

instead of just a single statement, they must be grouped in a block, bracketed bybegin andend .

if ($boolExpression) then !! Standard if-then-else construct
nothing

endif
else !! The else branch is optional

nothing
endelse ;

switch !! Analogous to the Java/Cswitchstatement
if ($boolExpression1) then nothing end
if ($boolExpression2) then nothing end
. . .
default nothing end !! Default branch is optional

endswitch ;

while ($boolExpression) do
nothing !! Executed as long as expression is true (≥ 0 times)

endwhile ;

do
nothing

until ($boolExpression); !! Loop back todoas long as expression is false

Additionally, the language supports afor -let -where -do statement similar to the FLWR (for -

let -where -return ) statement in XQuery.

Local variables can be created with a simplelet statement, which inserts the new variable

into the innermost block. Modifications to variables are possible either by overwriting them, also

with let , or by using one of the following five types of statement which update XML documents:
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!! Insert new node as last child of existing node, or as new left/right sibling
insert $expression1 into $expression2;
insert $expression1 before $expression2;
insert $expression1 after $expression2;

!! Delete node and all its children from document tree
delete $expression;

!! Move node from one place in the document to another
move $expression1 into $expression2;
move $expression1 before $expression2;
move $expression1 after $expression2;

!! Replace node with another node
replace $expression1 with $expression2;

!! Rename a node or an attribute
rename $expression as “new-name”;

The support for exceptions is similar to that in conventional programming languages: Using

the throw statement, an exception is created. The exception can be any XL expression, it is fre-

quently an XML document with a name for the error and an error message. To act on exceptions

thrown during the execution of some statements, these statements are enclosed intry . . .endtry
followed by a

catch $variable do . . .endcatch

clause which handles the error. Unlike with other programming languages, only a singlecatch
clause is permitted.

Further statements supported by the language include logging statements (logpoint ), waiting

for events (wait on event ) or changes in variable values (wait on change ) and periodic retry

of statements (retry ). Statements can be executed in parallel or in non-deterministic order, by

separating them with characters other than “ ; ”.

Operations Since XL is not object-oriented in the sense that Java or C++ is, the basic unit of

code is called “operation”. An additional property of operations is that they can have at most one

input parameter and one return value, available through the$input and$output variables.

There is no simple function/operation call statement, only a construct to invoke other web

services – but nothing prevents a web service from calling itself this way. Two variants of the

web service invocation statement exist, a synchronous one which waits for the answer and stores

it in a variable, and an asynchronous one which does not wait for an answer, instead it is possible

to specify an operation to call when the answer is finally received:
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!! Synchronous, optionally record answer in a variable
$expression – –> http://service.com::operationName;
$expression – –> http://service.com::operationName – –> $variable;

!! Asynchronous, optionally call function with result
$expression ==> http://service.com::operationName;
$expression ==> http://service.com::operationName ==> operationName;

An operation can be paused for a while using thesleep statement, and terminated at any

time with thehalt andreturn statements – the latter passes the content of the$output variable

back to the caller whereas the former terminates the operation without passing back a result. In

the absence of either of these, XL returns the value of$output to the caller when the end of the

operation body is reached.

2.3.3 Current XL Implementation

Because a significant portion of this thesis concerns itself not with just describing XML storage

techniques, but with actually implementing them for XL, it is worthwhile also to take a look at

the existing XL implementation.

The implementation has been under development for more than 1.5 years, and has reached a

state where it is usable for small and medium-sized applications. The XL parser and interpreter

is written in the Java programming language. As of this writing, it is comprised of about 150 Java

source code files containing 23000 lines of code. This excludes the code for XQuery expressions,

which was not developed at TUM, but is developed separately by XQRL, Inc.

Features A large number of the goals and features described in the previous sections is func-

tional, including the following:

• Through XQRL’s XQuery implementation, XL is compliant with the XQuery standard.

• Communication with XML messages is possible, web services can be called over the In-

ternet by connecting to the built-in HTTP server.

• Full functionality for variables, whether global, operation-local or conversation variables.

• Most types of statements are implemented, including all the more frequently needed ones.

In addition, as part of this thesis, persistence for XL global variables and conversation vari-

ables and independence of any database back-end used for their storage has been implemented.

Apart from global/conversation variables, this also affects large temporary variables, which can

be swapped out to disc if they get too large to be stored in main memory.
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Missing Features The following features are still missing, incomplete, or under development.

However, it should be noted that most of these do not impair the usefulness of the language too

much:

• Support for strong typing is missing.

• The following statements are unimplemented:switch , do . . .until , for . . .let . . .where ,

logpoint , return , halt , sleep , wait on . . . , retry .

• Transactions are not supported at the language level (e.g. grouping severalinsert state-

ments and having them executed atomically).

• There are no built-in features related to security, such as encryption, authentication or ac-

cess control.

• The implementation requires that XQuery expressions are enclosed in backslashes, e.g.

“ let $x := \5\;”

• Automatic optimization of XL programs is under development. During the time that this

thesis was written, this area saw heavy development efforts, with two other diploma theses

working towards allowing optimization by partitioning services across several machines,

and by optimizing the XL programs themselves.

The reason why XL would probably not turn out to be suited for large programs at the moment

is that its performance is too low in some areas. Additionally, the XL code is poorly commented

and not organized very well, which makes XL development and improvements difficult.
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3 Storing XML Data

How do you store XML data? The answer to this question seems obvious at first: As a simple

text file – after all, the XML standard itself includes a description of how to represent XML

documents as a stream of characters in ASCII or Unicode text files.

Thus, one would be tempted to choose a flat text file for storing XML documents and not

spend further thoughts on the issue. However, it turns out that while this “standard” way of

storing XML has advantages, it becomes infeasible when using large documents and regularly

making changes in them.

Since the aim of this work is to find efficient ways of storing and updating XML data, with a

special focus on implementing such a storage system for XL, this section discusses in depth the

various different ways to store XML:

• You can store the data in a plain text file, as specified in the XML standard. (Section3.1)

• Instead, you can also apply some of the knowledge about the file’s formatting and store it

as a stream of tokens in the sense of the definitions in section2.1.2. (Section3.3)

• Going one step further, you can also observe how tokens are nested in a well-formed XML

document, and store the document as a tree-like structure. (Section3.4)

• Alternatively, the XML document tree can be represented in relational databases with the

use of a variety of mappings, without interpreting the data as a stream of tokens. (Sec-

tion 3.5)

After looking at the pros and cons of each of these solutions to the XML storage problem in

sections3.1 to 3.5, section3.6 provides an overview of ways to access XML data more quickly

with the help of special index structures.

When we consider how to store XML data, an important aspect is that the data must also

be easy to update. Section2.3.2describes the XL document modification statements (insert ,

delete , move , replace , rename ) on page29. A future version of XQuery which allows

document updates will contain a very similar set of expressions.

Since the predominant way of reading (and in the future updating) XML is XQuery, the

following sections will often discuss details of the storage approach with regard to how easily

data that is stored this way can be processed by an XQuery engine.
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3.1 Flat file

Using a normal text file to store an XML document can be regarded as the standard way to store

XML. In fact, the format defined in [XML ] and also detailed in section2.1 is the only official

way to represent XML. This is also the case why this format is used in XML-based communi-

cation protocols like SOAP or UDDI, despite concerns about waste of bandwidth because of the

“verbose” nature of the representation as ASCII characters.

A flat file database can consist of a single file which contains all data that an application

accesses, or it can come as several files, each of which is a complete XML document. In the

latter case, the application must also manage the directory structure and the filenames used for

the individual files.

In the literature related to XML databases, the “flat text XML database” is sometimes not

even mentioned at all as a way of managing XML data, despite a number of obvious advantages

(see also [Graves02, p. 18]):

• The database is often far smaller than an equivalent representation of the data that uses a

different type of storage. Typically, these other representations introduce overhead which

is larger than the overhead caused by the verbose XML format.

• An XML file is easy to create, since the data only needs to be written to disc in the standard

format.

• An ASCII (or Unicode) file is also easy to update, in the sense that the only required

operations to be supported are insertions and deletions of characters from the file.

• This is the only type of storage which allows a human to edit the document with standard

tools, i.e. a normal text editor.

• Since XML-based communication always uses this format, there is no need to convert the

data before sending it to another application.

Nevertheless, of course the tendency of XML database technology to ignore this type of data

storage is justified, due to several serious disadvantages:

• Modifying the database is very expensive. Today, operating systems do not normally sup-

port the insertion and deletion of data in the middle of a file, so an implementation would

have to re-write all data after the point of insertion/deletion in the file. With databases

whose size ranges in the gigabytes or even terabytes, this is prohibitively slow.
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• There is no way to navigate quickly through the document – if the program that accesses

the file is not interested in the contents of an element, but wants to e.g. “jump” directly

from the start to the corresponding end tag of an element, there is no way to achieve this;

the whole content of the element must be read. Again, this makes flat text files unsuitable

for very large databases.

• Many features commonly needed for databases are not present, including ACID properties

(accesses are atomic, consistent, isolated and durable), transactions, access control, recov-

ery and many more. Only for very simple applications, the operating system’s abilities in

this area (file locks, file access properties) might be sufficient.

In the light of these arguments against flat file databases, we have to conclude that they are

not normally of interest for the efficient storage of XML data; they do not only cause problems in

the case that the file needs to be updated, but read accesses are equally problematic, unless they

happen to read the entire file sequentially.

All in all, such text file databases can still be useful if the XML documents are very small,

and often accessed as a whole. Additionally, some of the approaches discussed in section3.6

allow the creation of index structures which can be stored separately from a plain-text XML file

and which contain offsets into the file – as long as the file changes never or only seldom, these

indexes can significantly speed up read accesses.

As we have learned in section2.3, the XL variables which we want to store on disc in the

practical part of this thesis can both get very large and are also modified frequently, for example

with “ insert ” or “ delete ” statements. This makes storage as flat text files an unlikely candidate

for the XL storage subsystem.

3.2 Single Tokens

When looking at an XML document in its plain-text form, it quickly becomes obvious that as

soon as we abandon the thought of also maintaining the database in this plain-text form, we can

save a significant amount of complexity in the code that handles the XML data. The reason

for this is that as long as the standard text format is used, the program must repeatedly read in

character by character and interpret it, for example to distinguish between the different types of

tags.

Furthermore, when the document is not saved in text form, there is no necessity to store

the tokens immediately one after the other – a positive aspect, because in the previous section,

storing the parts of the document adjacent to one another was identified as a cause of problems

when making modifications to the document.
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This section gives an overview of different ways to store single tokens on disc, particu-

larly concentrating on using existing solutions like a relational database system. In sections

3.3and3.4, these ideas will be used to build more complex on-disc data structures.

3.2.1 Tokens as Records

Modern database systems can be divided into several layers, each of which deals with the stored

data in a more abstract way: At the lowest level, the data is handled in pages whose size is de-

termined by the hardware the database system runs on. The layer above it provides support for

records; each record is identified by a record number and can hold a number of bytes. Usually,

there is support for records which can get larger than one page. Finally, further layers provide

platform-independent support e.g. for storing the data types supported by SQL, or for the trans-

formation of high-level SQL queries into accesses to the lower layers.

Assuming that we have access to the “record” layer of a database system, it is possible to store

an array of bytes in a database and subsequently identify that new record by a record number that

the database system generates. Of course, similar functionality is also available at a higher level

(see section3.2.3below), but much of the additional functionality provided by the upper layers

is not useful for our purposes – on the contrary, it only introduces additional overhead and makes

the operations slower.

The record layer has several important properties: It is possible to store arbitrary data as a

sequence of bytes, the resulting record is uniquely identifiable via its record number (which never

changes), and there is usually no limit to the size of a record. This way, each token of an XML

document can be stored as a record, and references to tokens take the form of a record number.

The sequence of bytes that represents the token will typically include the following fields:

• Token type (a code, for example for “begin element”, “end attribute”, “PCDATA”)

• Additional data for this type of token. This is dependent on how exactly the tokens are

stored (see section3.3below), but could include things like the tag name of an element, or

type information about it.

• Bookkeeping information, for example the record numbers of other tokens, such as the

record number of the token that follows this token in the document. Again, this is discussed

below in detail.

Unfortunately, many database systems do not give access to the record numbers they use for

storing the data, which can make the implementation of this type of token database impossible.

One example for a system which does allow access to its “logical record numbers” is Berke-

ley DB, a low-level library for creating embedded databases.
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3.2.2 Tokens as Objects in an OODBMS

In principle, an object-oriented database management system (OODBMS) is a good way of stor-

ing the tokens: Each token is represented by an object which is stored persistently in the database.

References to other tokens can be implemented directly as object references without having to

worry about finding a representation for them, such as the record numbers of the previous section.

Storing tokens this way is straightforward: After choosing a data structure, for example a

linked list, the data for each token is stored in an object which is subsequently written to disc by

the OODBMS.

The disadvantages of using an object-oriented database are primarily non-technical:

OODBMS have a smaller market share, different companies’ implementations are often not com-

patible with each other (so large applications which use a particular OODBMS will be dependent

on the company providing the database system), and existing applications are usually not written

for object-oriented, but for relational databases.

3.2.3 Tokens as BLOBs in an RDBMS

Apart from storing tokens as records and as objects in an object-oriented database, another way

to maintain a token database is to use a relational database management system (RDBMS) and

to map the data to one or more relations whose tuples describe the tokens.

This solution has several practical advantages: Relational databases are in widespread use,

there is a range of both commercial and non-commercial products to choose from, and it is

possible to use them from almost any programming language. Furthermore, by now even the free

solutions offer advanced features like transactions, recovery and concurrent access, all of which

can be put to good use by a token storage system.

Unfortunately, using relational databases for our purposes is made difficult by the fact that

SQL, the structured query language supported by these systems, only includes a limited number

of simple data types, and that the layout of all tuples in a table must be identical, whereas the

layout of the tokens we want to store in the table differs from token to token – for example,

a “begin element” token might include a token name, whereas other tokens do not. Thus, if

only the standard SQL types are supported, an RDBMS is not very well suited for storingsingle

tokens. Section3.5discusses ways of storing theentire XML documentin a relational database,

but the ideas in that section are based on a completely different approach to representing the

XML document, and do not break it up into tokens.

Storing tokens is much easier if the database supports a common extension to SQL, in the

form of the BLOB data type (binary large object, also CLOB for DB2 or LONG for Oracle).
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Essentially, this allows the user to store sequences of bytes in the database, and as implied by the

name, the size of these sequences is not limited to the size of one page.

Using the BLOB interface, the data for a token can be stored in the database in the same way

as described above in section3.2.1. The only difference is that the relational database system

does not give access to the record number under which the BLOB with the token contents is

available, so we need to create an extra “token ID” in the form of an integer to index the tokens.

The resulting relation to be created in the RDBMS is simply a mapping from token ID to token

data:

tokens: id:integer → data:blob

Generating a new token ID can be achieved by taking the maximum token ID of all tokens stored

so far, and increasing it by one.

This way of proceeding is largely identical to the solution described in section3.2.1with its

direct record access. In particular, it should be noted that many of the advanced features provided

by relational databases cannot be fully exploited:

• The use of a BLOB for the token data makes it impractical to create an index over the

token data or to have the RDBMS search through it, which means that queries like “return

all tokens which begin an element named<tag>” cannot be performed by the database,

but must instead be implemented by the code which manages the token database.

• Similarly, the choice of a BLOB makes it impossible to use the RDBMS directly for

queries. For example, the query “return all children of this element” would need to ex-

amine whether a “parent” field in the BLOB has a certain value.

To alleviate at least some of these problems, a slightly different approach can be taken: All

the fields stored inside the data BLOB which do not vary from token to token, such as references

to the previous or next token in a token stream, can be stored as separate fields. All other fields

still need to be stored in a BLOB. The following schema would allow us to use the RDBMS to

search for all children of a node, by examining theparentid field:

tokens: id:integer → previd:integer, nextid:integer, parentid:integer, data:blob

Other attempts to get rid of the BLOB and store everything using SQL’s basic types mostly

result in an awkward and inconvenient organization of the data:

• The table of tokens could include fields for all possible data types. For example, it could

include a “token name” field which is set to the token name for “begin element” tokens,

and to NULL for all others. But apart from wasting a lot of space for storing the NULLs,

this can also easily lead to inconsistencies when updating the table.
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• We could introduce separate tables for each kind of token, i.e. one “begin token” table, one

“XML comment” table, etc. However, this would mean that lookups for a token would

have to search in all of the tables if the token type is not known. Furthermore, as we will

see in a later section, the number of such tables would be quite high because of the large

number of primitive data types that an XQuery implementation must support.

• Similar to the point above, we could introduce separate tables for each token type, but not

store all of the token data in them, only the part of it that is specific to this type of token. In

other words, the token ID can be used to access the common token data in the main token

table, and an additional “data ID” then identifies an entry in one of the other tables:

tokens: id:integer → previd:integer, nextid:integer, parentid:integer,
dataid:integer

begindata: dataid:integer → . . .
commentdata: dataid:integer → . . .
. . .

Apart from the fact that the additional step of indirection is not as efficient as direct access

to the data, this approach still suffers from the fact that one field (dataid) is an index

into one out of a range of other tables. On the other hand, it is better than the solution

proposed in the previous paragraph as long as only the “common” data fields of the tokens

are accessed.

In summary, the use of a relational database system to store tokens is a possibility, but im-

plementing it does not have any significant advantages over a token storage system which uses

direct record access – it is even to be expected that using the high-level interface to the database

system will only introduce additional overhead.

3.3 Token Stream

To avoid repeated parsing of the characters in the document for every access to it, we can perform

the parsing only once and store the data as a stream of tokens, turning these back into characters

when delivering them to the application again. This way, in the frequent case that an XQuery

implementation needs to search through a significant portion of the document, but only returns

very little data to the application in the end, it can take advantage of the faster access times of the

pre-parsed token data.

Section2.1.2describes how an XML document can be interpreted as a stream of tokens. The

following sections discuss alternatives when describing a document with tokens and possible
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improvements to the token stream format, and list a number of different data structures which

allow for efficient storage and retrieval of the tokens.

3.3.1 Mapping XML Documents to Token Streams

To repeat the points made in section2.1.2, here is the list of tokens that the implementation has

to distinguish between:

• Processing instruction

• Comment

• Start tag (including its attributes)

• End tag

• Textual content (PCDATA for entity text content, CDATA for attribute values)

Note that a special empty-element tag isnot needed – as mentioned before on page12, an

XML parser need not distinguish between an empty-element tag and a start tag that is immedi-

ately followed by an end tag. Thus, a straightforward opportunity to reduce the complexity of any

code that deals with the token stream is to convert empty-element tokens to start tags followed

by the respective end tags during stream creation.

The document’s text data is represented by special tokens for PCDATA and CDATA. When

turning the text into corresponding tokens, there are two different ways to proceed:

• Every text token contains just one character. This has the advantage that operations like

deleting parts of the text or adding characters to the end are simple, and that tokens stay

small. The disadvantages are the larger number of tokens, leading to a significant amount of

additional space as well as runtime overhead, and the fact that an XQuery implementation

which is not interested in the text cannot just skip to the end, but has to access the tokens

character by character to reach the end.

• Every text token contains all the characters between the tag that precedes and the tag that

follows the text. In this case, adding new text to an existent text token becomes slightly

more difficult, and the maximum size of the text data in the token is unlimited, which

requires special attention from any program processing it – for example, the program may

not be able to load all of the token into memory simultaneously. Additionally, an XQuery

engine must take care always to merge two adjacent text tokens into one. On the other

hand, storing text this way results in a lower number of tokens and a correspondingly lower
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amount of overhead to manage them. Furthermore, if an XQuery engine is not interested

in the text data, it can just move to the next token to skip all of the text.

The XQuery standard implicitly encourages that text data is stored and addressed as a single

entity, e.g. by mentioning the necessity to merge adjacent text tokens – all in all, storing text

as one big token should thus be considered a superior solution to the alternative of storing it

character by character.

3.3.2 Variant Mapping Schemes

Using the tokens above, any XML document can be converted to a token stream and vice versa

without loss of information. However, in practice it makes sense to introduce additional tokens,

for instance to avoid that some types of tokens contain too much information which is better

handled separately as a series of several tokens. In particular, start tags can contain an arbitrary

number of attributes, so they can get very large. The following additions to the above list of token

types seem worth considering:

• An “attribute token” can be introduced. It appears between the start tag and end tag of the

element to which the attributes belong – to ease processing the token stream, it is advisable

to demand that attributes always appear immediately after the start tag token, before the

tokens for the actual content of the element.

• Both element names and attribute names use the same type of string to store the name; in

the XML specification, the grammar non-terminal that refers to them is called aName.

Because of the similarity in handling of these two types ofNames during XQuery query

processing, it may be advantageous not to include this name information in the respective

start tag or attribute token, but as a separate “QName” token which appears after the token.

• To make processing of elements and attributes still more uniform, it is also possible to

represent attributes as separate “begin attribute” and “end attribute” tags which enclose the

attribute’s name and value.

• Finally, while XML itself treats all data as characters, making it possible to use this rep-

resentation for all of the document, [XMLSchema2, 3.2] introduces a number of primitive

data types. An XQuery implementation that adheres to the type checking rules laid out in

the XQuery standard has to store type information for every element, so it could theoreti-

cally deduce the type and convert the PCDATA to the appropriate primitive type on every

access. Still, for improved performance it will typically use a special token for some or

all of the primitive types. They are:string, boolean, decimal, float, double, duration,
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dateTime, time, date, gYearMonth, gYear, gMonthDay, gDay, gMonth, hexBinary,

base64Binary, anyURI, QName, NOTATION.

3.3.3 Data Structures

After a look at the different XL document modification statements on page29, we can see that

the data structure we use for storing the token stream should have efficient support for insertion

and deletion of an arbitrary number of tokens into/from the stored stream. “Efficient” in this case

means that we do not want the cost of insertion/deletion to grow proportionally to the number of

tokens that follow the insertion/deletion point in the document, as was the case when storing the

XML document as a flat text file. Instead, the cost should only grow (roughly) proportionally to

the number of tokens that are inserted or deleted. With this limitation in mind, there are several

different data structures that can be used:

Singly Linked List of Tokens The token stream is represented as a list of token objects that are

chained together in document order with a “next” reference which for each token points to the

token that follows it. When an XQuery engine requests the token stream, the “next” references

are traversed and the tokens returned in the right order. When inserting or deleting tokens, only

a few “next” references need to be modified. However, when using this data structure, insertions

and deletions can be problematic because to perform them, the XML storage system needs to

know the token thatprecedesthe point of insertion/deletion to update its “next” reference – the

XQuery implementation must be able to provide this token.

It should be noted that the “references” used to retrieve tokens are not Java-style references

or C-like pointers, but references to on-disc items, as detailed in section3.2.

Doubly Linked List of Tokens As above, but the data for every token contains a “previous”

as well as a “next” reference. The presence of the “previous” reference makes it much easier to

perform insertions and deletions in the document data, since e.g. a reference to the first token to be

deleted is sufficient to perform the deletion. On the other hand, the “previous” references take up

additional storage space. Just like for singly linked lists, the cost for inserting or deleting tokens

only grows proportionally to the number of tokens inserted. Most of the time, a doubly linked list

will be necessary to support modifications to the token stream, because XQuery implementations

will only be able to provide e.g. the token to delete, not the one that precedes it.

Doubly Linked List of Chunks of Tokens In order to reduce the amount of bookkeeping

overhead and thus to achieve a bigger storage capacity as well as improved access times, it is

possible to store many tokens in one “chunk” without extra “previous/next” references. Only
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Figure 4: B+-tree with 8 tokens, indexed with integer keys. Even though no tree reorganization is nec-
essary, inserting a new token after token 5 is expensive because tokens 6, 7 and 8 must be
renumbered.

each chunk of token data contains two references to the previous and next chunk. The pros and

cons of such a solution are discussed separately in section3.3.4 – generally speaking, it can

result in improvements, but also implies an increased complexity of the code that handles the

token stream.

B+-Tree of Tokens Finally, the token stream can also be stored in a B-tree or B+-tree. When

using it, tokens which are adjacent to each other in the stream should also be adjacent to each

other in the tree – this way, a significant increase in the speed of sequential reads can be expected.

Since one of the main ways of traversing the tree will be to read the elements in the order they

appear in the tree, the normal B-tree is not as well-suited as the B+-tree – with the latter, the leaf

elements are chained to each other using “previous/next” references, making a sequential read of

the token stream as efficient as with a linked list. Additionally, data is not stored in internal nodes

of the tree.

When using a B+-tree to store the tokens, the question arises what to use as the key value of

the tokens. A first approach which gives the desired result of making tokens appear in document

order in the tree would be to use an integer ID and to keep increasing its value for each token

that is appended to the token stream. Unfortunately, this only works as long as no tokens are

inserted in the middle of the document, because the key values of the inserted tokens need to be

larger than the key value of the token that is to precede them and smaller than that of the token

that follows them. For example, when trying to add a new token after token 5 in the (2,3) tree

in figure4, there is no choice but to insert the token as the new token 6, and to increase the key

of the old tokens 6, 7 and 8 by one. However, the complexity of this solution is not acceptable:

Every token after the point of insertion must be modified – and this has to be done even though
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the B+-tree itself does not require any reorganization! Thus, an insertion operation is in O(n),

wheren is the number of tokens in the document.

After observing this problematic behaviour, the next idea is to make the renumbering of

tokens happen as seldom as possible. A simple way of achieving this is to allocate the integer

token numbers “sparsely” at first, for example as 2, 4, 6, 8, 10,. . . then, when a token is to be

inserted after token 6, no renumbering is necessary.

On second thoughts, however, this does not necessarily result in any increase in efficiency.

Even if tokens were later inserted exactly in such a way that they would fill in the as yet un-

allocated token IDs, the frequency of renumbering operations would still only be reduced by a

constant factor, which means that insertion operations are still in O(n). Furthermore, it is un-

likely that insertions will happen in such a way that even this factor is reached, because of the

way XML documents are usually built up by an application: First, the application creates an

almost empty document, e.g. just a start tag followed by an end tag, then it keeps inserting new

elements before the end tag. This means that the “spare room” for IDs between the end tag and

the token before it is always used up quickly again. On the other hand, with this type of access

pattern (modifications near the end of the document), the renumbering operation is cheap, so the

overall performance of the data structure might be acceptable.

After these observations, it is necessary to take a step back and to reconsider the choice of

an integer as the key for tokens. Clearly, it is not possible to store monotonically increasing

key values with each token without having to perform a potentially very expensive renumbering

operation from time to time. The goal of storing the tokens in document order in the tree could be

abandoned, but the result would be identical to accesses via logical record numbers as described

in section3.2.1.

However, it is possible to achieve the desired properties of the data structure by modifying

it slightly: We omit the key value of the tokens altogether, to avoid the problem of having to

renumber the keys. Of course, a new problem is introduced at the same time – how can you

specify the location of a read or modification without specifying a key value? The solution is not

very complicated if only XQuery operations are to be made possible on the stored token stream: It

is sufficient to implement support for a cursor, a “pointer” into the tree which can be moved from

one token to its immediately preceding and following neighbours. An XQuery implementation

always has to navigate through the document to find the destination of an insertion (or whatever

operation has been requested), so the cursor can be moved to the right position at the same time.

Internally, the cursor can represent the position in the tree using references to the chunk of data

the token is in, and its position within its chunk.
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Figure 5: By going upward from two leaves in the B+-tree, we can determine which one appears earlier.
The cost of this operation is O(logn) if n is the number of leaves in the tree.

Once the position of an insertion and deletion has been given with the help of a cursor, the

rest of these operations uses the same algorithm as the original B+-tree.

The time taken for insertion and deletion of a token in a B+-tree is proportional to the loga-

rithm of the number of elements in the tree – it is not constant like with a linked list. However,

this slightly worse complexity only occurs when making modifications, which are fairly rare for

typical access patterns (a commonly cited rule of thumb is that 80% of all accesses are read

operations). Furthermore, it is outweighed by a number of pleasant properties of the B+-tree:

• Tokens which are next to each other in the token stream are also stored next to each other on

disc, i.e. in the same chunk. When using the tree to store the tokens of an XML document,

this is even more of an advantage than with other types of data, because sequential reads of

shorter or longer parts of the document are very common.

• The B+-tree is optimal for sequential reads, due to the way the leaf elements of the tree

reference each other in a linked list.

• Given two cursors pointing into the tree, it is a quite cheap operation (O(logn) if the tree

containsn tokens) to find out which of the two is nearer to the start of the token stream.

This may be of interest for some implementations of an XML storage system because it

can be used to implement the “is in document order” comparison of XQuery.

To compare two tokens, we store a reference to the parent chunk for each chunk in the tree,

and then later move upwards from the leaves corresponding to two tokens which are to be

compared. As illustrated in figure5, after zero or more upward steps to the parent of the

44



3 STORING XML D ATA 3.3 Token Stream

Figure 6: To find the position of the marked leaf in the tree, each chunk entry needs to record the number
of leaves stored “beneath” the entry, so we can go upward from the leaf, accumulating the left
siblings on the way. In this example, the marked leaf has position(1+1)+3+5 = 10, i.e. it is
the 10th entry in the tree, counting from zero.

current chunk, the paths from the two tokens end up in the same chunk. At this point, it

can be determined which of them appears earlier in the document by searching through the

child references of the current chunk and finding out which one of the two paths reached it

via an earlier child.

• With an additional small modification to the data structure, the cost of larger numbers of

these “in document order” comparison operations (e.g. while sorting tokens in document

order) can be reduced further. The idea is to find out the absolute position of tokens in the

tree with a cost of O(logn). After that, the “in document order” comparison is reduced to a

single integer comparison of the two token positions.

In order to allow the position of a leaf in the tree to be determined, the number of tokens

which is stored in a sub-tree is stored alongside the reference to the chunk that represents

the top-level node of that sub-tree (see figure6). Later, we move upwards from the token

whose position must be found and for each chunk on the way to the B+-tree root accumu-

late the number of tokens in the siblings to the left of the current chunk. Once the top-level

node is reached, the position of the token is known.

This modification to the B+-tree has the disadvantage that an update always “ripples up-

ward” from the inserted value to the very top of the tree, and never stops earlier, because

the token count for each chunk must be updated. This means that the tree root has to be up-
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dated on each insertion/deletion, which can adversely affect the performance during many

concurrent modifications to the data.

• The same modification of the data structure also allows the retrieval of the token at any

fixed position in the document, e.g. “return the 325th token in the document”. Whether

this feature is useful depends on the application, but it could be used to represent pointers

to tokens in a much more compact way than with cursors. Obviously, the positions of some

tokens change after an insertion or deletion, so the application either needs to take this into

account or consider the positions invalid after a modification.

The reasons why the last modification above was discussed is that the XQuery implementation

by XQRL, Inc., which is used for the practical part of this thesis, by default likes to attach a single

integer ID to each “begin element” or “begin attribute” token and later uses these to sort tokens in

document order. Another thing to note about this modification is the fact that an implementation

of it is available in the popular Berkeley DB database library, in the form of its “recno” access

method with mutable record numbers.

A final aspect of storing an XML document’s tokens in a B-tree has not yet been looked

at: Should the leaves of the tree just contain record numbers which identify the stored token,

or should the whole token be stored in the leaf chunk? In the interest of efficiency, it would be

desirable to eliminate the additional indirection through the record number and to directly store

the token data in the leaf chunk, but as we have noted earlier, the size can differ a lot from token

to token, and some tokens might even get larger than the size of the whole chunk. Consequently,

it is impossible to store whole tokens as the leaves – however, depending on the access patterns,

it might be a good compromise to store some basic data (token type, references to other tokens)

in the tree leaf, and reference the rest (in particular PCDATA and element/attribute names) in an

additional record.

3.3.4 Granularity of Token Storage

In the previous sections, solutions were outlined for ways to store token streams in databases.

In those sections, focus was primarily on coming up with data structures which allow efficient

insertion and deletion of tokens from the middle of a document. This section, while not giving

up the goal of efficient modifications, instead concentrates on reducing the overhead introduced

by the data structures.

As an example, consider storing a simple “end element” token. Apart from the fact that the

token has the type “end element”, no further information needs to be stored, so theoretically, a

single byte is sufficient. In comparison to this, the overhead of storing the byte can be enormous:
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Assuming that logical record numbers are only 32 bits wide (64 bits will often be a more realistic

value) and that a doubly linked list is used, 8 more bytes of data are added to the token. The

more elaborate data structures described in section3.4would add yet another 4 or 8 bytes to this.

Finally, if the token is stored in a typical record-based database, another 2 bytes are used up for

the offset of the tuple within its page, and another 12 bytes or more per record for the mapping

of logical record numbers to locations on disc (i.e. segment, page number within segment and

tuple number within page). Further overhead, caused by other data structures that the database

maintains and by fragmentation, is more difficult to measure – but even when ignoring this, the

overall cost of storing a single byte amounts to 31 bytes or more!

Reducing Overhead by Increasing the Storage Granularity There are two aspects to reduc-

ing the amount of space taken up by an XML document in the database system:

• Do not store single tokens in the database, but chunks of tokens. Then, instead of a doubly

linked list of tokens, only maintain a doubly linked list of chunks of tokens.

• Create data structures to manage these chunks of tokens, which permit insertions and dele-

tions anywhere in the chunked data.

To remove as much about the XML storage system’s overhead as possible, we eliminate the

“previous” and “next” references between individual tokens. The fact that a token no longer

corresponds to a record also means that it is no longer necessary to create a record number for

each token, and thus to maintain a large index of record numbers. Instead, many adjacent tokens

are combined in one large chunk of data, and only the chunks are linked to each other with

“previous”/“next” references.

Each chunk can only be read from the beginning; to access the contents of a token in the

middle of the chunk, the data of all tokens before it must be decoded at least partially. The idea

about using chunks is that performance is unaffected or even improved for the very common ac-

cess pattern of a sequential read of the token stream. On the other hand, other types of operations

become less efficient and more complex to implement:

• Insertions may cause the chunk to become too large, so it may have to be split into several

chunks.

• Similarly, if many deletions take place, the chunks could become too small, so the benefits

of packing many tokens into chunks would be lost. In this case, several smaller chunks will

have to be combined into one larger chunk.
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• Moving backwards in the stream is not possible. This is usually not too much of a problem,

because XQuery does not require backward movement as long as the XQuery implemen-

tation keeps track of tokens’ parents.

• It becomes difficult to generate “logical record number” style unique identifiers for tokens

by which you can find their position in the stream again later. The main problem is that the

physical position of the token (chunk number, position in chunk)cannotbe used for this

because it changes as modifications are made to the chunked stream, and a logical identifier

shouldnot be used because the mapping from logical token ID to physical token position

would re-introduce the overhead we are trying to minimize by storing the tokens in chunks.

Unfortunately, the data structures described in section3.4need such identifiers, for exam-

ple to store in each “begin element” token a reference to the corresponding “end element”

token.

There is another problem that needs to be dealt with: As mentioned before, some tokens

(notably PCDATA tokens, but also comment tokens, theQName tokens that hold the names of

elements, etc.) can get arbitrarily large. If they were stored “in-line” in the normal token data,

a difficulty would arise: Some chunks of token data could get very large, which might conflict

with limits imposed on the chunk size by the data structures in use. (This is the case with the

solutions described below.) The only workaround for this would be to allow splitting the data for

a single token across several chunks, which, while not impossible, would considerably increase

the complexity of managing the chunked token stream.

Consequently, it is advisable not to let single tokens get very large. A simple solution which

ensures this stores the data of PCDATA tokens in records which the database system manages

separately from the chunks of tokens. However, in many cases this simple solution will be overkill

because only very few PCDATA tokens actually become very large, and retrieving the text data

from its record will be slow compared to reading in-line data from the token stream. To get the

best of both worlds, it is a good idea to introduce two types of tokens for PCDATA (andQName,

comment etc.) tokens: A “small” one which directly carries a limited amount of data in-line in

the token stream, and a “large” one which refers to an additional record with the actual data.

Choosing a Chunk Size There are several issues to keep in mind when deciding about the

allowed sizes of chunks:

• The limits on the chunk size could be specified in terms of bytes or in terms of the number

of tokens in the chunk.

• The minimum size for a chunk could be zero, or it could be a certain value, for example

half of the maximum chunk size.
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• An absolute maximum chunk size could be imposed by the hardware or the data structure

that is used to manage the chunks.

• The larger the chunk size, the less the average overhead per stored token is going to be, but

on the other hand modifications will also take longer.

Finding the right values for the parameters is a difficult task, and should best be done by testing

and benchmarking the XML storage solution in a real-world environment.

Data Structures For Managing Chunked Data Once the tokens have been serialized into a

stream of bytes, they must be distributed over a number of chunks. Any solution must meet the

following criteria to be optimally suited for our purposes:

• For simplicity, the bytes representing a token should not be distributed over two chunks –

if this were the case, it would not be possible simply to start reading bytes and creating

tokens at the start of any chunk.

• Storage should be segment-based: Because the whole data structure is intended to make

sequential reads as fast as possible, consecutive chunks should also be stored in consecutive

physical sectors of a segment on disc.

• Insertion and deletion of data at any byte offset in any chunk should be efficient, i.e. neither

should require reorganization of the entire data following the point of modification.

• At the same time, fragmentation of the segments (and the amount of disc space wasted due

to it) should be as low as possible.

One structure which might at first sight be able to meet these demands has already been men-

tioned: A normal B+-tree can be modified so its “leaf chunks”, i.e. the chunks which contain the

leaf nodes, do not hold references to the data, but the data itself. The tree modification algorithms

ensure that all chunks are at least half full all the time, and with an appropriate algorithm for al-

locating new chunks on disc, it can be assured that adjacent chunks are often also adjacent on

disc.

On the other hand, a B+-tree which is used this way also has a limitation: It is only intended

for the case that all leaf nodes have the same size. With an XML token stream, some tokens will

only need one byte whereas others might occupy dozens or even hundreds of bytes. In order to

be able to stick to the standard algorithms for inserting into and removing data from the tree, one

would have to assume the maximum possible size for all tokens. For example, if the maximum

possible size of any token is 32 bytes, even a single-byte entry would occupy its own 32 bytes
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Figure 7: 1830 bytes of data, as stored by the EXODUS Storage Manager in six segments of four pages
each. The page size is assumed to be 100 bytes

of storage – 31 bytes of these would be wasted. Clearly, a B+-tree is not the ideal solution for

storing a chunked token stream in an efficientandspace-preserving way.

Still, the idea of using a tree structure to manage the chunks of data is important, and a

number of different mechanisms for storing chunked data have been proposed which use some

kind of tree. [Biliris92] contains an interesting comparison of three of these storage structures

and includes both a look at the algorithms and benchmarks for a range of different accesses.

Below is a short overview of the three storage managers, EXODUS, Starburst and EOS.

EXODUS Storage Manager (ESM) The EXODUS Storage Manager supports the storage of

large objects of unlimited size. The data is stored in a series of segments, each of which consists

of a number of consecutive blocks on disc. The size of these segments (which correspond to the

chunks of data we want to store the XML token data in) can be chosen by the application. During

an update operation, the data in a segment needs to be moved to make room for new data or to

overwrite deleted data – for this reason, the segment size should be smaller for data with a higher

percentage of updates.

EXODUS indexes the segments of data with a tree structure not unlike a B-tree. The basic

idea of this structure is illustrated in figure7 with an example: The data is stored in segments

which appear as the leaves of the tree. The size of a page is (unrealistically) assumed to be 100

bytes to make the example easier to follow. All non-leaf nodes of the tree contain a series of

references to sub-trees as well as, for each such reference, the accumulated amount of data stored

in the sub-tree and the sub-trees to the left of it. In figure7, the first child of the root node contains
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Figure 8: 1830 bytes of data, as stored by Starburst in five segments. Since the size of the object was not
known in advance, Starburst started with single-page segment, then kept doubling the segment
size for subsequent segments.

900 bytes of data, and the second 1830−900= 930. Looking at the right child of the root, the

first segment below it is completely filled with 400 bytes, the second one holds 650−400= 250

bytes, and the last one 930−650= 280 bytes of data.

When performing insertions and deletions, the data within each segment is always reorga-

nized in such a way that all data is at the start of the segment, and any free space at the end. Just

like for the B-tree, both the segments and the internal nodes of the tree are required to be at least

half full all the time.

EXODUS does not include the “previous” and “next” references between segments that were

described above, but by maintaining a stack which specifies the current position in the tree, access

to the segments of the tree can be made as efficient as with these references.

The tests in [Biliris92] show that EXODUS can give good performance on all supported

operations. However, it becomes apparent that it is usually very difficult to choose the right value

for the algorithm’s tuning parameter, the number of pages per segment: Large values give better

read access times but also lead to larger amounts of wasted space, whereas smaller values cause

read accesses to become slower because more disc seeks are necessary, but manage the available

disc space more efficiently.

Starburst The Starburst manager for large objects is another data structure designed to allow

the efficient storage of large byte arrays. Essentially, Starburst is nothing more than a simple data

structure to keep track of where the chunks of data for a large object are stored. The underlying

allocation system is assumed to be a binary buddy system, as explained e.g. in [Knuth73]. With

its help, it is possible to allocate segments of consecutive sectors on disc, whose size is a power

of two of the page size up to a certain, system-dependent limit. For example, if the page size is

4 kbytes, segments of 4, 8, 16, 32 etc. kbytes can be allocated.

If Starburst is faced with the task of storing a large object whose final size is not known, it

starts by allocating only one page, then two, four etc. This behaviour is shown in figure8 for
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Figure 9: When storing 1830 bytes using the EOS storage manager, at most one page per segment is filled
partially, and a tree similar to EXODUS allows efficient insertion and deletion.

an object which ends up 1830 in length. The Starburst data structure records the size of the first

segment (1 page, again assumed to be 100 bytes), the sizes of the subsequent segments need not

be stored explicitly because they can be inferred from the first segment’s size. Finally, as soon as

the final object size is known, the last, only partially filled segment is shortened to the smallest

possible number of pages, and the number of bytes in this last segment also stored in the data

structure.

In the case that a large object’s size is known in advance, Starburst attempts to allocate the

segments in a more intelligent way, using a segment of appropriate size, or a sequence of seg-

ments of maximum size. Again, the last segment is truncated to the right number of pages.

This explanation should make it obvious that Starburst suffers from a problem that might

make it an inappropriate solution for an XML storage system: Insertions and deletions in the

middle of the data are not possible in an efficient way; all the data that follows the insertion point

would have to be copied to allow the modification to take place. Consequently, Starburst should

only be used for data that changes rarely or never, or for which insertions and deletions only take

place near the end of the data. According to [Biliris92], in scenarios where the data structure

canbe used, its simplicity and its property of not creating any fragmentation lead to very good

performance.

EOS EOS attempts to combine the positive aspects of both EXODUS and Starburst by using a

B-tree-like data structure like the former, but allowing segments which have to be (almost) filled

completely, like the latter.

With EOS, the data is stored in a number of segments each of which consists of consecu-

tive blocks on disc, again allocated using the binary buddy system. Unlike for EXODUS, each

segment must be filled completely with data, except for the last page, which may only be filled
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partially. Apart from this differing layout of the segments, the data structure with its tree of ref-

erences and size information is identical to that of EXODUS. The tree in figure9 is an example

of what an EOS tree may look like after a few modifications to the data have taken place:

The length of the different segments can vary significantly from segment to segment because

whenever an insertion or deletion takes place, the segment is split into two at the point of the

modification. Because of the necessity to split segments, the insertion and deletion algorithm

differs a lot from that of EXODUS.

If we kept splitting segments into smaller and smaller parts, the data structure could at one

point deteriorate into a tree whose leaves are single pages – an undesirable state, since then the

amount of space wasted because of partially filled pages rises, and sequential read times increase

due to a non-sequential physical distribution of the segments on disc. For this reason, EOS allows

the minimum size of segments to be restricted in the following way: If after an update, the size

of a segment falls below a configurable threshold, then the segment is merged with one of the

segments that are its logical neighbours in the tree.

The benchmark results in [Biliris92] show that EOS offers good performance both for read

operations and for update operations. When storing an XML token stream, it offers all the flex-

ibility outlined in the requirements near the beginning of this section. Furthermore, because (in

contrast to EXODUS and Starburst) segments are allowed to get very large, an XML token stream

storage system using EOS would be able to store even very large tokens “in-line” in the stream.

This section has shown that storing a token stream as a series of records, each of which holds

one token, results in a large amount of bookkeeping information. To reduce the overhead, the

token stream can be stored as chunks of data. The various storage managers introduced above

help with the task of managing the data in such a way that modifications are possible in an

efficient way. If an XML database which stores its data as a token stream is interested in the best

possible performance, it should seriously consider storing the tokens in chunks.

3.4 Tree Representation

The previous section has introduced ways to store XML data in a way which encodes more infor-

mation about the structure of the document: Whereas section3.1described storing the document

as a series of characters without distinguishing between things such as start element tags or XML

comments, the “token stream” idea pursued in section3.3allowed more efficient handling of the

XML document by parsing the characters and creating higher-level objects – the tokens.

In this section, we take another step in this direction and use data structures which not only

represent documents in tokenized form, but additionally encode the tree structure that all XML

documents implicitly create.

53



3.4 Tree Representation 3 STORING XML D ATA

But why is it necessary to store the data in a way which allows easy reconstruction of the

XML document tree? As so often before, the reasons become clear after a look at the XQuery

standard, and the way that both an XQuery implementation (executing queries) and XL (execut-

ing document modification statements) have to access the document:

• In many cases, an XQuery implementation does not want to read the entire token stream,

but needs a way of quickly skipping certain areas. For example, when the query

“$recipe/instructions” is executed, but an “<ingredients>” tag is encountered first in

the top-level element of$recipe, then the XQuery engine is not interested at all in the

contents of that element, but will want to skip its entire content.

• A similar situation arises for XQuery expressions which e.g. ask for the last child of an

element; rather than going through all children to reach the last one, the implementation

may want to skip to the end of the element first, and then go backwards by one child.

• For the implementation of queries like “child::*[position()=4]” (see [XQuery, 2.3.1]), the

XQuery engine will want to directly navigate to the fourth token, and not skip the first three

one by one.

• For the implementation of the XQuery “parent” axis (see [XQuery, 2.3.1.1]), it will be

beneficial if it is possible to go “upward” in the tree and retrieve for any element the parent

element that encloses it.

• With the XML “ insert ” statement, the user can specify where to insert the new data,

and the different ways of inserting include to “insert after ” a specified element and to

“ insert into ” it, creating a new last child of the element. In both cases, the XQuery

engine only provides the position of the “start element” tag and XL is required to jump

quickly to the corresponding “end element” tag to perform the insertion. The same applies

to the “move ” statement.

For all these operations, the underlying XML storage system can only efficiently implement cor-

responding movements in the token data if it has knowledge about the document’s tree structure.

3.4.1 Tree Variants

Before deciding on a data structure, let us summarize the operations it is required to support. The

optional operations make an XQuery implementation’s work easier for some queries, but will

probably not affect the overall performance too much if not present:

• Read tokens sequentially in document order.
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Figure 10: With this tree representation, every parent holds references to all its children, and each child a
reference pointing back to the parent. Surprisingly, it is not suitable at all for XML documents.

• Jump from the beginning of an element to its end. (Alternatively: Jump from an element

to its right sibling, and allow going backward from there.)

• Optionally: Move upward from an element to its parent.

• Optionally: Directly move to thenth child of an element.

There are many ways to represent a tree. In the rest of this section, a few of them are looked

at and compared to each other, especially with their use for an XML storage system in mind.

All Children Reachable From Parent The type of tree shown in figure10 is the “classical”

data structure that one thinks of first when trying to represent tree-like data: Every non-leaf node

in the tree contains a number of direct references to all of its children. Additionally, all nodes

except the root contain a reference to their parent node.

In figure 10, no separate objects are shown for “begin” and “end” tokens of elements and

attributes; for example, there is only onerecipe and onequantity object. This reflects the fact

that the data structure is not token stream based, but aims to be a direct representation of the

document tree.

The tree in the example describes a “recipe” XML document based on the one on page10 –

for simplicity, parts of the document tree have been omitted.
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When trying to store the XML document with this type of tree, a number of properties of the

data structure become apparent:

A positive aspect is that direct access to thenth child of a node is possible, simply by follow-

ing thenth child reference stored inside it. Additionally, all the operations listed above can be

implemented, including backward movement in the document.

On the other hand, there are a few disadvantages to the data structure.

During updates, the size of a parent node changes whenever new children are added to it or

deleted from it – because the number of children of an XML element can grow arbitrarily, it is

not possible to allocate a fixed amount of memory for child references. As a result, whenever

children are added or deleted, not just one, buttwo insertion/deletion operations have to take

place; one to make room for the new child reference in the parent element, and one for the token

data that is inserted or deleted. This is especially unhelpful if we consider that we do not actually

need the second and subsequent child references to be stored in the parent node most of the time,

the exception being optimization for a relatively rare query like “child::*[position()=4]” – for

most applications, the costs of this property outweigh its positive aspects.

A further disadvantage of the data structure is that a speed/memory tradeoff decision needs to

be made when implementing a cursor which points inside the document, and which is intended

to be used for sequential reads of the document data:

• The first possibility is that the cursor only consists of a reference to the current token.

In this case, moving it to the next document token is not as fast as it could be, because

whenever the cursor wants to move to the right sibling of the current token, it must search

through its parent’s list of children to find out whichnth child it currently points to, in order

to be able to move on to the(n+1)th child. Because a linear search will have to be used

and some documents could conceivably contain elements with millions of children, this is

not an acceptable solution.

• The second possibility: The cursor also contains a stack of child offset numbers, which

record then at each level in the tree. That way, moving to the next token in the document is

a fast operation which does not require any searches through the parent data. However, this

also means that the cursor data does not have constant size, and can get very large for deeply

nested documents – possibly even too large for it to be held in memory! Consequently, this

solution is not suitable for an implementation either.

• An obvious third way to implement a cursor, and a compromise between the two alterna-

tives above, is only to store the child’s position for the last 10 or so levels. Benchmarks
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Figure 11: With this tree representation, the parent only contains a reference to the first child, which is the
start of a doubly linked list of children. The names of elements and attributes are represented
as separateQName tokens.

would have to be conducted to see how well this solution performs, but it seems proba-

ble that it would be quite fast for “average” XML documents. However, it is very easy to

construct documents where it exhibits as poor performance as the first possibility above.

• A last attempt to make a simple sequential read of the data fast might be the following:

Store the positionn of thenth child with the child, alongside the reference to the parent.

This seems an acceptable solution at first, although the additional 4 bytes or more of over-

head per token are a considerable amount of storage. However, again there is a problem:

n cannot simply be stored as an integer, because then inserting e.g. a new child at the start

of a node would require that all children after it are renumbered (and again, there could

be millions of them). Finding a different way of referring to the position might not be

impossible, but will certainly prove a difficult task.

To summarize, this simple way of storing the XML document tree makes a sequential read –

one of the most common types of access – difficult to implement, and with certain input docu-

ments the sequential read will either get relatively slow or require a large amount of memory. In

practice, this means that the data structure should not be used for storing documents whose size

exceeds the size of the main memory.
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Node References First Child and Left/Right Sibling The previous section has shown that

one common way to store a tree is not to be recommended for large XML documents. Figure11

shows another commonly used way: Each parent node has only a single child reference, to the

first child. The children are chained to each other in a doubly linked list. Furthermore, each child

maintains a reference to its parent.

The graph in the figure contains separate nodes for the names of elements and attributes, but it

would also be possible to include the name information in the parent node. Similarly, additional

“begin element” and “end element” nodes could be added – in the example, they are not present.

This data structure does not have the disadvantages of the previous tree representation:

• Because each parent only contains a single reference to the first child, the size of parent

nodes is constant. Additionally, the parent node does not need to be modified when a new

child is added to it (except of course if that new child is added at the start).

• Inserting a new child is a constant-time operation, no linear search through a list of children

is necessary.

• The “to next token” movement of a cursor can be implemented efficiently.

But there are also a few (minor) disadvantages:

• Thenth child of a node is not accessible directly, all then−1 siblings appearing before it

must be visited to reach it.

• The implementation of the cursor’s “next” operation will be relatively complicated, and in

some cases will require the traversal of quite a few nodes to complete: Once the last leaf

of a sub-tree (such as the text node “500–1000g” in the example) has been returned, the

iterator must keep going upwards before it can jump to the sub-tree’s right neighbour.

• It is not possible to jump to the last child of a node. This would prove useful to implement

e.g. the XLinsert into statement, which adds a new last child. Furthermore, it would

allow the iterator to go backward in the tree.

However, these operations can be made possible with a small modification: Instead of

a doubly linked list of children, use a “doubly linked ring”, i.e. the last child’s “next”

reference points to the first child, and the first child’s “previous” reference to the last child.

The first child can still be identified by the fact that the parent’s “first child” field references

it.

(An alternative to this modification of the data structure would be to introduce a “last child”

reference in the parent, but that would require additional storage space.)
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Figure 12: In a doubly linked list, the tokens appear in document order. Additionally, the “begin” and
“end” tokens of elements and attributes reference each other, making it possible to quickly
skip the content between the “begin” and “end”.

This representation of the document tree is far better suited for storing the tokens in a

database. Apart from the fact that only the first and optionally last child of a node can be retrieved

quickly, and not the children between these, it outperforms the previously described “classical”

tree representation for all operations, including modifications and sequential reads.

Token Stream With Additional References There is another way of storing the tokens of the

document in tree form: First, we store the token stream (for example, as a doubly linked list) and

then add further references from the first element of a sub-tree to its last element, to allow fast

navigation through the tree. In figure12, this is shown with the same example as before. This

time, the contents of an element are assumed to be bracketed by corresponding “begin element”

and “end element” tokens (the same is true for attributes), so in comparison to the two earlier

cases, these nodes are split into two, with the left part representing the “begin” token and the

right one the “end” token. The additional references which turn the linked list of tokens into a tree

structure appear between the “begin” and “end” tokens. By using them, the required operations

can be implemented:

• A sequential read of the token stream is very easy to implement – the cursor only needs to

follow the “next token” reference.
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• Jumping from the beginning of an element to its end is possible by traversing the reference

from the “begin” to the “end” token.

• Insertions and deletions are possible due to the use of a doubly linked list.

• It is possible to go backward in the stream, which, apart from being necessary to insert a

new last child, could be used for queries which ask e.g. for the second-to-last child.

The child nodes in figure12 do not have references to their parent (except if the parent hap-

pens to be the next or previous token in the token stream) – if necessary, such references can be

added, but this step should be considered carefully because of the additional space requirements.

Just like the previous tree structure, this variant does not allow direct access to all the children,

and a linear search through the children is necessary to locate the desired child.

To conclude, this data structure is about as efficient as the previous one for most operations,

but has an additional small advantage in that it is very much “token stream oriented” and thus

well-suited for sequential reads of the data.

3.4.2 Storing the Tree On Disc

Most of the problems surrounding the storage of the tokens in a database on disc have already

been covered in sections3.2and3.3, so this section can restrict itself to describing the differences

and necessary additions to support the storage of the above tree-like data structures.

When storing the data as single tokens with one record per token, the additional references,

e.g. to parent nodes or the first child of an element, now need to be stored with the token data. Just

like for the “previous” and “next” references, these references take the form of a logical record

number, an OODBMS reference, or an index for a table of token BLOBs in an RDBMS.

On the other hand, when storing the document as chunks of tokens, we encounter a problem

that has already been hinted at on page48: The tree data structures require it to be possible to

refer to tokens with a constant value through which the token can be retrieved even after it has

been moved around on disc due to insertions or deletions. A logical record number would fit that

description, but the per-token overhead introduced by logical record numbers is what prompted us

to use chunk-based storage in the first place! There does not appear to be a completely satisfying

solution to this dilemma – however, the following approach might be worth considering:

1. Do allow logical identification numbers to be created for tokens.

2. To save storage space, make every attempt to reduce the number of logical identification

numbers that are actuallycreated.
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The logical ID will typically be an integer index for an (on-disc) array or B-tree, with the

array/tree entry containing the physical location of the token: Segment number, page number in

segment and byte offset within page. In the case of an on-disc array, a “free list” of deallocated

record numbers ensures that their array entry is reused after the token they refer to has been

deleted.

The entry for a logical ID has to be updated whenever the token’s position changes. To

ensure that this happens, the relevant operations of the data structures described at the end of

section3.3.4will have to scan through the token data when copying it around, identify any tokens

for which a number has been created, and update their entry.

How do we reduce the number of logical token identifiers? The normal “previous token”

and “next token” references are not present for chunked token data (only “previous/next chunk”

references might be), so not every token needs to be reachable via a logical ID. In the simplest

case, only references to “end element” and “end attribute” tokens are needed, and consequently

only “end element” and “end attribute” tokens need to be allocated numbers. (Depending on the

requirements of the XQuery implementation, “begin element” and “begin attribute” tokens may

also need to be given record numbers.)

A further significant reduction in the number of logical IDs could be achieved with the fol-

lowing trick: If the number of tokens between the “begin” token and its “end” token is very small

(say, 5 or less), we can simply omit the reference to the end token (i.e. use a dummy value such

as zero). The omitted reference would indicate to the storage system that the element/attribute is

small and that the corresponding “end” token should be found not by looking up an ID, but by

reading tokens sequentially until the next “end” token. Since a token lookup by logical number is

potentially expensive (it might result in an additional disc seek), this solution might offer perfor-

mance benefits even for larger values than 5 – the exact “break even point” should be determined

using benchmarks.

The Natix Storage Manager Natix is an XML database project of the university of Mannheim,

which includes a storage manager responsible for maintaining on-disc data structures which con-

tain the XML data. The Natix storage manager is described in [KanneMoer99]. Geared towards

its use with XML, it goes one step further than the solutions outlined in the part of section3.3.4

which describe data structures for managing chunked data, and also takes the document structure

into account.

Just like e.g. with EOS, the data is stored in chunks of tokens, allowing for a space-efficient

encoding and for fast sequential scans. The size of each chunk could range from one to a few

consecutive pages on disc, although the greater part of the paper only discusses a fixed size of
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one page per chunk of data.

The special thing about the Natix storage manager is that it always stores one or more com-

plete subtrees of the XML document in a chunk. This has several advantages: Nodes which

are close together in the document also appear on the same physical page, and are thus quickly

accessible. Moreover, it is easy to skip a whole subtree one is not interested in.

Similar to the other “chunked data managers” from section3.3.4, the storage manager inter-

nally relies on a tree structure not unlike a B-tree to keep track of the chunks of data. If new

nodes are inserted into the document and the resulting chunk gets too large for its page, it is split

up and its nodes are redistributed over two chunks.

[KanneMoer99] does not discuss what to do if the single chunks holding the document sub-

trees only contain very little data, e.g. after many nodes have been deleted from the document. In

this case, the other storage managers make provisions for a chunk “re-joining” operation which

reduces the amount of wasted space, keeps logically adjacent data together and thus reduces ac-

cess times. Before implementing a storage manager like Natix’s, it might be necessary to evaluate

whether such an operation is necessary for it.

This special, XML-oriented storage manager is an interesting addition to the other solutions

for the storage of chunked token data, and well-suited to the task of storing XML documents in a

way which includes information about the document tree. For our purposes, it is also of interest

because it allows for a more efficient way of creating logical identifiers for nodes of the document

tree, as long as it is sufficient only to be able to address individual subtrees, and not single tokens:

First, the physical location of a “begin” token at the start of a document subtree is easier

to describe: No byte offset into a chunk of data needs to be maintained, only a number which

identifies one of the subtrees stored in the segment. Second, when performing insertions and

deletions, the storage system does not have to worry about updating the physical location for

any subtree which does not move into a different segment, since its subtree number remains

unchanged.

3.5 Mapping the XML Data to an RDBMS Schema

The previous sections have concentrated on finding special low-level data structures which are

well suited for the storage of the semi-structured data in XML documents. The implicit thought

behind this search was that already existing database software is not optimally suited for this task

because it is based on the relational data model. However, for a number of reasons it is important

also to look at the different possibilities to store XML data in RDBMS:

• Whereas XML storage solutions are very new, available relational databases are built on

a range of well-understood, mature algorithms and technologies, so they can provide a
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stable basis for any system which uses them. For example, existing relational systems

offer features like on-line backups and recovery as well as advanced indexing schemes,

and often scale better.

• Developing a database system from scratch is expensive and takes time; both the time

needed and the cost can be reduced by building on already existent systems.

• Existing database installations are dominated by RDBMS, so it may be convenient to use

them for XML as well.

Based on [FlorKoss99], the following sections introduce different mappings of XML data

to relational schemas. Another mapping of XML data to a “fine-grained relational schema” is

described in [Graves02, 4.2].

3.5.1 Edge Approach

A simple way to store an XML document in a relational database in a way which preserves its

tree structure is with the use of an “edge” table, which contains the entire document structure

data and which looks as follows:

Edge(source, ordinal, name, flag, target)

Each tuple in the relation describes an edge in the XML document tree, i.e. the relationship

between a parent element/attribute node and its child. The meaning of the different parts of the

tuple is as follows:

• sourceis an integer identifier for the parent node

• ordinal is an integer giving the child number; for example, the first child could be given

the number 1, the second the number 2, etc.

• nameis the name of the child element, represented as a string.

• flag indicates what type of data the child node holds. For example, the child can itself be an

element node or it can contain text data. There is a separate table for each different value

of the flag.

• target is an integer identifier for the child node. Depending on the value offlag, this

identifier is used to look up the child data in one of the different value tables. This identifier

references the data that appears between the start tag and corresponding end tag of the

element whose name is given inname.
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If the above schema is used, additional lookups are required to retrieve the data stored in the

child node. To avoid these lookups, a number of alternative mappings are possible. For example,

theflag can be omitted and separatetargetcolumns introduced for each possible SQL data type.

targetcolumns whose data type does not apply to the current table entry are set to NULL.

3.5.2 Attribute Approach

This variant of the above scheme has nothing to do with XML element attributes, but gets its

name from the fact that the edges in the document graph are also referred to as attributes in

[FlorKoss99].

One observation with the edge approach is that thenamestrings take up a considerable

amount of space in the database. At the same time, for any document the number of distinct

element names will be fairly small (compared to the size of the document), so the attribute ap-

proach does not use a single large table to hold all the data, but instead creates a new “attribute”

table for each element name encountered in the document:

Aname(source, ordinal, flag, target)

Thus, compared to the edge approach, thenamefield is no longer present – all the other fields

have the same meaning as before.

3.5.3 Universal Table Approaches

It is also possible to store the data in a single, very “wide” table which has columns for each

possible kind of child. Apart from thesourcefield, there is one set ofordinal/flag/targetfields

for every possible element name. Thisuniversal tablecan be generated by performing an outer

join on all the attribute tables of the previous section.

Obviously, the universal table typically contains many NULL values. Additionally, it is not

normalized, which can cause problems e.g. with inconsistencies introduced by updates. On the

other hand, often all children of an element are available with just a single lookup in the table – if

the element has several identically named children, multiple entries for the same parent element

(i.e. the samesourcevalue) are necessary.

With thenormalized universal approach, multiple entries for the samesourcevalue are elim-

inated by storing them in separate “overflow” tables. One such overflow table exists for each

possible element name. If an element has two or more children with the same name, theflag

field for the element name of these children in the universal table contains a special value which

indicates that the actual values are to be looked up in the overflow table.
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3.6 Improving Performance With Index Structures

There are many similarities between indexes for XML databases and indexes for “classical” re-

lational databases: The aim of index structures is to speed up database access times by choosing

a special data structure which makes certain operations more efficient. However, at the same

time the index structure itself must be updated whenever the indexed data changes, and it oc-

cupies storage space, so it should be decided on a case-by-case basis whether to index certain

data or not. It is possible to create indexes which are oriented towards the data values stored in a

database, allowing e.g. quick access to a customer given his name, or which provide “shortcuts”

for the structure of the database, e.g. to speed up the XQuery “child” operator.

When looking at indexing XML data, the special properties of XML (compared to rela-

tional databases) come into play: XML documents can have a much more flexible structure

and XQuery allows for complicated ways of navigating through this structure, whereas with re-

lational databases the organization of data is restricted to relations, and only the operations of the

relational algebra, such as joins, are used on the relations.

XML indexing is an area in which a lot of active research is being conducted. Because XML

is so flexible, it is difficult to create an index structure which is easy to maintain, usable for

documents that are updated from time to time, and which covers as many aspects of XQuery as

possible. This section attempts to give an overview of the latest developments in XML indexing,

by describing the ideas behind the index structures in recent papers. Its primary aim is to show

the many different ways in which XML data can be represented, and the clever means employed

to speed up queries with certain data structures. In order not to confuse with too many details,

only the basic ideas are outlined – see the respective papers for more detailed information.

3.6.1 DataGuides

The DataGuide concept introduced in [GoldmWid97] is inspired by the authors’ wish to auto-

matically generate a structural description of XML documents (comparable to a schema for a

conventional relational DBMS), but it can also be used to build an index for documents which

are instances of the structural description. The resulting index can be updated when the docu-

ment changes. However, when using the data structure this way, it appears to take up a significant

amount of storage space.

DataGuides can be used to check whether the result of a XQuery path expression like

“$document/node” is non-empty, and more accurately, exactly how many nodes it contains.

When using them as the index of a particular document, they can also return the set of nodes for

the path expression in question. Furthermore, they can act as an aid when formulating queries,

since they give a concise, up-to-date summary of the database structure.

65



3.6 Improving Performance With Index Structures 3 STORING XML D ATA

Essentially, a DataGuide is a tree very similar to a document tree, except that a union oper-

ation is performed on all identically named siblings anywhere in the tree, so that no node in the

DataGuide ends up having two children with the same element name. Additionally, by default

any data contained in leaves of the tree is removed; only the document structure is preserved. For

example, if part of an XML database of restaurant reads

<restaurant>
<name>Chili’s</name>

<phone>555-1234</phone>

</restaurant>
<restaurant>

<name>Darbar</name>

<manager>Smith</manager>
</restaurant>

then the resulting part of the DataGuide would only contain the information that<restaurant>
elements can contain<name>, <phone> and<manager> children:

<restaurant>
<name/>
<phone/>
<manager/>

</restaurant>

The problem of creating DataGuides from document instances has been shown to be equiv-

alent to the generation of deterministic finite automata from nondeterministic ones – a well-

researched problem which only takes linear time if the starting structure is a tree, but which can

get more expensive if it contains cycles. To make generation of DataGuides possible for the latter

case, [GoldmWid99] discusses ways to create “approximate DataGuides”, which may not always

be entirely up-to-date and correct, but which still represent the document structure reasonably

well.

All in all, although DataGuides can be used for indexing XML data, they appear to be more

useful for other tasks, such as making estimations about the result size of queries or as a help

for humans to explore the structure of large documents. [MiloSuciu99] builds on the experiences

with DataGuides and introduces a data structure which is better suited for the building of indexes.

3.6.2 Index Fabric

In [Cooper+01], the authors present an index structure called “Index Fabric” which speeds up

XQuery path expressions such as “$document/invoice/buyer/name/text() = “ABC Corp” ”,
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and which also works if several queries like this areanded orored together or contain wildcards.

However, the user will have to specify the names of elements involved inanded expressions prior

to creating the index. Additionally, the index structure could be adapted to other, specialized

XQuery queries if necessary. The index supports updates to the XML data.

In a nutshell, the fabric works by performing a scan of the XML data, creating all possible

queries that should be indexed, and storing them. For example, the index generation process

stores all the paths from the root node to each leaf node in the document, and possibly also all

paths from non-root nodes to leaves below them. Later, all the entries which match such a path

can be looked up with a small number of accesses to the data structure (more accurately, one

lookup per XQuery location step).

Normally, storing such an immense number of query strings and results would not be possible

due to the excessive memory requirements. The fabric deals with this problem by using a special

data structure which highly compresses data items entered into it which have identical prefixes:

A Patricia trie.

Patricia tries are unbalanced trees which have the property that if data like the query strings

above is stored in them, the size of the resulting trie shows linear growth with regard to an increase

of the size of the data. Furthermore, lookups of strings as well as “insert” and “delete” operations

only need O(l ) time, wherel is the length of the query [Heun00, 4.8]. The value ofl is further

reduced with the Index Fabric by not entering element names into the trie as ASCII, but instead

by encoding them with an integer identifier.

The original Patricia trie was designed to be an in-memory data structure. Since its size would

exceed available memory for many XML documents, the paper also describes how to extend and

modify the data structure to be suitable for on-disc storage and updates.

3.6.3 Pre-/Postfix Order Node Numbering

[Grust02] contains the description of a different way to accelerate the execution of certain

XQuery operations. It is intended to speed up XPath/XQuery location steps, likechild or de-
scendant (abbreviated “/ ” and “ / / ”, respectively). Unfortunately, there does not appear to be a

way to modify the index structure when nodes are added to or deleted from the indexed document

– the index has to be regenerated from scratch in this case.

The first step towards accelerating location steps is to represent the XML document tree in a

different way. Figure13 shows how this is done: The nodes of the document tree on the left are

numbered both in prefix order and postfix order. To achieve this, a depth-first search through the

tree is necessary. In order to generate the prefix order numbers, a parent is assigned a number
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Figure 13: For the index structure in [Grust02], the nodes of the document tree (left) are numbered both in
prefix order and in postfix order. When interpreting these numbers as coordinates (right), each
node divides the coordinate space into children, ancestors, preceding and following nodes.

before processing its children, and to generate the postfix order numbers, it is assigned a number

after its children. The resulting tuple of numbers is shown alongside each element’s node in the

figure.

Next, as shown in the right part of figure13, the prefix/postfix numbers are interpreted as co-

ordinates in a two-dimensional coordinate system, and the nodes entered as points in the system.

Once this is done, the reason for using this mapping becomes apparent: Each point (or node) can

be used to subdivide the coordinate space into four regions (illustrated in the example with the

node for “<f>”), and the nodes in these regions have the following relation with the node:

• Nodes in the upper left region are ancestors of the node. In the example, “<a>” is the only

ancestor of “<f>”.

• Nodes in the lower right region are the descendants of the node. For “<f>”, these are the

nodes “<g>”, “ <h>”, “ <i>” and “<j>”, as can be verified with a look at the document

tree on the left side, where these nodes indeed appear in the subtree rooted at “<f>”.

• Nodes in the lower left region precede the node in document order – this excludes any

ancestors, in accordance with the XPath standard. For the example, “<f>” is preceded by

“<b>” and its children, “<c>” “ <d>” and “<e>”.

• Finally, nodes in the upper right region follow the node in question. “<f>” has no nodes

following after it in the example, so this region remains empty.

To make use of the data structure, the document nodes are stored in this “coordinate form” in

a conventional database which can index them using a B-tree or an R-tree. Subsequently, location
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steps like “return the children of this node” can be translated in a straightforward way into queries

which only return the appropriate set of nodes. Because B-trees and R-trees are well suited for

queries which request a range of key values (e.g. “return all nodes whose prefix number is larger

than that of<f>”), the resulting lookups are very fast.

The paper goes on to refine the method outlined above by using further properties of the

prefix/postfix mapped nodes: With additional knowledge about relations between the numbers, it

is possible to narrow the “search area”, and instead of querying for “everything to the right and

below <f>”, the search can be restricted to a quadratic region of the prefix/postfix coordinate

system, or (under certain conditions) even to triangular or smaller regions.

An index scheme based on the same idea as the above is also proposed in [LiMoon01]. How-

ever, due to a different numbering scheme, it shows better performance when modifications are

made to the data – the index only needs to be regenerated completely from time to time, not after

every modification. Furthermore, the paper describes an alternative solution for the low-level

storage of the numbered document nodes.

3.7 Conclusion

In this section, we have examined several different ways of storing XML documents in a database:

A document can be stored in a plain-text file (the only standardized format), or it can be trans-

formed into a stream of tokens which is subsequently stored as records, as objects in an object-

oriented database, or as BLOBs in a relational database. Additional information about the tree

structure of the document can optionally be added, making traversal of the document tree by

XQuery implementations possible.

With regard to data structures, a variety of solutions exist for the storage of single tokens,

chunks of token data or (sub)trees of the document. Moreover, there are several interesting data

structures which allow the creation of indexes over XML data.

When making a decision about which type of storage to use for an XML database, no defini-

tive recommendation for one of the described solutions can be made. Instead, the advantages and

disadvantages of one solution over another depend on many factors, and all the following aspects

should be taken into account:

• Does the stored data change frequently? If it changes rarely or never, it can make sense

simply to store it in flat text form. Furthermore, the use of the more expensive index

structures might become worthwhile.
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• Will the data be accessed primarily by reading the whole document sequentially, or is

quick navigation through the document to certain elements required? In the latter case,

some kind of representation of the document tree must be stored in the database to allow

XQuery engines to reach the required node quickly. Also, the implementation of an index

structure might be advisable.

• What is the preferred output format? If the responses of the database are sent out on a

network immediately (e.g. for a web service implementation), it might be advantageous to

store the data in plain-text form, instead of being forced to deserialize it again and again for

each query. On the other hand, an XQuery implementation will very probably work with a

token stream or document tree model, so plain-text storage will slow it down.

• What is the average size of the stored documents? If the documents get very large, it is

a good idea to use a storage format which stores chunks of token data, rather than adding

bookkeeping information to each token.

• How much time is available for the implementation of the XML storage solution? The

implementation of a system which is as reliable and feature-rich as existing relational

databases is a very large task. Consequently, it will make sense in many cases to use

an RDBMS as the underlying storage system and to implement XML functionality on top

of it.

• Are other features required, e.g. concurrent access, recovery or distributed operation?

These are also available in RDBMS and would take long to implement from scratch.

• What additional demands are imposed by the environment the database will be deployed

in? For example, a customer may require that the data be stored in his relational database

system, or he might be interested in the fastest possible execution times for certain XQuery

queries, which might require adapting an index structure to work with these queries.

70



4 REQUIREMENTS

4 Requirements

An important part of this diploma thesis concerns itself with the implementation of an XML

storage system. As part of the XL project of the chair for database systems and knowledge bases,

this XML storage manager was added to the implementation of the XL programming language,

which has already been introduced in section2.3. By storing XL variables containing XML

documents or simple data types on disc, the code adds support forpersistent global variablesand

persistent conversation variables. This means that if a variable was declared appropriately by the

XL program, its value is not lost when the XL program terminates. Instead, upon restarting the

program, the old value is still present.

Various components are required for this functionality. Below, they are described together

with the set of features they provide.

4.1 Efficient Modification of XML Documents

In the current XL implementation (which is written in the Java programming language), the

values of XL variables, the content of any messages received over the network and also the

results when evaluating expressions are stored as XML data in objects which are instances of the

XL Value class.

Previously, XLValue was implemented as a simple array of token objects, and offered an

interface which allowed the construction of a new value from an array and the creation of a token

iterator which could be used for a sequential read of the data.

Since XL Value is the central class concerned with the representation of simple values as well

as XML documents, it must be re-implemented with the following requirements in mind:

• The API of the class is extended to allow the insertion of new XML data into the document

tree, and the deletion of nodes from it. Furthermore, the code which implements the XL

document modification statements (e.g.insert anddelete ) is modified correspondingly

to make use of this new API. (The old implementation performed insertions and deletions

simply by recreating the whole value with the changes in effect.)

• It is possible to create a token iterator for the XLValue which retrieves its tokens in se-

quential order.

• It should also be possible to move token iterators forward through the document in greater

steps: From a “begin element” or “begin attribute” token, the token iterator should be able

to jump directly to the corresponding “end element/attribute” token.

Support in the form of an API is not required at this stage because the XQRL XQuery
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implementation which would make use of the API has not yet been modified to do so.

However, the underlying data structures of the storage system should support navigation

from the “begin” to the “end” in order to allow the implementation to be adapted easily

later.

• It is easy to perform an “is in document order” comparison for “begin” tokens returned by

an iterator, i.e. to determine which one of any two tokens appears earlier in the document.

In general, the idea behind these modifications is to make it possible to store large documents

in XL variables by making operations more efficient, while keeping a large portion of the old

XL Value interface unchanged.

4.2 Persistent XML Storage

The modifications to XLValue from above already constitute an improvement because they make

insertions and deletions faster. But the main motivation for these changes is to make it possible

to add support for persistent storage to the class.

XL variables are implicitly made persistent if they are declared in the global scope, either

as global variables (“let $x;”) or conversation variables (“context let $x;”). As implied by

the absence of special “persistence declarations” or similar in the XL specification [XL02], the

persistence support is transparent to the user; no special action is required to make variables

persistent as long as they are defined in the scope of theservice declaration.

If a variable is persistent, the XL storage system handles it in a special way, ensuring that

any changes made to the XLValue which holds its data are written to disc, ready to be accessed

again if the XL program is restarted. The difference between global variables and conversation

variables is that several instances of an identically named conversation variable can exist (one

instance for each conversation), whereas there is only one instance of each global variable.

Large, persistent variables will often contain an XML document with a database maintained

by a web service, and the data in that database can be quite valuable. Therefore, the XL storage

support also makes every attempt to store the data as securely as possible, and it provides facilities

expected of a “normal database”, e.g. backups and recovery from catastrophic failures.

Furthermore, the storage system ensures that concurrent accesses to the same XLValue by

different parts of XL always result in a valid view of the value – in other words, modifications

like insertions and deletions are atomic. This is important in the face of recent additions to the XL

implementation, which attempt to increase performance by running several Java threads which

work in parallel.
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Persistent variables are not the only ones that may be written to disc: If a non-persistent

variable gets too large to be held in memory, the storage manager may also decide to write parts

of it or the whole value to disc. The disc space occupied by such “swapped out” variables is

reclaimed as soon as the control flow leaves the scope that variable was defined in.

Finally, in order to ensure that the amount of token data held in memory never exceeds the

available memory size, a buffering scheme is implemented. Its aims are to speed up the retrieval

of frequently accessed values or tokens, write less frequently used values or tokens to disc if

memory is tight, and to make accesses to small, temporary variables (which are very common in

XL) as fast as possible.

4.3 Modular XML Storage System

Another property of the new XL storage system is modularity in the sense that it is possible to

delegate the task of storing values to one of a number of different “storage modules”. Each one

of these modules provides the same functionality to XL, but implements it in a different way. For

example, there could be one module which stores the data as flat text files, and another one which

stores it in a relational database system.

As part of the practical part of the thesis, one storage module which allows on-disc storage of

XML documents is written. Additionally, another “dummy” module provides the behaviour that

previous versions of XL exhibited: It only stores the values in memory and doesnot write them

to disc.

The user can select a storage module using a switch on the command line when he starts

a Java virtual machine to execute an XL program. Each module can advertise special options

supported by it, which are used for things such as specifying where on disc to store the persistent

XL Values.

Each storage module provides the same interface to the higher-level layers of the implemen-

tation. The token stream stored by it is suitable for processing by the XQuery implementation of

XQRL, Inc.

The persistent storage support in XL is expected to be used in environments where loss of

data must be avoided. Since XL applications will typically use one or more persistent variables

as their “database”, it is important that the implemented storage solution be as robust as possible.

In particular, it should include the possibility of making backups and of recovery from crashes.
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5 Design

5.1 Components

The overall architecture of the new XL storage subsystem is shown in figure14. At the top of the

figure, the XL runtime system represents the parts of the XL implementation which make use of

the functionality provided by XLValue. A lot of knowledge about the web service, conversations

and whether variables are persistent is only known to the runtime system, and is made available

to XL Value when values are created. Furthermore, additional configuration information for

XL Value such as which storage module to use, is passed through by the runtime system to

XL Value.

Depending on the user’s choice, XLValue enables one of a number of available storage

“back-ends” (figure14 shows three examples for such modules) to enable persistent storage for

values. The respective module is then completely in charge of all stored values (regardless of

whether they are persistent or not) and responsible that the access operations passed on to it by

XL Value are executed as appropriate. It is also in charge of any buffering of the token data.

The following subsections describe the three major components of the XL storage system

in detail: Persistent storage of values, buffering and the mechanism for exchangeable storage

modules.

5.1.1 Persistent Storage

The persistent storage of XL variables has the following semantics:

• Each global variable in an XL program is uniquely identified by its name and the web

service it is associated with. The web service is in turn identified by the URL given in its

service declaration (see page26).

• Each conversation variable in an XL program is uniquely identified by its name, the web

service and the “context” it appears in. More accurately, each context is associated with its

own conversation, and the conversation can be identified via its URI.

• Apart from the above identification, the variable values are not tied to a particular XL

program source code file or similar, so it is possible (but generally not to be recommended!)

to write two different programs which access the same global variables by using identical

names and identical service URIs.

• If the declaration of a global or conversation variable does not include an initializer

(“(context ) let $x;”, see [XL02, 4.2]), then the persistent variable is initialized with an
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Figure 14: Architecture overview for the XL storage subsystem, with three example storage modules. The
XL Value class is central to the design, providing a uniform API to upper layers and managing
beneath it the modules which store the XML data.
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empty value the first time the XL program executes. On subsequent runs of the program,

the initialization does not take place, and the value of the variable is restored to whatever it

was before the previous program run terminated.

• Similarly, if an initializer is present in the variable declaration (“(context ) let $x :=

<recipes/>;”), then the initialization with the supplied expression (“<recipes/>”) only

happens once, when the XL program is run for the first time, and for subsequent runs

the value left behind by the previous run is restored. Furthermore, the expression of the

initializer is not even evaluated in this case.

Internally to the XL implementation, persistent values are not distinguishable from non-

persistent ones except by the fact that the “unique identifier” field of the former ones is non-

empty, in contrast to the latter. Apart from this, the persistence layer is transparent; all operations

have exactly the same result on persistent and non-persistent values.

New persistent values are created on demand by XLValue whenever the runtime system

requests a value whose unique identifier is as yet unknown. The default value of any such new

values is empty.

Deletion of persistent values can be requested simply by clearing the value. Again, from the

point of view of the XL runtime system there is no difference between the effect of the clear

operation between persistent and non-persistent values. (Obviously thereis a difference ifno

clear operation takes place before the XL runtime system terminates: The non-persistent value is

lost, the persistent one preserved.)

It is up to the individual modules to decide about the exact way in which data is stored

persistently. Section3 contains descriptions of a variety of different ways to do this.

Although XL does not yet have any concept of transactions, a storage module may internally

want to use transactions to allow easy recovery from system crashes, and to allow rollbacks in

case of deadlocks.

5.1.2 Buffering

As mentioned before, keeping tokens cached in memory serves the double purpose of speeding

up accesses to frequently used portions of large persistent values and holding small, temporary

values in main memory during their entire lifetime.

How exactly the buffering of tokens is performed is left for the individual storage modules to

decide; different modules may employ different strategies in this area. The following aspects of

buffering need to be addressed:
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• What is the granularity of the cache? Possible strategies include caching the individual

Java objects which represent tokens, caching entire values (i.e. either all tokens of a value

are on disc or all are in memory), caching chunks of the token stream in serialized form, or

caching physical pages.

• Should caching be performed at multiple levels? Because the conversion of token objects

into a stream of bytes and vice versa is expensive, it can make sense to buffer both at a

higher level (Java objects) and a lower one (e.g. pages).

• What replacement strategy is implemented? Options range from LRU (least recently used)

to LRU-2 (LRU, but counting the last two accesses) to special-purpose solutions, for ex-

ample with heuristics for recognizing sequential reads of large amounts of data, so as to be

able to treat them specially and not having them “push” other data out of the cache.

Another, related issue which the buffering of each storage module should solve is the “swap-

ping out” of non-persistent values to disc if they become too large or are used only very rarely.

Since both persistent and non-persistent values are handed over to the storage module in the same

way, the module must maintain information not only about the amount of memory taken up by

persistent values, but also by non-persistent values. When a non-persistent value becomes eligi-

ble for swap-out according to the replacement policy and is written to disc in whole or part, the

module must also take care to clean up later when the value is discarded, and delete any on-disc

data related to it.

The amount of memory to use for caching is specified by the user with a command line

switch called “-cachesize ”. All persistent storage modules should honour the cache size

setting, although the exact interpretation of the number passed to the command line switch can

differ from module to module.

It should be noted that the design above is a revised version of the original approach, which

included a single cache mechanism that all storage modules were intended to build upon. Sec-

tion 6.3briefly introduces the other approach and explain why it was abandoned.

5.1.3 Management of Storage Modules

The user is responsible for selecting a persistent storage module if he wants the global and con-

versation variables of his XL program to be preserved. This is possible using a “-storage ”

command line switch, followed by the name of the module to use and any additional parameters

for that module. If “-storage ” is not specified, the default is to use the dummy storage module

which does not actually support persistent storage, but keeps all values in memory.
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If an unknown name is supplied to “-storage ”, the XL runtime system prints out an error

message which includes a list of module names and supported per-module options.

XL Value allows switching from one storage back-end to another at any time – however, in

this case, only newly allocated values are actually kept track of by the new storage module, older

ones continue to be managed by the previously used storage module. Additionally, each one

of the storage modules assumes the entire amount of memory specified with “-cachesize ”

is at its disposal, so the XL runtime system should only switch to a new storage module after

discarding all the values maintained by the old one, to avoid that the different modules take up

too much memory.

The functionality provided by the individual storage modules is identical to the functionality

of the XL Value class described in section4.1: Essentially, they must support creation of new

values, insert and delete operations, a way of clearing values, and they must provide their own

iterator implementation for reading the value. When a module has been registered, XLValue

forwards requests for the creation of new values to that module, and once a value has been

created, XLValue forwards all operations on that value to its creator.

5.2 Programming Interface

In this section, the functionality which was described above is represented in a more concrete

form as programming interfaces. Since the XL project uses the Java programming language, the

interface definitions are given in Java syntax. However, the design could conceivably also be

adapted to other programming languages. Most of the descriptions of the individual classes and

functions are also available in the form of Javadoc comments in the source code files.

The different interface definitions are provided by the following classes and Java interfaces:

XL Value This class provides “values” of tokens. Each instance corresponds to a stream of zero

or more tokens. In many cases, a value only consists of a single token like “5”, but the

value can also be a complete XML document.

XL Value also offers functionality for storage modules to register themselves and to select

a storage module from the list.

StorageManager This interface is the main mechanism used for the creation of new values by

the selected storage module. Each storage module provides an implementation forStor-
ageManager. The implementation classes are singleton classes (i.e. only one instance is

ever created).XL Value uses the instances of differentStorageManager implementers

as object factories forStoredValue instances.
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StoredValue This abstract class is also extended by each storage module. The module’s

StoredValue objects hold the actual token data. There is a one-to-one mapping between

XL Values andStoredValues.

XL Value.Iterator This interface is implemented by each storage module. To read the value’s

content, the creation of iterator objects can be requested from anXL Value.

Since the interface definitions below are not grouped by class, but by the different types of

functionality present in the storage system, the method names are preceded by the class name,

i.e. “XL Value.size()” instead of just “size()”.

5.2.1 Storage Back-end Selection

This section describes how storage modules can register themselves withXL Value and how the

selection of a particular module works, including passing parameters to the module.

XL Value provides ways to register storage modules, to inspect the list of registered modules,

and to set/read the module to be used for values:

public static void XL Value.registerStorageManager(String name, StorageManager
mgr);
Add a newStorageManager to set of known managers. A storage module provides a way

of storingXL Values persistently. For eachStorageManager implementer, this method

must be called to make the manager known toXL Value.

Parameters:

name String like “libdb ” identifying the storage manager. Used for example to select

the type of persistent storage with the-storage command line switch.

mgr Object thatXL Value should use to process command line options for thisStorage-
Manager module and to create newStoredValues.

public static Set XL Value.registeredStorageManagers();
Return read-only information about registered storage managers. Each element in the re-

turned collection is aMap.Entry. The objects returned byEntry.getKey() are of type

String, those returned byEntry.getValue() are of typeStorageManager.

public static StorageManager XL Value.findStorageManager(String name);
Find a storage manager by name, and return the corresponding object.
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public static void setStorageManager(StorageManager manager);
Set the storage manager to use for persistent values. If persistent storage is required, this

should be called as early as possible; until then, allXL Values are buffered in RAM.

public static StorageManager XL Value.getStorageManager();
Return the selected storage manager, as set withsetStorageManager(), or null if it has

not been set yet.

The StorageManager interface contains all the functionality required to set up a storage

module and to have it generateStoredValues which hold the data of XL variables. Additionally,

it allows the storage module to be notified when the XL runtime system shuts down:

public void StorageManager.printOptionInfo(PrintStream out);
Print out information about the command line options recognized by this storage module,

writing it to the suppliedPrintStream. This is used by the XL runtime system to print

information about the options supported by all the modules.

public void StorageManager.parseOptions(String options, PrintStream err);
Set options recognized by this storage manager. The options are passed as a single string,

the intention being that multiple settings are encoded in the string, e.g. separated by com-

mas as “file=foo,size=42,flag ”. Error messages about invalid options can be

printed to the suppliedPrintStream.

public StoredValue StorageManager.createStoredValue(XL Value owner, String
name);
Create a newStoredValue. Called byXL Value whenever storage for a new XL variable

is needed. Ifname is empty, the value is anonymous and non-persistent. Ifname is

non-empty, the old persistent value is reloaded from disc, or (if none of that name is

present on disc) a new persistent, empty value of that name is created.

Parameters:

owner TheXL Value that the new value is to be associated with. This association remains

unchanged until theStoredValue is discarded.

name The empty string if non-persistent, else a unique identifier of the value.

public void StorageManager.flush();
Is called when an XL operation has finished, and when the XL runtime system shuts down;

if the storage module wants to, it can use this to sync its buffers to disc.
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public void StorageManager.shutdown();
Is called when the runtime system closes down, providing an opportunity for theStorage-
Manager to flush out its data and close the database.

5.2.2 Document Iterators

The iterator concept ofXL Value is mostly based on the iterators of the XQRL

XQuery implementation. The corresponding class,XL Value.Iterator, extends XQRL’s

com.xqrl.iterators.TokenIterator, inheriting the following methods:

public void XL Value.Iterator.open() throws XQRLException;
Open the iterator, to prepare for reading data. Must be called before the first call tonext().

public boolean XL Value.Iterator.isOpen();
Check whether the iterator is open or not.

public void XL Value.Iterator.close();
Close the iterator, freeing any resources maintained by it. Must only be called if the iterator

is open.

public boolean XL Value.Iterator.hasNext();
Check whether the end of the token stream is reached.

public Token XL Value.Iterator.next() throws NoSuchElementException;
Read and return the next token, if any. The iterator must have been opened before this

method can be called.

public Token XL Value.Iterator.peekNext();
As above, but do not advance the iterator after reading the next token. In other words,

repeated reads topeekNext() keep returning the same token.

public XQueryType XL Value.Iterator.getXQueryType();
Return the type of data of the tokens returned by calls to this iterator’snext() method.

Additionally, XL Value.Iterator also offers these two methods:

public XL Value XL Value.Iterator.getValue();
For an iterator, return theXL Value object whose data the iterator reads.

public Object XL Value.Iterator.clone();
Clone an iterator. This can be useful to memorize iterator positions.
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5.2.3 Token Identifiers

Token identifiers are another concept which is introduced by the XQRL XQuery implementa-

tion and used in XL. In the token stream, a token identifier is associated with every “begin”

token. The token deletion and insertion methods introduced below use token identifiers to

specify the position of modification, so all storage modules will have to replace the original

XQRL identifiers with a version that continues to behave like the original XQRL identifier class,

com.xqrl.tokens.Identifier, but which is extended to contain an internal reference to the mod-

ules’ low-level data structures. Only with such a direct reference, the insertion/deletion position

can be found quickly.

TheIdentifier interface is fairly simple:

void Identifier.markEnd() throws XQRLSystemException;
This method is called by the XQRL code when it encounters the “end” token which matches

the “begin” token of theIdentifier. (This is useful for the XQRL implementation ofIden-
tifier.)

Identifier Identifier.getParent() throws XQRLSystemException;
Return anIdentifier for the parent of the “begin” token which thisIdentifier belongs to.

An implementation may support this call, but it is not required to.

Identifier Identifier.createNewId() throws XQRLSystemException;
Generate a newIdentifier on the basis of an existingIdentifier.

URIToken Identifier.getDocumentURI();
Return the URI of the document to which the token of thisIdentifier belongs.

public int Identifier.compareTo(Object obj);
Perform a comparison between twoIdentifiers, returning a result which is less than, equal

to or greater than zero depending on whetherthis appears earlier in the document thanobj,
is identical to it or appears later.

5.2.4 Document Creation, Reads and Modification

For convenience, many of theXL Value methods for the creation and modification of values are

overloaded, to allow their being used with different types of input. Apart from reading the token

data via an iterator, it is also possible to inquire about its size.

public XL Value.XL Value();
Create a new empty value to hold a stream of tokens. By default, the value is anonymous
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and “non-persistent”, i.e. although it may be swapped to disc under memory pressure, it is

always deleted when the storage subsystem is shut down.

The type of the value is set toXQueryType.ANYTYPE by default.

Any allocation of anXL Value object will also result in the allocation of a corresponding

StoredValue object.

public XL Value.XL Value(XQueryType type);
Create a new value of the given type.

public XL Value.XL Value(TokenIterator iter);
Create a value and fill it with tokens from the supplied iterator.

public XL Value.XL Value(TokenIterator iter, XQueryType type);
As above, but also set the value’s type to the givenXQueryType.

public XL Value.XL Value(Token[] tokens);
Create a value and fill it with tokens from the array.

public XL Value.XL Value(Token[] tokens, XQueryType type);
As above, but also set the value’s type to the givenXQueryType.

public XL Value.XL Value(Token t);
Create a value containing just a single token. The token must not be a “begin” or “end”

token.

public XL Value.XL Value(Token t, XQueryType type);
As above, but also set the value’s type to the givenXQueryType.

public synchronized XQueryType XL Value.getType();
Return the type of an existing value.

public synchronized void XL Value.setType(XQueryType t);
Overwrite the type information in the value with the givenXQueryType.

public synchronized Iterator XL Value.getIterator();
Return an iterator for the value, which reads it starting with the first token.

public synchronized Iterator XL Value.insert(Identifier destId, int beforeAfter, TokenIt-
erator srcIter) throws XQRLException;
Insert tokens into the stored value. If the inserted data contains a “begin” token, it must

also contain the corresponding “end” token, i.e. it is not possible to insert an unbalanced
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structure. The method returns an iterator which points into the value, after the inserted

data.

Parameters:

destId Identifier of a token somewhere insidethis. Must be a “begin” token. Special case:

Passnull to insert at the very beginning (ifbeforeAfter isBEFORE or INTO FIRST)

or end (ifbeforeAfter is AFTER or INTO LAST) of the document – also passnull
if the document is empty.

beforeAfter The different values which can be used for this parameter are defined as con-

stants in theXL Value class:BEFORE is used to insert before the token atdestIter,
AFTER to insert after the “end” token which corresponds to the “begin” token atdes-
tIter, INTO FIRST/INTO LAST to insert as the first/last sub-element, inbetween the

“begin” and “end” tokens.

srcIter Iterator of the token stream to be inserted. If this iterator is not open, it is automat-

ically opened before data is read from it, and closed beforeinsert() returns.

public synchronized Iterator XL Value.insert(Identifier destId, int beforeAfter, Token[]
tokens);
As above, but do not insert token data from an iterator, but instead from an array of tokens.

public synchronized void XL Value.delete(Identifier tokenId);
In the stored value, delete the designated node, i.e. from its “begin” token up to the “end”

token. ThetokenId parameter must point to a “begin” token somewhere insidethis.

public synchronized void XL Value.clear();
Delete the complete contents of the value.

public synchronized int XL Value.size();
Returns the number of tokens stored in the value, or−1 if the number is not known.

public synchronized boolean XL Value.isEmpty();
Returnstrue if the value is empty, i.e. contains zero tokens.

The following methods can be used to convert theXL Value into other data types:

public String XL Value.toString();
Convert the value to a string. If the value is a document, this includes converting the token

data to standard XML tags.
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public synchronized boolean XL Value.toBool();
Convert the value to a boolean value usingcom.xqrl.runtime.logic.BoolEffValue.

public synchronized double XL Value.toDouble();
Convert the value to a double value usingcom.xqrl.runtime.numeric.Any2Double.

As mentioned, the value’s data is really stored in objects whose classes extendStoredValue.

Many of theXL Value methods above are mapped to the corresponding methods below. Since

the functionality of most of these should be obvious from the name and signature, only short

descriptions of theStoredValue methods are included:

protected StoredValue.StoredValue(XL Value value, String name);
Create a new value. Ifname is empty, child classes return a new empty, non-persistent

value. If name is non-empty and no value has yet been stored on disc with the given

name, child classes must create a new, empty, persistent value associated with that name.

Otherwise, they reload the data from the existent persistent value.

value is theXL Value which is going to “own” this object.

public XL Value StoredValue.getValue();
ReturnsXL Value which owns this object, as set by the constructor. The default imple-

mentation simply returns theXL Value reference from a private data member; it should

not require overriding.

public XQueryType StoredValue.getType();
Returns the XQRL query type for the stored token stream, ornull if the type is not set. The

default implementations of this method andsetType() below provides access to a private

data member and should not require overriding.

public void StoredValue.setType(XQueryType t);
Set the XQRL query type of the stored token stream.

public abstract XL Value.Iterator StoredValue.getIterator();
Create and return an iterator for the stored value.

public abstract XL Value.Iterator StoredValue.insert(Identifier destId, int beforeAfter,
TokenIterator srcIter) throws XQRLException;
Insert tokens fromsrcIter into the value at the position indicated bydestId.

public abstract void StoredValue.delete(Identifier tokenId);
Delete the designated node from the value.
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public abstract void StoredValue.clear();
Delete the complete contents of the value.

public abstract int StoredValue.size();
Return the size of this value.

5.2.5 Making Values Persistent

Sections5.2.1and5.2.4above have already mentioned thatStorageManager.createStored-
Value() is passed aname parameter (which it typically uses in a call to theStoredValue con-

structor) which is empty for non-persistent values and a non-empty, unique string for persistent

ones. XL Value creates non-persistent values by default. The following two methods of the

XL Value class allow values to be declared persistent, and to read their unique identifier, if any.

public synchronized void XL Value.setName(String name);
By using this method to set the name of the value to a non-empty string, the value is

declared persistent.

To reload a value that was previously declared persistent, create anXL Value in the new

runtime environment and set its name to the appropriate string, then the value’s previous

contents reappear.

If the old name compares equal to the new name, everything remains unchanged.

If the old name was non-empty, but the new name is empty, then the value of “this” is

set to the empty value. However, the value available through the previous name remains

unchanged and is not discarded.

If the old name was empty and the new name is non-empty, then the old value of “this” is

discarded and replaced by any value previously stored under the new name. (If nothing was

previously stored under the new name, a new, empty value is created.) All modifications

made to the value now (until the nextsetName()) are persistent.

public synchronized String XL Value.getName();
Return the value’s name, as set bysetName(), or the empty string for XLValues whose

setName() has not been called so far.

It should be noted thatStoredValue doesnot provide any methods equivalent to the above:

StoredValues are either created as persistent values or as non-persistent values, that state never

changes during the lifetime of the object. This implies thatXL Value will create a newStored-
Value during calls tosetName(), by calling StorageManager.createStoredValue() for the

currently selected storage module.
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5.2.6 Buffering

Maintaining a buffer of recently accessed tokens, token chunks or pages as well as providing a re-

placement strategy for this buffer is mostly left to the individual storage module implementations.

The only part of theXL Value interface which is concerned with buffering are the following two

functions. They provide a uniform way for the user to set the cache size, and for storage modules

to read it:

public static synchronized void XL Value.setCapacity(int size);
Set the cache capacity. The exact interpretation of thesize parameter may differ from

storage module to storage module – one possibility is to measure the cache size as the

number of tokens in the cache.

public static synchronized int XL Value.getCapacity();
Return the value passed tosetCapacity(), or a default value if that method has not yet been

called.

In addition to the cache size, some storage modules may require further cache-related options,

for example to tune the replacement strategy. These can be passed to the module with the other

module options – see the description ofStorageManager.parseOptions() above.

5.2.7 Test Framework

For the most part, the different components which are used for testing do not require special

interfaces – they are described in section7. However, the following functions, present in the

XL Value andStoredValue classes, allow all storage modules to offer an internal integrity check

of their data structures toXL Value in the same way:

public synchronized void XL Value.assertValid();
Check the integrity of the data structures for thisXL Value. Calls to this function are

ignored if assertions are turned off for the Java virtual machine. A call to this method

results in a call toisValid() of theStoredValue that thisXL Value corresponds to.

public boolean StoredValue.isValid();
Check whether the data structures for this value are correct. It is acceptable if this is a ex-

pensive operation for some storage modules, e.g. because it requires the traversal of large

cache structures or similar. The method always either returnstrue or fails with anAsser-
tionException.

If this function is not overwritten by a class deriving fromStoredValue, the default imple-

mentation just returnstrue.
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6 Implementation

The design of the functionality outlined in the previous section, as well as the implementation of

the new XLValue class and two storage modules required the greater part of the time available

for this diploma thesis.

The first (and by no means insignificant) part of the implementation work was getting to know

the internals of the current XL code, and also the major components of the XQRL XQuery code.

After the parts of XL that required changes had been identified, the design of the new interfaces

began – the resulting work on XLValue is described in section6.1. Previously, almost the entire

management of values had been handled by a single classde.TUM.RTS.XL Value – due to a

cleaner separation of the code for value creation, access and modification, the new XLValue

class is now only one of many classes in thede.TUM.RTS.Value package.

The next major part of the persistent storage implementation involved writing the two storage

modules mentioned in section4.3: First, a simple version which keeps everything in memory

allowed the new interface to be tested and the rest of XL to be adapted to it. Next, after an

evaluation of the different possibilities for storing XML data on disc, a second module with

persistence support was added. The modules are described in sections6.1.2and6.2.4.

Unfortunately, the work related to adding a buffer of values to the second storage module

necessitated a partial redesign of the buffer-related parts of the XLValue class. Section6.3

details the original approach as well as the reworked approach.

The XQRL Token Stream Format Before starting to describe the changes made to the XL

code, we will first have a short look at the format of the token streams that the XQRL implemen-

tation expects.

As mentioned before, an XQuery implementation was not written from scratch for the XL

programming language. Instead, XL uses the implementation by XQRL, Inc. The XQRL code

is under constant development, with the result that the token format changes from time to time.

However, the format largely follows the ideas laid out in section3.3.2:

• Elements consist of a “begin element” token, aQName token with the name of the ele-

ment, followed optionally by a number of attributes, then by the element’s content (repre-

sented by zero or more tokens), and finally by a “end element” tag.

• Attributes are not stored inside the “begin token” they belong to, but as separate tokens.

They consist of a “begin attribute” token, aQName token for the attribute name, a single

token containing the attribute value, and an “end attribute” token.
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• Furthermore, special tokens exist for comments, namespace declarations, processing in-

structions, and for all the primitive data types defined in the XQuery standard.

At the time of writing, the XQRL token stream format was still in a state of flux with regard to

how the type information associated with elements and attributes is stored in the stream. One

possible solution for this is to store an additional token with type information after the “begin

element” or “begin attribute”, another to include the type information in the “begin” token.

6.1 XL Value

The new version ofXL Value uses data structures which allow efficient insertion and deletion of

tokens in the middle of the value. Apart from the correspondinginsert()/delete() etc. methods,

it also adds support for persistent values.

6.1.1 XL Value Class Internals

The XL Value class implementation is fairly straightforward, since most of its functionality is

concerned with forwarding method invocations to theStoredValue instance whose reference is

stored in the privatestore data member.

When anXL Value is created, a call to thecreateStoredValue() method of the currently

registeredStorageManager is used to obtain a new object for thestore data member. If a

later call tosetName() changes the object’s unique variable identifier,store is replaced with a

reference to a newly createdStoredValue.

XL Value contains static initialization code which automatically registers allStorageMan-
agers in thede.TUM.RTS.Value package when the class is loaded by the Java virtual machine.

Additionally, the static initialization code makes sure thatshutdown() will be called before the

JVM terminates, by registering withjava.lang.Runtime.addShutdownHook() a thread which

callsshutdown().

6.1.2 Module For Non-Persistent Storage: BufferedValue

BufferedValue is the first storage module which was written for the newXL Value implementa-

tion. There are several reasons for creating a storage module which does not actually implement

persistent storage:

• In many cases, it is possible that XL applications do not need persistent storage. Examples

for such applications include cases where the amount of data stored never becomes very

large (i.e. can be held in memory) and can be recreated when the web service is restarted.

For these types of applications, it is easier to run XL without persistence support because no
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database or other storage back-end has to be configured. Also, as we will see in section8,

BufferedValue performs better than other storage modules.

• The presence ofBufferedValue quickly made XL usable again: Since several people work

on XL in parallel, any changes committed to the code base must not completely break the

system. Consequently, the newXL Value code could not be committed as long as it was

not a full replacement for the old code.

The alternative way to proceed would have been to wait with committing the changes until

a module for persistent storage was also implemented. However, this would have meant

not to commit the new code for a long time, which is not desirable because it results in a

lot of additional work related to keeping one’s changes consistent with changes made by

others.

• Writing the simplest module imaginable made it possible to test the whole newXL Value
component early, when the amount of new code was still relatively small (at least compared

to the final code size). This meant that errors could be identified more easily.

StorageManager Implementation The BufferedValue implementation classes are located

in the de.TUM.RTS.Value package. Like every storage module,BufferedValue pro-

vides an implementation of theStorageManager interface, which is contained in the file

BufferedStorageManager.java and is very simple:BufferedValue does not offer any

additional options or support the parsing of such options, nor does it have to take any special ac-

tion (like flushing out changes to a database) when the runtime system closes down, so the bodies

of most of the implemented methods remain empty. OnlycreateStoredValue() has a non-empty

body. In order to allow theBufferedStorageManager to be used as an object factory, it creates

and returns a newBufferedValue.

All three of the implementations forStoredValue, XL Value.Iterator and the XQRLIden-
tifier are located in the same source file,BufferedValue.java .

Data Structure For Token Storage The data structure which is used forBufferedValue has

already been introduced in section3.4 – figure 15 is identical to the last tree variant in that

section, “token stream with additional references”. The figure shows the resulting structure for

the example “recipe” document. WithBufferedValue, every token contains a reference to its

parent – more accurately, to the “begin” token of the element or attribute which directly encloses

the current token. The parent references are not shown in the figure to prevent it from getting too

confusing.
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Figure 15: Data structure for a value stored usingBufferedValue. The token stream is stored as a doubly
linked list with extra references from each “begin” token to the corresponding “end” token.
The additional references from each token to its parent “begin” token are not shown in this
figure.

For the low-level representation of the data structure,BufferedValue does not rely on stan-

dard Java data types likeList because it also needs to store the pointers to parent tokens and

“begin” or “end” tokens. Instead, it uses its own doubly linked list implementation whose list

objects also have room for these additional references.

Figure16 shows the way the doubly linked list is implemented: In reality, it is a “doubly

linked ring” of list entries of the private nested classBufferedValue.MyLinkedList, each of

which contains “previous”, “next”, “parent” and “twin” pointers as well as a “data” field which

references the actual stored token. For lack of a better term, “twin” is used to refer to the “begin”

token which corresponds to an “end” token, and vice versa.

This type of doubly linked list is much better than an implementation where the first entry’s

“previous” as well as the last entry’s “next” field are null, because none of the code for modifying

the list has to take the special cases “at beginning/end of list” into account.

Token Iterators Just like the standard JavaIterator semantics, the XQRL iterator concept re-

quires that it is possible to position an iterator before the first token or after the last token, i.e.

there aren+1 iterator positions for a list ofn entries. In order for the doubly linked list to allow

this distinction, it is necessary to insert an additional “head of list” entry into each list. This also
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Figure 16: Two examples of the doubly linked list used internally byBufferedValue: Empty list (left), list
with three tokens (right). The list is really a “doubly linked ring” of values, with a “list head”
object which marks the start and end.

has the advantage that no special case code needs to be present to deal with empty lists, since an

empty list is represented by a list head whose “previous” and “next” fields reference itself.

BufferedValue includes its own implementation ofXL Value.Iterator, in the form of the

private nested classBufferedValue.MyIterator. An iterator of this class contains a reference to

the XL Value it traverses, an integer member for numbering “begin” tokens (explained below)

and a reference to the currentMyLinkedList which indicates the position of the iterator in the

token stream. By convention, this reference points to the object before which the iterator is

positioned. For example, if the iterator points before the first element, its “current position” field

references the first element (reachable via the list head’s “next” field), and if the iterator points

after the last element, its “current position” field references the list head.

Token Identifiers The integer field of theBufferedValue iterator, calledminBeginMark,

serves the following purpose: ThecompareTo() method (see page82) must be able to per-

form an “in document order” comparison between any two “begin” tokens’Identifier objects. In

order to reduce this operation to a simple integer comparison, theBufferedValue iterator allo-

cates sequential numbers for all “begin” tokens and stores them in theirIdentifier objects before

returning the tokens to the rest of XL.

Obviously, because the sequential numbers are per-iterator rather than per-value, they can

become inconsistent in many cases. For example, if a first iterator starts reading a value and part

of the document is deleted after it has passed over it, then a second iterator for the same value

will assign different sequential numbers to identical tokens, overwriting the first iterator’s values

in the process.

However, nothing in the implementation prevents these inconsistent values, hidden inside

their Identifier objects, from being compared, even though the result of such a comparison is

generally unpredictable! The only safe way of usingcompareTo() is to use it exclusively for

comparisons of objects which have been returned by the same iterator.
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It is not clear whether all of the current XQRL XQuery implementation adheres to the re-

striction of never comparingIdentifiers from different sources, nor whether future versions will

adhere to it. However, in practice this simple scheme for the implementation ofcompareTo()
has worked very well.

Deletions and Insertions The deletion of a node in the document, i.e. from the “begin” token

which is passed todelete() in anIdentifier up to the corresponding “end” token, is quite easy to

implement: Once the destinationMyLinkedList object has been extracted from theIdentifier in

the “begin” token, we only need to follow its “twin” field to find the corresponding “end” token’s

MyLinkedList, and can delete the part of the list between these two entries.

The implementation ofinsert() is more interesting: As specified on page83, insert() is not

only passed theIdentifier (i.e. position in the stream) of a “begin” token and the data to insert,

but alsohowto insert it. Ifnull is passed as the destination position, the insertion is simple as the

final position of insertion is either the beginning or the end of the document. However, if a non-

null destination is given, some navigation through the document is necessary. In the low-level

MyLinkedList, insertion is carried out by specifying the tokenbeforewhich to insert. This token

must be found for all of the different possible values for thebeforeAfter parameter:

BEFORE To insert before the “begin element” token which is passed toinsert(), no further

navigation is necessary – insertion takes place immediately before this token.

AFTER To insert after the “end element” token of the “begin element” which is passed toin-
sert(), we first need to traverse its “twin” field to the “end” token, and then use the “end”

token’s “next” reference to reach the token before which to insert.

INTO FIRST To insert a new first child of the “begin element” token which is passed toin-
sert(), it is necessary to move forward in the stream (i.e. follow “next” references). First,

we need to skip over the “begin” token itself, and then over aQName token which contains

the element name. For an older version of the XQRL token stream format, this is already

sufficient; the token after theQName token is the one before which to insert. However, in

later XQRL versions, an additional, secondQName token with type information follows.

The BufferedValue implementation can deal with both formats, by checking whether a

secondQName is present in the stream, and skipping it.

INTO LAST To insert a new last child of the “begin element” token which is passed toinsert(),
we only need to traverse the “twin” field to reach the “end element” token. Insertion of the

new data then takes place before it.
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6.1.3 Required Changes in the Rest of XL

With the newXL Value implementation and theBufferedValue module in place, the XL runtime

system became functional again. However, no code in the rest of XL yet took advantage of

the new features of the class. Most notably, the modification methods likeinsert() were not

used, instead the implementations of XL statements likeinsert still copied the entire data of an

XL Value to perform the insertion.

Eliminating Unnecessary Copying of Values Adapting the XL runtime system to make use

of the changedXL Value interface proved to be a task which, while not more difficult than the

implementation of the new interface, nevertheless required as much time. Much of this time was

spent browsing the classes of the XL implementation and tracing what happens to anXL Value
after its creation.

The following property of the old code turned out to be a problem: Internally to XL, variables

were stored in a way which made it difficult to ensure that the same variable always kept referring

to the sameXL Value: With the old implementation of the class,XL Values were immutable, so

various parts of the code would replace references to them with references to new objects.

With the newXL Value implementation, modifications happen in-place, and unnecessary

copying ofXL Values must be avoided, because the whole point of introducing theinsert() etc.

methods is to prevent that the XLinsert and related statements have to process each token in a

document only to perform a potentially very minor modification to it.

It turned out that during the execution of aninsert statement, the value to be modified was

copied no less thanfour times:

• Theinsert implementation copied all tokens, adding the inserted ones at the right position

and appending all of them to a temporaryjava.util.LinkedList.

• To access the contents of the value to be modified, theinsert implementation created an it-

erator usingXL varExp.getIterator(), which calledXL Expression.getIterator(), which

in turn created a copy for no reason at all before returning the iterator.

• Once all tokens of the new value were in theLinkedList, it was converted to an array, and

that array used for the creation of a newXL Value.

• When writing back the modified value, theXL localControlBlock.setValue() method

added special “begin document” and “end document” tokens at the very start and end of

the token stream. BecauseXL Values were immutable, this required another copy of the

entire value.
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In the new XL code, all of the code making these copies is eliminated: A rewritten implemen-

tation of theinsert and related statements (described below) made the first and third copy above

unnecessary, a modification ofExpression.getIterator() disposed of the second copy above (it

is unclear why that function was written to take copies), and changes made by others removed

the requirement that documents are enclosed in “begin/end document” tokens, which also made

the last copy superfluous.

XL Document Modification Statements Section2.3.2has already introduced the five state-

ments in XL which allow modification of XML documents:

• insert new tokens into/before/after an existing node

• delete a node

• replace a node or attribute with a different one

• rename an element or attribute

• move an attribute or node to a new position in the document

The previous implementation for all of these statements, located in the classesde.TUM.RTS.
Stmt.XL InsertStmt, XL DeleteStmt etc., not only performed its work by copying the entire

value, it also failed to work correctly for certain cases. The rewritten implementation behaves

correctly – for example,insert is prepared to deal with all combinations of the cases that the

source/destination expression evaluates to an element, attribute or nothing. As appropriate, it

either carries out its work or raises an error, for example “cannot insert into an attribute”.

Because a quite large number of different cases needs to be distinguished for the various

modification statements, and since future modifications to the code could easily make some of

them fail in a non-obvious way, a number of test XL programs were also written, one for each of

insert , delete , replace , rename andmove . They make different modifications to example

documents and print out the results. A testing framework which was added to XL during the time

this thesis was written proved to be useful for comparing the output of these test programs to the

expected, correct output.

6.2 Support For Persistent Variables

To make XL support persistent variables, work was necessary in a number of areas:

First, there has to be a way for the XL user to select a storage module and pass parameters to

it, as described in section6.2.1. Above all, these will specify where on disc to store the data, but

they might also include other tuning parameters.
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Next, it is necessary to implement the changed variable initialization semantics: If upon

starting the XL program a value for a persistent variable is found on disc, the variable is not

initialized as usual, instead its value is reloaded from disc – see section6.2.2.

Finally, there must of course be a storage module which actually writes values to disc –

section6.2.3discusses the points which influenced the choice of the storage solution, and sec-

tion 6.2.4the implementation of the module.

6.2.1 Managing Storage Back-end Modules

The most important parts of the framework for selecting modules and passing parame-

ters to them have already been introduced in section5.2.1: Each storage module calls

XL Value.registerStorageManager() to add itself to the list of modules maintained by

XL Value. By implementingStorageManager.printOptionInfo(), the module is able to in-

dicate which module options it supports. Later, when a particular module has been selected, its

StorageManager.parseOptions() method implementation is called with a parameter string.

Once the relevant code inXL Value and the storage modules was present, support for module

selection was added to the runtime system. As specified in section5.1.3, this involved extending

the command line interface with a new “-storage ” command line switch, by adding appropri-

ate code to the classde.TUM.RTS.XL RTS.

If “ -storage ” is present together with a string argument that follows it,XL RTS breaks

up the string argument at the first colon, treats the part before the colon as the name of the stor-

age module to select, and the part after it as the parameters to pass to that module. The correct

StorageManager is looked up using its name, and itsparseOptions() method is invoked. (Op-

tionally, the colon can be omitted – in this case, all of the string is interpreted as the module name

and no parameters are passed to the selected module.)

For example, if a storage manager calledXL Value.registerStorageManager(“mymgr”,
obj) from its initialisation code and the user specified “-storage mymgr:option1=x,

option2=y ” when starting XL, thenobj.parseOptions(“option1=x,option2=y ”) will

be called.

6.2.2 Changed Semantics of Variable Initialization

Section5.1.1describes the way in which the initialization of persistent variables differs from the

initialization of non-persistent ones. In the XL implementation, the relevant changes have to be

made both for conversation variables and global variables.
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Conversation variables Conversation (“context let ”) variables are uniquely identified by the

web service URI, the conversation URI and the variable name. To create a unique identifier

string, these three are simply concatenated in this order, separated by spaces. For example, with

the auction.xl XL demo application, the unique identifier of the “$auction” variable will

read

http://localhost:10000/ http://xl.in.tum.de/10 auction

Initialization of the variable now happens as follows: First, a newXL Value is created and its

name set to the unique identifier string. If the selected storage module supports persistence and

the value was already stored on disc, the resultingXL Value object is non-empty (i.e. contains at

least one token) – in that case, no further action is taken. However, if the newXL Value object

is empty, the initialization expression (if any) is evaluated and the result assigned to the value.

Finally, the mapping from the variable name to the newXL Value object is set up to make the

variable accessible by XL programs.

A difficult aspect of this modification was finding the part of the XL code which performed

the initialization of conversation variables. A look at the most probable class,de.TUM.RTS.
XL Conversation, confirmed that no part of its implementation sets up conversation variables.

Instead, the relevant code turned out to be hidden in thegetContext() method ofde.TUM.RTS.
ControlBlock.XL globalControlBlock. When changing the variable initialization as described

above, the opportunity was seized to move the new code toXL Conversation and call it from

XL globalControlBlock.

Global variables For global variables, there cannot be more than one instance per web service

(i.e. XL program) and variable name, so the unique identifier does not include any conversation

URI. Instead, it only consists of the web service URI followed by the variable name. Looking

again at theauction.xl demo, the unique identifier of the “$bidder” variable reads

http://localhost:10000/ bidder

The remainder of the implementation work was analogous to that for conversation variables. Un-

fortunately, this included the problems with finding the code to replace with a new version: For

global variables, initialization was not performed directly by evaluating expressions and assign-

ing them to values, but indirectly by adding assignment statements to the start of the web ser-

vice’s initialization operation. This happened in the methodde.TUM.RTS.XL PreProcessor.
generalWebserviceProcessing(). With the new code, initialization takes place inde.TUM.
RTS.ControlBlock.XL WebserviceControlBlock and thegeneralWebserviceProcessing()
method is no longer needed.
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6.2.3 Choice of Database System

Before writing a module for persistent storage, a decision had to be made which type of storage to

implement. This section explains the reasons behind the choice of Berkeley DB as the database

“back-end”, and the storage of tokens in single records (i.e. one token per record).

The following properties are desirable for the selected storage solution (see also section4.3):

• Retrieval of tokens should be fast.

• The overhead for storing the token data should be small.

• It should support backups and recovery if possible.

• It must be possible to implement in the time available for the thesis.

• It should be possible to navigate through the document, i.e. a sequential read from the

beginning should not be the only operation supported by the data structure.

The last point is not strictly necessary since the XQRL engine currently always reads values

sequentially from the start, but this is expected to change with a future version. Furthermore,

being able to navigate through the document tree allows for a more efficient implementation of

operations such as “insert a new last child of this node”, because it is not necessary to read all

other children before inserting the new child – instead, one can go directly to the end of the node

data to perform the insertion.

When evaluating different solutions for the persistent XML storage, it became obvious that

some of the above goals conflicted with each other. The following types of storage were consid-

ered:

• Store chunks of token data in a specially written low-level data structure, for exam-

ple the EOS storage manager described in [Biliris92] (page50) or the Natix one from

[KanneMoer99] (page61). The resulting storage system would have offered both space-

efficient storage of the token stream and good performance. On the other hand, imple-

menting either data structure would have taken up a considerable amount of time (maybe

too long to finish it in time) because not only the on-disk management of the data chunks

would have to be written, but also some kind of index to allow tokens to be addressed indi-

vidually, in order to allow navigation through the document tree. Above all, it would have

been too much work to also add logging and recovery facilities, so the resultant persistent

storage work would not have been as robust as required.
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• Store the token data as BLOBs in a relational database system, or in Berkeley DB. This

seems to be a viable choice: The XL storage system can take advantage of the recovery

capability of the used database.

In the case of JDBC (Java database connectivity, the API to access relational databases

from Java), there is no way to insert bytes in the middle of a BLOB, so an XML document

has to be split up and maintained as a number of BLOBs, taking care to let these get neither

too small (to reduce fragmentation and overhead) or too large (to make insertions/deletions

efficient). In the case of Berkeley DB, insertion and deletion is possible at any byte position

in the record, so a complete XML document can be stored in one large record.

Still, this solution has its disadvantages: Building the management of chunked data on top

of a database accessible via JDBC, while possible, does not seem a very elegant solution.

Also, the unused capabilities of the RDBMS, especially SQL query processing, are bound

to add a lot of overhead.

With Berkeley DB, the management of the binary token data is much easier, but it suf-

fers from a different problem: As long as the whole XML document is stored in one large

record, it is very difficult to build an index through which individual tokens of the doc-

ument are quickly accessible. The reason for this is that the only thing by which tokens

can be located in the large record is their byte offset – but that offset can change whenever

tokens are inserted or deleted. The index would very likely have to use a special-purpose

low-level data structure.

All in all, this type of Berkeley DB storage looks promising, and it should have been seri-

ously considered for implementation. It was not chosen because of the problems with the

index structure and the amount of work to write one, and also because it was simply dis-

covered too late that Berkeley DB supports insertion and deletion in the middle of records.

• Store tokens as individual records and use record numbers as token references. As de-

scribed in section3.4.2 (page60), this makes it easy to represent the XML document’s

structure. When storing one token per record, the disadvantages are that the amount of

overhead for storing the tokens is large, and that the average retrieval time for a single to-

ken smaller than with a chunk-based solution.

On the other hand, the solution has a number of positive aspects: It can build on existing,

mature database solutions such as RDBMS via JDBC or Berkeley DB, and can use their

logging and recovery facilities. Furthermore, insertion and deletion of tokens is a quite

cheap operation. Generally, the solution is simple and can be implemented in the available

time.

Before implementing this type of XML storage, it also had to be decided whether to use the

more low-level Berkeley DB library for storing the individual tokens, or whether to resort
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to a full-featured relational database system. Since none of the advanced features of the

RDBMS are needed and Berkeley “libdb” is known to provide much better performance

for the operations it supports, the latter was chosen.

6.2.4 Module for Persistent Storage: LibdbValue

LibdbValue storesXL Value objects on disc using the Berkeley DB database library, “libdb”. It

provides the features outlined above and in earlier sections, such as a cache of recently accessed

token objects, logging/recovery and support for parsing a string of options and acting on the

parameters set by it.

The implementation of the persistent storage module is distributed over several classes, all of

them in thede.TUM.RTS.Value package:

LibdbStorageManager Similar to BufferedStorageManager for BufferedValue, this class

acts as a factory ofLibdbValue objects, and parses option strings passed to the XL runtime

system by the user.

LibdbValue Main class, with code for value modification and management of the low-level data

structures and the token cache.

LibdbPtr An abstraction of a reference to a token. A token can be in memory, which makes it

accessible via a Java reference, or on disc, accessible via a logical record number, or it can

be both on disc and in memory. This class allows the same types of operations no matter

where the token is stored.

LibdbList Implementation of a doubly linked list, identical in layout to the one fromBuffered-
Value (see figure16 on page92), but using both logical record numbers and Java refer-

ences, depending on whether tokens are on disc or in memory. All entries of the list can be

on disc, in memory, or both, except for the list head, which is always in memory (possibly

in addition to being on disc).

LibdbIdentifier Implementation ofcom.xqrl.tokens.Identifier, which adds a new private class

member to the object (a pointer into aLibdbList) to allow tokens to be found by the per-

sistent storage module.

LibdbIterator An implementation ofXL Value.Iterator which iterates over aLibdbList.

LibdbSerialize Class for the conversion of a byte array into a token object and vice versa.

WeakList A simple linked list implementation similar to the standardjava.util.LinkedList, but

with the difference that it uses weak references (that is, references which do not prevent
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the referenced object from being garbage-collected) and that an entry in the list,Weak-
List.Entry, can be deleted from it using just a reference to theEntry. This class is used for

LibdbValue’s token cache.

Supported Options The storage module registers itself withXL Value under the name “libdb”.

LibdbStorageManager allows the following options to be passed to the module:

dir= directory-nameSpecifies the pathname of a directory on disc in which the data of the

persistent variables should be stored. The directory must already exist. The name used by

default if “dir= . . . ” is not present is “xl-storage ”. A number of files is written to the

directory; apart from the actual data (in a file calledxldata.db ), Berkeley DB creates

files for temporary data and log files.

init Runs the libdb recovery, e.g. to clean up after a crash. It is no problem to specify this even

if no recovery is necessary because the database was shut down cleanly. However, it is very

importantnot to use “init ” if another instance of XL is already accessing the database.

If there are two or more options, they must be separated with commas. Additionally, when

specifying them with the “-storage ” switch on the command line, the XL runtime system

requires them to be preceded by the module name and a colon, so an example of how to se-

lect theLibdbValue module and let it run recovery on a Berkeley DB database stored in the

database directory would be:

-storage libdb:dir=database,init

Managing the Database The database is closed down automatically when the Java virtual

machine terminates, with the help of the mechanism described in section6.1.1, which calls the

LibdbStorageManager’s shutdown() method. If the instance of XL whose virtual machine

exits was not the only one accessing the database, Berkeley DB takes care not to close down the

entire database.

The database is correctly shut down if XL is interrupted by pressing Ctrl-C on the Unix

command line, or by sending a SIGINT signal to the JVM process with the “kill ” command.

It cannot be shut down if the process is terminated with a SIGKILL signal (i.e. with “kill

-KILL ”) – in that case, the database recovery must be run when the database is next used.

If necessary, recovery can also be performed without restarting XL, by using the

“db recover ” command line utility which comes with Berkeley DB.

To preserve the database even in case of a catastrophic failure (i.e. loss of all the data on the

machine’s hard disc), it should be backed up at regular intervals.
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The details of taking backups of a Berkeley DB database are described in its documenta-

tion [Sleepycat]. Berkeley DB supports both “standard” backups which require you to shut

down all programs accessing the database, and “hot” backups which work while there are active

database transactions. Making backups requires the use of the “db archive ” tool to identify

log files which can be backed up, “db dump” and “db reload ” to save and restore the database

files, “db recover ” to perform the recovery, and “db checkpoint ” for checkpointing the

database.

Document Modification Since the type of doubly linked list used byLibdbValue is quite

similar to the one ofBufferedValue, so are the procedures to access and modify them, e.g. for

finding the point in the list to insert at. However, the implementation of theinsert() anddelete()
methods is complicated by the following aspects:

• All accesses to the database must be wrapped in code which begins and commits transac-

tions. Since a transaction can fail, provisions must be made to retry it a certain number of

times and only to abort with an error if it keeps failing.

• Since a transaction can abort at any time, it is not safe to update in-memory structures at

the same time as structures on disc. Instead, the data in memory can only be modified after

the transaction has successfully committed.

• Throughout the code, “double bookkeeping” is necessary because tokens are accessible

both via references and logical record numbers. Despite the attempt to encapsulate this in

theLibdbPtr class, it adds a considerable amount of complexity.

• The storage module includes its own cache of recently accessed tokens, and this must be

kept up to date. The cache implementation interferes with many parts of the rest of the

code – for example, token objects can get pushed out of the cache (and become invalid)

while they are still referenced elsewhere.

In general, before accessing tokens, they are fetched into memory with a call to the internal

cache code ofLibdbValue. The implementation ofdelete() (remove a node from the value) and

also ofclear() (remove all tokens from the value) is an exception: It would not be appropriate

to unserialize the data for each token and to create an object just to delete it, so these functions

bypass the cache and directly work on the in-memory and/or on-disc data using aLibdbPtr.

Token Cache The token cache is a buffer which holds a number ofToken objects – the exact

number is configurable viaXL Value’s setCapacity() method. There are several reasons why

the tokens are held in the cache in this form rather than in serialized form, as an array of bytes:
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• Unserializing the byte array to create a token is a relatively expensive operation, it should

not happen all the time.

• If the data were stored in serialized form, then after unserializing it and creating the token

object, that object would be “thrown away” immediately after use even though it is still in

memory and would probably not be reclaimed by the garbage collection for a while – one

should take advantage of the fact that the object is still present.

• A large number ofXL Value objects represent XL variables which are never written to

disc. Storing them in serialized form in memory instead of in their “natural” form as

objects would only slow down accesses unnecessarily. An alternative idea might be to

store values as objects as long as the value will never be written to disc. However, it is not

possible to know in advance whether a value will ever need to be written to disc (even non-

persistent values can be “swapped out” if they become too big), and section6.3describes

the problems which arise when trying to “convert” values from one type of storage to

another.

The central function of the cache (calledLibdbValue.getEntry()) is responsible for returning

a token object given either or both of a reference or a logical record number. If the object is not

already in memory, the method fetches the relevant record from the database and unserializes it.

Additionally, both for the case that the token was already in memory and the case that it wasn’t,

it is marked as “accessed” for the replacement algorithm.

The caller of thegetEntry() method typically stores the returned object reference alongside

the logical record number which it used in the call to the method – due to the “double book-

keeping” mentioned above, every logical record number in theLibdbList is accompanied by a

corresponding object reference.

It is possible that only a logical record number is passed togetEntry(), but an object for the

requested record is already cached in memory. For example, this can happen when following

the “twin” reference from a “begin” to the “end” token, if the “end” token was still cached,

but the “begin” token has just been read from disc. To allow the cached “end” token to be

found,LibdbValue maintains ajava.util.HashMap which maps logical record numbers to object

references. (TheHashMap also has the additional purpose of ensuring that unreferenced but

cached tokens are not garbage-collected.)

LibdbValue is “lazy” with regard to updating in-memory references of stored values’ tokens:

Any references to cached tokens are only set up or refreshed when the reference is about to be

followed. This can lead to slightly better performance in some cases – for example, when loading

a persistent value from disc for a sequential read, the “twin” references will not be set up because

they are not needed by the sequential read.
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On the other hand,LibdbValue is not “lazy” when updating an on-disc reference: As soon

as the data for a token has been entered into the database and libdb has assigned a logical record

number to it, that logical record number is entered in all other tokens which reference the token

(such as the “next”/“previous” and “twin” tokens). This is necessary because if a token is written

out to the database, this implies that the replacement algorithm has decided to drop this token

from the cache; apart from updating the logical record number fields, it is also going to set all

direct references to the object to null, allowing it to be garbage-collected. Hence, the logical

record number becomes the only reference by which the token data can be retrieved again.

TheLibdbValue cache is “write-through” for persistent variables: If a persistent variable is

modified, these changes are immediately written to the database. This is required because of

locking problems (described further below), which preclude us from using e.g. one large Berke-

ley DB transaction for eachinsert() operation – instead, several smaller transactions are used to

reduce the chances of deadlocks.

The replacement algorithm used by the cache is a simple LRU (least recently used) algorithm:

Whenever a token is accessed, it moves to the head of a fixed-size queue (implemented with a

WeakList). Later, as other tokens are accessed and added to the start of the queue, it keeps

moving towards the end. The moment it “drops off” the end of the queue, it is written to the

database (of course this is not necessary if it has already been written earlier, e.g. because it

belongs to a persistent value).

The whole process is complicated by our requirement that the tokens of temporary values,

which are only referenced by the XL runtime system for a short time, should never be written to

disc. If the XL runtime system has finished working with a temporary value, all its Java refer-

ences to it disappear, so theXL Value object would usually be garbage collected. However, if the

tokens are in the cache, a Java reference to them exists from within the cache’s data structures, so

the garbage collection will not reclaim the memory they occupy. If the cache did not make pro-

visions to detect cache entries whose tokens are not referenced by any other part of the program,

these entries would even eventually be written to the database – only once this has happened,

their tokens would become unreferenced and thus eligible for garbage-collection.

The cache code’s solution to the problem is to use weak references for the LRU list, then

the garbage collection can remove the object if the weak reference to it is the only remaining

reference. Furthermore, thefinalize() method of the token data (more accurately, of theLibdbList
object which in turn references theToken object) removes the entry from its current position

in the LRU queue when the token becomes unreferenced. In general, this area of the cache

management proved to be one of the more difficult parts of the implementation due to various

subtleties surrounding weak references and the Java garbage collection.
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TheLibdbValue cache implementation also needs to deal with a number of other problems

which are not explained here because describing them would require going into too much detail.

As an example, here is one such problem:

What happens if a token is to be written to the database, but e.g. the token following it has

not been written out yet? The on-disc token data needs to include some kind of reference in its

“next” field. If the next token were already on disc, its logical record number could be used, but

since this is not the case, no such number has yet been allocated for it.

The “obvious solution” for this problem would be: Allocate a logical record number for each

token, whether it will be written to disc or not. If the token never ends up on disc, that record

number just remains unused.

Unfortunately, this does not work too well for Berkeley DB: The database library does not

use a B-tree as the index which maps logical record numbers to physical identifiers, but a simple

on-disc array. This way, if a record number were allocated byLibdbValue, but then not used,

some space in the array would be wasted, and ifLibdbValue first allocated the logical record

number “1” and next the logical record number “1000”, libdb would create 999 “empty” entries

inbetween them.

Several workarounds exist for this problem. One would be simply to use a B-tree based

database for the token data instead of the “recno” database whose behaviour is described above,

at only a small performance penalty. Another one, which is used byLibdbValue, is to introduce

a separate set of identifiers for tokens which have not yet been written to disc. The “next” field of

a token in the database can then either contain a logical record number or such a “memory object

ID”, and an additional bit flag indicates which type of identifier is used. AnotherHashMap
similar to the one used above for logical record numbers maps these identifiers to Java references.

Another problem thatLibdbValue has to address is that of staleLibdbList objects still being

referenced by long-livedLibdbIterator or LibdbIdentifier objects: Both of these classes include

private members which reference aLibdbList. If it becomes invalid because the object is dropped

from the cache, a flag is set in theLibdbList object. In case the iterator orIdentifier later accesses

the object again, it notices that it is flagged as invalid, and refreshes its reference to it.

Database Layout The low-level layout of the Berkeley DB database used for storing the data

of XL Value objects is fairly simple. There are two tables in the database. (In libdb terminology,

each such table is called a “database”, which can be slightly confusing – we will use the term

“table” even though the libdb variant is much simpler than a table in a relational DBMS.)

• A B-tree table called “persistent” provides a mapping from the unique identifier string of

a value to the logical record number of the list head object for the token stream.
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• A “recno” table called “token” allows access to the token data by logical record number.

Both of these are created in a file calledxldata.db , which is stored inside the directory

that the user specified when selecting the libdb storage module.

In “ token”, both tokens of persistent and non-persistent values are stored – the tokens of

non-persistent values are only distinguishable from the persistent ones by the fact that they are

not reachable through a series of references originating from one of the logical record numbers

in the “persistent” table.

The format of an individual token entry is also straightforward: After an initial fixed header

with flags and references e.g. to the “next” and “twin” tokens, the serialized token data follows.

Locking Issues In order to improve performance, the XL runtime system starts several threads

inside the Java virtual machine, and optimizes XL applications to run in parallel on more than one

thread as much as possible. The individual threads execute XL statements, which can obviously

access and modifyXL Values.

From the point of view of theLibdbValue class, the extra parallelism is a problem: Although

Berkeley DB allows concurrent access to its databases, within one process the library is single-

threaded, i.e. it may only be accessed by one thread of control at a time. To ensure that this is

always the case,LibdbValue makes use of the Javasynchronized construct. Unfortunately, the

object to synchronize on must be a global object (it cannot be just theXL Value instance being

modified), so this step implies that threads will often not run in parallel. In the light of this effect

of the synchronization withinLibdbValue, it seems questionable whether parallel execution of

XL code will still result in any noticeable performance improvement.

A completely different type of locking problem became obvious during the tests of the imple-

mentation with theauction.xl example application (see section7.5), which executes three

separate XL programs which interact with each other. Originally,LibdbValue was designed to

allow this type of operation, but then the following type of deadlock was observed:

• Two instances of XL run in parallel on the same machine (as two separate processes) and

use the same database.

• XL process A sends a SOAP message to process B.

• While sending the message, A reads from a token iterator, which causes new tokens to be

entered in A’s token cache.

• As new tokens enter A’s cache, old tokens are written to disc. This results in libdb acquiring

a write lock on the database page the tokens are stored in.
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• B receives the start of the SOAP message from A and stores it in an XL variable. The

tokens of the variable value are to be stored in the database, but the page they are to be

written to happens to be locked by process A.

• A waits on B to read the rest of the message, and B waits on A to release the write lock in

libdb – deadlock has happened in a way which is not detectable by libdb.

The cause of this deadlock is that Berkeley DB does not support locking with a granularity

finer than whole pages – it cannot lock individual records.

In response to this problem, first long-lived transactions (e.g. one transaction for everyin-
sert() operation) were broken up into smaller parts, to reduce the number of locks held by in-

dividual transactions. Furthermore, dirty reads were enabled in libdb – the way the database

is organized (the content of records holding token data never changes), it can be ensured that

reading a token does not actually access “dirty” data. This significantly reduced the number of

deadlocks – unfortunately, deadlocks can still occur, so it is not recommended to run several XL

instances on the same back-end database.

6.3 Buffering Recently Accessed Tokens

The previous section describes the cache of theLibdbValue storage module. As can be seen, the

module’s cache is integrated into the rest of its implementation. This reflects a change that was

made in the original architecture of the persistent storage system. This section explains the orig-

inal approach, the reasons why it failed and the changed approach that was finally implemented.

First Approach: Global Value Cache When the architecture for the newXL Value subsystem

of XL was first designed, it was with the following thought in mind: Since over time several

storage modules will be written (e.g. one for Berkeley DB, one for JDBC, maybe one with a

special-purpose XML storage manager), it would be useful to move common functionality of

these modules into other parts of the persistent storage system, so that implementing an individual

module would require as little duplication of work as possible.

The cache functionality was an obvious candidate: There did not seem to be a reason not to

introduce an additional “cache layer” inbetween theXL Value class and any back-end storage

module classes.

Since typical XL variables are either very small (single tokens or small XML documents) or

very large (“database variables” of an XL application), it looked promising to take the following

approach to caching: Values are always held entirely in memory or are entirely swapped out to

disc. If they are in memory, they are stored as Java objects, and if they are on disc, they are only
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stored in serialized form in the database, and objects are created on demand. If a value becomes

too large, it is written to disc.

During the implementation of a first version ofLibdbValue it became obvious that this way

of caching would not work, at least not in an efficient way. The central problem turned out to be

the process of moving a value that has become too large from memory to disc. The moment this

happened, allIdentifier objects and all iterators pointing into the value would become invalid

– but this is unacceptable because both the XQRL XQuery implementation and XL maintain

iterators andIdentifiers for a value while e.g. inserting data into it.

When the original approach to caching was designed, some thought went into allowing iden-

tifiers and token iterators to be “relocated” so they would point to the new on-disc value after that

value had moved out of the cache. In practice, such a relocation operation was not feasible; it

would have been too expensive to find the corresponding position in the version of the value that

is stored in the database.

A workaround which was pursued for a short time was to prevent values from moving to disc

during critical parts of the code, by “locking” them in memory. Apart from the fact that it would

have lead to out-of-memory problems if a huge amount of data was inserted into a locked value,

this would have required a large number of changes in the XL code that accessesXL Values – for

example, the implementation for the XLinsert statement would have to be bracketed by calls

to “lock” and “unlock” methods. As a further complication, with this complex caching policy in

place, it became very difficult to come up with a replacement strategy for the cache which would

behave in a reasonable way.

Second Approach: Cache For Each Storage Module At this point, it was necessary to re-

evaluate the architecture decision. Since there was no better alternative, the current architecture

with its requirement that each storage module implement its own cache was chosen. One should

be aware of the following disadvantages of this solution:

• A duplication of effort is necessary for each new storage module.

• The code for storage modules gets significantly more complex. Unfortunately, the final

LibdbValue implementation indicates that this is only too true, despite its very simple

LRU cache.

• Access to values which are completely buffered in memory is much slower than it could

be. In the case ofLibdbValue, the “double bookkeeping” of in-memory references and

on-disc references, together with the time needed to update the LRU statistics, results in
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access speeds which are an order of magnitude slower than comparableBufferedValue
accesses (see the benchmark on page116).

Still, this solution is better than a global value cache – the experience with trying to implement

such a global cache has made it clear that buffering data is tied too closely to a particular low-level

storage solution to be moved to a separate layer.

6.4 Further Issues

In addition to the work described in the previous sections, a number of other miscellaneous

changes were made to the XL code. Many smaller bug fixes and improvements are not mentioned

here because they are trivial or not very interesting.

Support For Nested Exceptions With some small changes to the classde.TUM.Exception.
XL RunTimeException, the ability to handle nested exceptions was added. This means that an

XL RunTimeException can contain a reference to another exception object, which is interpreted

to represent the cause why theXL RunTimeException was raised.

When the Java runtime environment prints out a stacktrace for such an exception object, it

not only includes the trace to the point where theXL RunTimeException occurred, but also the

error message and stack trace of the exception which caused theXL RunTimeException. This

information is especially useful during debugging, because it is immediately obvious what error

(for example, aNullPointerException) is responsible for theXL RunTimeException.

Revised XL IntegerValue and Related Classes Originally, a number of subclasses of

XL Value existed in thede.TUM.RTS.Value package, one for each primitive data type. For

example, there was anXL IntegerValue to create anXL Value that only contained a single

integer token, anXL StringValue which only contained a single string token, etc.

These subclasses are not a good idea: The resulting new types do not add any new data

members or methods toXL Value, the only extra functionality is in the constructor. Additionally,

nothing prevents one to take e.g. anXL StringValue object, erase it and to insert completely

different data.

For this reason, the revised versions of these classes cannot be instantiated by the rest of

XL. The classes only have staticcreate() methods which returnXL Value objects. This change

implies that throughout the XL code, expressions like

new XL StringValue(str)

had to be replaced with

XL StringValue.create(str)
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“Auction” XL Demo Application The “auction.xl” demonstration application is accompanied

by several JSP (Java Server Pages) files which provide a web interface to the features of the XL

program.

Apart from the usual work of adapting these files to the changed interface ofXL StringValue
and its related classes,auction.jsp was extended to return more meaningful error reports if

a request for the page fails. In particular, the error includes a stack trace, which helped during

the debugging of errors in the newXL Value implementation which only manifested themselves

with the auction example.

The fileprint-xl.jsp is used byauction.jsp to pretty-print the source code for the

XL programs it executes. A quite serious security problem was fixed in it: By passing the right

parameter to the page, an attacker was able to view the contents of arbitrary files on the system,

as long as they were readable by the Tomcat JSP application server.

Porting the Persistent Storage Subsystem to a New XL VersionDuring the practical part of

this thesis, the XL code underwent modifications to allow it to work with a new version of the

XQRL XQuery engine.

Unfortunately, the XQRL API changed significantly, requiring numerous changes in many

parts of the XL implementation. During the time that these changes were made by others, testing

and extensions of the persistent storage subsystem continued with the last “known to work”

version of XL.

Once the new XL version was reasonably stable, the new classes of thede.TUM.RTS.Value
package had to be ported to the new branch of XL. Because of the relatively large differences

between the two branches, this was not as straightforward as expected.
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7 Testing

7.1 General Approach

The general philosophy followed when writing the different components was not to let bugs come

into existence in the first place, by following a rigorous testing policy:

• Testing is performed at multiple levels in the code: At the lowest level, assertions in the

code catch inconsistencies of data structures or parameter values. This allows the detection

of programming mistakes close to the location of the bug, rather than resulting in strange

behaviour of other parts of the code.

• At the next level, slightly more expensive tests (in terms of their running time) walk whole

data structures and check whether they are valid. In practice, they are also called via

assertions, but conceptually, the checks can be regarded as a separate layer. They are not

enabled by default because they are too expensive, but were used during the implementation

phase to spot mistakes in the code.

• Next, component tests ensure that each component complies with the API specification it

offers.

• Finally, entire XL programs and applications are used to test the complete system.

7.2 Low-level Integrity Checks

At the lowest level, a lot of errors in the code can be caught with the consistent and liberal use

of assertions, i.e. run-time invariant checks. Assertions have been a part of the Java language for

some time and can be a great help when tracking down bugs because they cause the program to

fail with an exception close to the part of the program that behaves incorrectly, rather than letting

that part execute and cause strange failures later on, possibly in completely different parts of the

code.

It is sometimes argued that additional run-time checks slow down the program, but in fact the

very slight increase in running time will always be greatly outweighed by the developer time that

is saved with assertions, and the fact that “remote debugging” of non-reproducible problems of

users becomes much easier. Furthermore, the Java runtime system even allows assertions to be

switched off if necessary.

In the various classes of the new XL persistence code, assertions are primarily used for two

purposes:
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• Checks of parameters passed to methods. The Java API documentation recommends not to

use assertions for this purpose and to introduce new types of exceptions instead – however,

in the case of the code which was added to XL, introducing new types of exceptions seems

overkill because all callers of the methods are part of the XL runtime system. The assertions

for argument checking are always accompanied by a comment which explains the invariant

that is checked.

• Checks of data structures. If some part of the implementation fails to set up or modify

a data structure properly, this usually only leads to problems when the data structure is

next accessed. Moreover, subtle problems can go completely unnoticed. An example for

this existed in the code ofLibdbValue: An error in the code resulted in records being

repeatedly fetched from disc rather than being retrieved from the cache.

The latter of the above checks can be subdivided further, into simple “local” checks which

only take a constant amount of time, and more complex and expensive ones:

The implementation of theBufferedValue andLibdbValue classes includes code which per-

forms a complete check of a value stored in the respective class. In the case ofLibdbValue, this

also includes checking whether the cache of recently accessed tokens is consistent with the infor-

mation stored in the value. Since such a check is too expensive to be called under normal circum-

stances, it is not executed by default and must be called explicitly viaXL Value.assertValid() if

required.

7.3 Component Tests

The XL storage system only includes one component test: The classde.TUM.RTS.
Value.TestValueAPI creates a number ofXL Value objects and performs the various supported

actions on them, such as reading the value with iterators, making insertions and deletions, and

clearing the value. After each step, the value is compared to the expected result and an error

message is printed if the two differ.

TestValueAPI was used with theBufferedValue andLibdbValue storage back-ends to test

for a correct implementation of the basic operations ofXL Value. However, it is a relatively

simple and undemanding test – for example, it does not test concurrent accesses toXL Value
objects.

7.4 XL Test Programs

A number of smaller XL test programs were written to test the features of the newXL Value
class, such as persistent storage and efficient insertion into values.
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Thestack-server.xl andstack-client.xl programs are simple example web ser-

vices: The server program maintains a persistent variable with a list of entries and offers access

to it via the standard operations of a stack. These operations are executed by sending messages

containing “push”, “pop” and “print” commands to the web service.

stack-client.xl is a simple XL program which allows the different commands to be

sent to the server.

The two XL programs were useful for testing the new persistence features of XL – despite

being small, they use most of the new features of the language.

Several other XL programs were written for a slightly different purpose: As mentioned be-

fore, the different XL document modification statements,insert , delete , replace , rename and

move , need to work in a variety of different cases. Since there is a risk that changes to the code

make it fail in some of these cases, five XL programs test the different possibilities for each type

of statement, and corresponding entries in thetests.xml file compare the programs’ output

to the expected output. By executing the XL test suite with “ant -f test.xml ”, there is a

convenient way to run tests on the document modification statements as well as other parts of the

XL runtime system.

7.5 Complex Test Application: auction.xl

auction.xl was the final part of the testing effort which was undertaken to ensure that the new

XL Value implementation is correct. This demonstration application was already present before

work on the new persistent value support began, and is special due to the fact that it features

three instances of XL which run as separate processes. The processes interact with each other by

sending SOAP messages. Quite often, they run in parallel.

As it turned out, the concurrent accesses toXL Value objects uncovered a number of prob-

lems in the implementation of theLibdbValue class. The first problem was that sometimes

several threads would attempt to access the sameXL Value object at the same time. By using the

synchronization features built into Java, access to the object was limited to one thread at a time.

Another problem has already been mentioned in section6.2.4: Concurrent access failed if

several instances of XL used the same database to store their persistent variables, due to dead-

locks. Unfortunately, the modifications made in response to the problem do not eliminate the

deadlocks entirely. Since this type of usage will be quite uncommon in practice (different in-

stances of XL web services typically run on separate machines) and it is no problem to simply

store different XL instances’ data in separate directories on disc, it is believed that the continuing

locking problems do not seriously reduce the usefulness of the persistent storage system.
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8 Performance Tests

The final version of the newXL Value implementation was also tested with regard to its perfor-

mance. All tests took place on an IBM compatible PC with an AMD XP 2100+ (1733 MHz)

running Linux 2.4.19, with 512 MB of memory and using Sun JDK 1.4.0. All accessed files

were already buffered by the operating system, and all involved Java classes were already loaded

before timing for a test case began.

8.1 Small Documents, Modifications

The tests described in this section are performed and timed by the classde.TUM.RTS.Value.
TestAccessSpeed. It concentrates on comparing the access times for different types of value

storage, with small values.

The different storage implementations used have the following properties:

BufferedValue Stores all tokens in memory, no support for persistent values – requests to make

values persistent are ignored.

LibdbValue, buffered, non-persistent The storage module has persistence support, but this

value is never written to disc because the cache is big enough and the value is not declared

persistent.

LibdbValue, buffered, persistent As above, but the value is declared persistent. ForLibdb-
Value, this means that all modifications are write-through.

LibdbValue, unbuffered The implementation’s in-memory cache is switched off completely,

every token access involves a database access and (de)serialization. Behaviour is identical

for persistent and non-persistent values.

The following different test cases were executed many times, then the average execution time

was calculated:

Read 23 tokensUse an iterator to read the complete contents of a value with the content

“<foo a=”b” c=”d” e=”f” g=”h” i=”j”/>”

Clear & write 23 tokens Clear the value, then insert the tokens that the empty-element tag

“<foo a=”b” c=”d” e=”f” g=”h” i=”j”/>” consists of.

500 inserts Start off with a value of “<database/>”, then insert “<entry>Text</entry>” 500

times as the new last child of “<database>”.
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500 reads & inserts Start off with a value of “<database/>”, then repeat 500 times:

Read whole value content, insert “<entry>Text</entry>” as the new last child of

“<database>”.

500 reads & inserts in XL Time needed for the execution of the following XL operation (ex-

cludes the startup time of the XL virtual machine):

service http://localhost:3328/

let $x := <entry>Text</entry>;

let $database := <database/>;

operation x
body

let $i := 0;

while ($i < 500)do
insert $x into $database;

insert $x into $database; !! insertstatement repeated 100×
. . .

let $i := $i + 100;

endwhile ;

endbody
endoperation

endservice

For the “non-persistent” test case, the declarations of$x and$database were moved in-

side the body of the operation. Note that the XQuery implementation in XL reads the

entire value during every insert, even though this is not actually necessary to perform the

insertion.

The results when repeatedly reading and writing 23 tokens are as follows:

Read 23 tokens Clear & write 23 tokens

BufferedValue 0.00072 ms (1400000/s) 0.00441 ms (227000/s)
LibdbValue (buf., non-pers.) 0.00302 ms (331000/s) 0.02005 ms (49880/s)
LibdbValue (buf., persistent) 0.00279 ms (358000/s) 9.65 ms (103/s)
LibdbValue (unbuffered) 3.57 ms (280/s) 4.65 ms (215/s)

As expected,BufferedValue performs a lot better than even a bufferedLibdbValue, read-

ing and writing the tokens almost an order of magnitude faster. This is due to the fact that with
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BufferedValue, reading a token only requires following a single in-memory reference, and sim-

ilarly, writing tokens only involves changing a few references in the linked list implementation.

In contrast, when accessing a fully bufferedLibdbValue, the implementation needs to acquire

a lock via the Javasynchronized statement, then check whether a buffered token is still valid

(i.e. has not been marked invalid after being pushed out of the cache), and finally update the LRU

cache statistics for the token before returning it.

Comparing the accesses for (non-)persistent bufferedLibdbValues, read access happens with

roughly the same speed for persistent and non-persistent values. On the other hand, write access

to persistent variables is slower by a factor of 500 compared to non-persistent variables, due to

the fact that modifications to persistent variables are write-through.

The numbers for unbufferedLibdbValues are slightly unrealistic – in practice, nobody will

want to switch off the class’s token cache completely. It is not entirely clear why clearing and

writing the tokens is twice as fast as for buffered, non-persistent values – one possible explanation

is that clearing the value can be performed more quickly if none of the tokens in the value are

in memory: The token cache does not need to be kept updated, and the tokens do not have to be

deleted from an in-memory doubly-linked list as well as in the database.

The results for creating an XML document with 500 entries using repeated insert operations are:

500 inserts 500 reads & inserts 500 r. & i. in XL

BufferedValue 1 ms 21 ms 2913 ms
LibdbValue (buf., non-pers.) 11 ms 165 ms 2512 ms
LibdbValue (buf., persistent) 1227 ms 1647 ms 4029 ms
LibdbValue (unbuffered) 483 ms 4310 ms 108000 ms

The figures in the left and middle columns show the results for direct accesses toXL Value
objects. As before,BufferedValue performs best, followed first by non-persistent and then by

persistentLibdbValue accesses.

The fact that in the case of the first column, accesses to completely unbufferedLibdbValue
objects are faster than accesses to buffered persistent objects can probably again be attributed to

the LibdbValue token cache. However, it is unlikely that the cache management alone would

account for such a large difference (a factor of 2.5) – the exact cause remains unclear.

To compare the overheads in theXL Value subsystem to those of the rest of XL, the right

column shows how long it takes if an XL program performs exactly the same operations on the

XL Value object as a special-purpose Java program does for the middle column. Even though the

measured running time doesnot include the time taken by XL to start up and parse the program,

the XL program still does not compare favourably at all. A closer look at the data in the top

three rows of the middle and right columns shows that the XL runtime system appears to add a
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overhead of about 2500 milliseconds irrespective of the type of storage back-end selected. (As

before, the results for unbufferedLibdbValues should be disregarded, they are not relevant in

practice.)

It may seem puzzling that buffered, non-persistentLibdbValues appear to perform better than

BufferedValues with the XL program. However, the numbers are probably slightly skewed, and

in reality, theBufferedValue implementation is faster: An effect which was observed during

testing, which might also be responsible for the strange numbers above is that the Java garbage

collection may have run one time more often during the time theBufferedValue performance

was measured.

8.2 Large Documents, Reads

Whereas the purpose of the performance tests in the previous section was to compare the dif-

ferent XML storage modules, the reason behind the following tests is to measure the maximum

throughput (in terms of the number of tokens that can be read per second) and to identify any

bottlenecks in the system.

Sequential Reads and Random AccessThe classde.TUM.RTS.Value.TestSeqRead con-

tains code which generates an artificial, large XML document which is declared persistent. Es-

sentially, the document reads

<document>
<entry>This is an entry in the document</entry>

</document>

and the<entry> tag is repeated over and over again. The exact number of tokens in the final

document is configurable. Having created the value,TestSeqRead attempts to measure the

speed in tokens per second once for a sequential read of the entire data and once for random

accesses to tokens in the stored stream.

At first, the speed was measured with a relatively small value of 1.500.000 tokens. The test

program gives the following results for this case:

Sequential read of 1.500.000 tokens: 203 seconds (7358 tokens/second)
Random access to 1.500.000 tokens: 241 seconds (6218 tokens/second)

The size of the corresponding XML document in ASCII text form is 9.6 MB (6.7 bytes per

token), and the size of the Berkeley DB database which holds the value amounts to 56 MB

(39.5 bytes per token).
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The results show that sequential reads of the data can be performed faster than random ac-

cesses. The difference is not as pronounced as one might expect, for the following reason: For

normal database applications, the expensive aspect of random accesses is the amount of disc

seeks, but in this case, as the 56 MB of the Berkeley DB database did not exceed the amount of

available memory (512 MB), all data was cached, so no disc accesses were necessary.

In addition to providing figures for a comparison of sequential vs. random access to a doc-

ument, theTestSeqRead uncovered the following problem: Reading a token stream from the

cached pages of the database into memory and turning it into a stream of Java token objects is

not an I/O-bound operation, but very much a CPU-bound operation.

Originally, a second test was planned with a document whose size in the database exceeded

the amount of available memory. However, this was abandoned because it would have taken too

long to run and because the results would probably not have differed very much from those of the

smaller test, due to the fact that disc accesses would only have accounted for a minuscule portion

of the total time the test program would have taken to run.

Bottlenecks in the LibdbValue Storage System Instead of measuring the throughput when

doing a sequential read of the data, work now concentrated on identifying which parts of the test

program took so long to execute. No Java profiler was available to accumulate exact information

about which parts of the system take up how much time, but by temporarily uncommenting

important sections of the code which is invoked byTestSeqRead and measuring the resulting

execution times, the followingapproximatefigures can be given. They show how much time

each part of the implementation takes up:

Test program (loop, selecting random token positions) 22%
Libdb transaction to fetch token data from database 51%
Unserialize data, create token objects 10%
LibdbValue cache management 16%

Again, the Java garbage collection makes exact measurements difficult: As long as large

parts of the code are commented out, far fewer objects are created and as a result, the garbage

collection runs less often and takes a shorter time to complete.

The result of this test is slightly disappointing: Most of the time is spent in libdb to retrieve

token data. Since it was suspected that much of this time was due to the fact that full logging

and transaction support was turned on for libdb, as an additional experiment the test was repeated

with transactions turned off. The results showed that transactions indeed slow down access to the

data; without transactions, accesses to the token data were almost twice as fast as with them.
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9 Conclusion

In section1, the nature of the problem that was to be solved in this diploma thesis was outlined:

XML documents (in the form of variables of the XL programming language) must be stored

on disc. In section2, we took a closer look at the technologies one should be aware of when

implementing such a solution for the storage of XML documents, including the XML standard

and related standards, the area of web services, and the XL programming language.

Section3 proceeded to introduce the different possibilities of storing XML data on disc: Flat

files can hold the document in its standard format, but are not very flexible. When turning the

document into tokens, it is possible to store the data as a stream of tokens, or to add information

which allows movement in the document tree. For either case, it needs to be decided whether to

store each token individually or whether to create chunks of token data. Furthermore, there is a

choice regarding the storage of these tokens or token data: Special low-level data structures exist

which ensure fast sequential access as well as efficient modifications, but it is also possible to use

a relational database system for the on-disc storage. Finally, a number of different types of index

structures increase the performance for certain document queries, at the cost of additional work

to create the index and to keep it up to date.

The practical part of the diploma thesis was described from section4 onwards. That section

discussed the requirements for the XL persistent storage system which had to be implemented,

notably support for efficient modification of XML data, the ability to store XML documents

persistently, and a modular architecture which allows other persistent storage solutions to be

added over time.

In section5, the tasks to be performed by each part of the implementation were specified,

together with a corresponding API. Section6 then concerned itself with the implementation of

the different parts, such as the new semantics for XL variable initialization, classes for persistent

and non-persistent storage of XL variables, and the choice of Berkeley DB as the database “back-

end” for the persistence code.

Finally, in sections7 and8, the new implementation was tested to eliminate as many errors

in the code as possible and measure its performance for different types of accesses to the XML

data.

Due to the maturity of the Java platform, the available compiler and other tools which were

used during the practical part of this thesis were well-suited for the given task, and no problems

were encountered using them. Instead, a different and unexpected problem turned out to be

the existing XL implementation: Because of the organization of the source files and the lack of

comments, it took much longer than expected to get to the point where it was possible to start

making modifications to the code.
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Some interesting conclusions can be drawn from the various performance tests that were

conducted: The tests show that the code which handles tokens on disc is rather slow, causing the

speed of access to the data to be limited by the available CPU power and not disc throughput.

However, the tests also make it clear that when an XL program executes, accesses to XML

variables only account for a quite small percentage of the total execution time. Without at-

tempting to turn this into a justification for the suboptimal performance of the persistent storage

subsystem, it must be said that the performance problems in other parts of XL should be tackled

first to improve the overall speed of XL programs.

More work would be necessary to identify the parts of XL where optimizations are most

needed, but the following two aspects of the current XL version appear to be problematic: First,

the XQRL XQuery optimizer is called too often to (re-)compile expressions, and second, the

XQRL code currently keeps reading XML documents from the start, making e.g. insertions into

the XML data inefficient despite the revisedXL Value class: Even though the insertion itself is

now fast, it takes too long to find the point of insertion.

There is room for future improvements in a number of further areas: First, it is possible

to create other persistent storage modules which store the XML data in different ways, and to

compare them to theLibdbValue implementation with regard to speed and disc space efficiency.

For example, it might be worthwhile to implement a storage manager similar to the EOS or

Natix ones from sections3.3.4and3.4.2. Furthermore, it would be very interesting to to evaluate

different XML index structures by adding support for them to XL.
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