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ABSTRACT
Measuring audience attention towards pervasive displays is
important but accurate measurement in real time remains a
significant sensing challenge. Consequently, researchers and
practitioners typically use other features, such as face pres-
ence, as a proxy. We provide a principled comparison of the
performance of six features and their combinations for mea-
suring attention: face presence, movement trajectory, walking
speed, shoulder orientation, head pose, and gaze direction.
We implemented a prototype that is capable of capturing this
rich set of features from video and depth camera data. Using
a controlled lab experiment (N=18) we show that as a single
feature, face presence is indeed among the most accurate. We
further show that accuracy can be increased through a com-
bination of features (+10.3%), knowledge about the audience
(+63.8%), as well as user identities (+69.0%). Our findings
are valuable for display providers who want to collect data on
display effectiveness or build interactive, responsive apps.
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INTRODUCTION
User attention is a fundamental prerequisite for public dis-
play interactions since displays need to attract the attention
of passersby to be used [4, 17]. Knowledge about attention is
particularly valuable for interactive applications, since it can
be used to guide users through the interaction process: An ap-
plication can first attract the attention of passersby through a
particular stimulus (e.g., motion [12], appearance of new ob-
jects [13], moving and looming stimuli [11], or changes in
luminance contrast [10]). As soon as attention of passersby
is detected, further actions can be taken to encourage interac-
tion [3], for example, by conveying interactivity [18], guiding
users to the optimal interaction area [2], or explaining how
the offered interaction technique works [1, 22].
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Figure 1. Attention towards displays: We compare the accuracy of differ-
ent features (face presence, movement trajectory, walking speed, shoul-
der orientation, head pose, gaze direction) obtained from sensor data.

At the same time, attention is an important metric to assess
display effectiveness through conversion rates [17], investi-
gate user behavior in the long term [15], and ultimately to
react to user behavior in real-time to support the interaction
process. However, reliable attention measurements are chal-
lenging and received only little attention in research, and if
so, mainly in lab settings requiring accurate user localisation
[8, 14, 23]. Prior work claims that if eye contact with the dis-
play lasts for more than 800 ms attention can be assumed [6,
16]. Eye contact can be detected using eye tracking [27] but
current systems require the user to remain static within a con-
fined area. Hence, deployments often use other solutions, in-
ferring attention from the presence of faces [21] or the mere
presence of the user [7]. To the best of our knowledge, there
is no research quantifying the accuracy of these features.

To close this gap, we show how attention can be quantified
in real-time from features obtained through a camera and a
depth sensor. Using state-of-the-art techniques, we provide a
comparison of previously proposed features. In particular we
compare face presence, movement trajectory, walking speed,
shoulder orientation, head pose, and gaze direction. To cap-
ture and process the data, our prototype uses multiple Kinects
to cover an area of 25 m2 in front of the display. We con-
ducted a controlled lab experiment (N=18) and show that in
cases where users are unknown (e.g., a public square), face
presence is indeed among the most accurate features. We also
show that accuracy can be further improved by combining
face presence with other features (+10.3%), if the audience is
known (e.g., in a supermarket) (+63.8%), as well as if people
can be identified (e.g., a personal work space) (+69.0%).



These findings are valuable for the designers of pervasive dis-
play applications who want to either quantify the success (i.e.,
how many people are paying attention towards a display) or
want to build applications that adapt to the user (for example,
guidance through the interaction process).

Contribution Statement. Our contributions are two-fold.
First, we show how audience attention towards pervasive dis-
plays can be measured using state-of-the-art techniques. Sec-
ond, we present a controlled lab experiment, quantifying and
comparing the accuracy of different features. Note, that we
do not propose novel features to measure attention. Our work
is complemented by discussing implications for the designers
of interactive display applications.

MEASURING AUDIENCE ATTENTION
In a first step we identified reliable and easy-to-deploy meth-
ods to measure overt attention towards pervasive displays. In
particular, we consider features describing user behavior, ob-
tainable from video (v) and depth (d) data.

Face Presence (v) The presence of a face in the display vicin-
ity may already be a good, though not perfect, indicator for
attention towards the display. Note that face presence does
not necessarily mean the head is directed towards the dis-
play. This feature also serves as a baseline.

Walking Speed (d) We assume that if people look at the dis-
play they may reduce their walking speed, which could
serve as an indicator for attention towards the display.

Position & Movement Trajectory (d) From depth sensor
data, the position and walking direction of a passerby can
be used to calculate a movement trajectory. This may serve
as an indicator whether or not a user is approaching a dis-
play and hence may direct his attention towards it [9, 24].

Shoulder Orientation (d) A user’s shoulder orientation rela-
tive to the display serves as a coarse indicator for attention
being directed towards the display. This is motivated by the
observation that as a display attracts users, they do not only
turn their head but at some point also their upper body, en-
tering an optimal viewing position [5].

Head Pose (v) Prior work showed head pose to be an atten-
tion indicator [19], though eye contact cannot be assumed.

Gaze Direction (v) We estimate a user’s coarse gaze direc-
tion. Two different approaches are considered. Feature-
based gaze estimation methods detect prominent facial fea-
tures, such as eye corners and pupil centers, and use geo-
metric mapping functions to determine the gaze location
on the display. In contrast, appearance-based methods di-
rectly learn a mapping from eye appearance to on-screen
gaze location [26]. While appearance-based methods are
typically more robust, e.g. to changing lighting conditions,
we opted for a feature-based method because these provide
higher gaze estimation accuracy.

IMPLEMENTATION
Based on the skeleton data from the Kinect we track the
face position and calculate the user’s orientation (body pos-
ture) based on the shoulder joints. By buffering past positions

Figure 2. Setup: Subjects started from 7 start points, at different speeds,
either looking at the ‘Display’ or not. They were recorded by 3 Kinects.
we also extract the user’s movement and walking speed over
time, resulting in the movement trajectory. We refine the de-
termined face position with an OpenCV Viola-Jones face de-
tector on the color image if needed. We detect facial features
within the face bounding box using the IntraFace library [25]
(face presence). If successful, this returns coordinates for sev-
eral facial feature points as well as the head pose.

In addition, we obtain the center of the pupil for each eye
using a gradient-based approach [20]. To determine the eye
region we calculate a rectangle from the eye corner points.
From the detected eye corners and the pupils for both eyes
we estimate the gaze direction. We determine the center point
between the eye corners and add the head vector normalized
to the eye radius to estimate the center of the eye ball. Sub-
tracting the estimated center from the previously determined
pupil results in a vector aligned with the user’s gaze direction.

EVALUATION
Next, we conducted a lab experiment to determine the over-
all accuracy as well as the contribution of the different fea-
tures and feature combinations. We deliberately opted to col-
lect data in a controlled setting to obtain a ground truth, i.e.,
we needed to determine whether people looked at the display
as they passed by. Though the lab setting is a limitation, run-
ning the experiment would have been difficult in public, since
it would have required either video recording and post-hoc
analysis of the data or interviewing each passerby.

Study Design
The study followed a repeated measures design with walking
direction, speed, and gaze direction as independent variables.

Walking Direction. We tested seven directions from which
users could approach or pass by the display (90◦, 120◦, 150◦,
180◦, 210◦, 240◦, 270◦ to the display). We assumed the sys-
tem to work best as users walk directly towards the display,
compared to cases where users walk parallel to the display.

Walking Speed. To account for both situations where users
are hurrying past the display as well as situations in which
users are walking in a casual manner, we instructed partici-
pants to either walk at normal or fast pace past the display.

Gaze Direction. In the final condition users were asked to
look at the display, whereas in the other condition users were
asked to not look at the display with no particular instructions
where to look. We use this information as a ground truth.

In total, this resulted in seven walking directions × two gaze
directions × two walking speeds = 28 conditions.



Setup
We setup the study in a large seminar room in our lab using
three Kinects to cover the entire space in front of the display
(Figure 2). The room was large enough so that the starting
and end points (black squares on the floor) for users’ walks
were outside the tracking area – similar to a real-world set-
ting. Note that including non-parallel walking directions also
allowed measurements from different distances to the display
(cf. Figure 3). We marked the starting points for the walking
tasks through labels on the ground. The Kinects were placed
on a rectangular wooden panel placed in front of a window
that at the same time represented the display.

Procedure
We first asked participants to fill in an introductory question-
naire, assessing gender and age. The experimenter provided
a brief introduction to the trial and explained them that their
task would be to walk past the display on predefined trajec-
tories, at different speeds, and either looking at the display
or somewhere else. Before each walk the experimenter told
them the condition. To minimize errors, we grouped the walks
by speed, by gaze direction, and by walking direction. Partici-
pants then performed the walks for all 28 conditions, followed
by a short break. This was repeated four times (112 walks).

RESULTS

Data Preprocessing
For the following analyses, we excluded data points in be-
tween trials, for example, when participants were captured
while walking from one trial’s end point to the next start point.

We smoothed feature values with a rolling window of 30
frames. Thus, we base predictions on observations aggregated
from approximately one second. This time period was moti-
vated as a slightly conservative version of the 800 ms of eye-
contact assumed to indicate attention in related work [6, 16].

Evaluation Schemes
We use a Random Forest classifier1 with default hyperparame-
ters and three different evaluation schemes to analyze the data.
The schemes reflect different assumptions about the practical
context of a system using the evaluated features for attention
detection. The three schemes are:

• Identified User: Here, we conduct ten-fold stratified cross-
validation on the data of a single user at a time. Reported
mean values in this scheme are averaged over all users and
reported standard deviations thus describe the spread of the
user-specific means. This scheme reflects performance of a
system that has identified the user before predicting atten-
tion (e.g. personal computing system).

• Known User: This scheme conducts ten-fold stratified
cross-validation on the pooled data of all users. Reported
mean values are averaged over all folds and thus standard
deviations describe the spread of the fold-specific means.
This scheme reflects performance of a system that can as-
sume the user to be known, but without identification (e.g.
office space or supermarket).

1http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html

Feature Identified User Known User Unknown User
µ σ µ σ µ σ

Movement Trajectory 0.86 0.02 0.71 0.00 0.52 0.01
User Position 0.69 0.04 0.58 0.00 0.51 0.01
Face Presence 0.61 0.07 0.60 0.00 0.60 0.07
Head Pose 0.60 0.04 0.57 0.00 0.53 0.02
Gaze Direction 0.58 0.02 0.56 0.00 0.53 0.02
Shoulder Orientation 0.54 0.02 0.51 0.00 0.51 0.01
Walking Speed 0.52 0.01 0.50 0.00 0.50 0.00

Table 1. Comparison of features, sorted by mean accuracy in the “iden-
tified user” evaluation scheme.

• Unknown User: In this scheme, we use the data of all but
one user for training, then test on the data of the remain-
ing user. This procedure is repeated so that each user is
the one to test on exactly once. Reported mean values in
this scheme are averaged over all these repetitions and thus
standard deviations describe the spread of the repetition-
specific means. This scheme reflects performance of a sys-
tem that does not assume to have seen the user before (e.g.
a display in a public space).

Basic Statistics
Our dataset has 243,324 data points from 18 participants (9
male, 9 female; all West-Europeans). Hence, each person con-
tributed 13,518 data points on average. Since about 53% of
our data points are samples from the “look at display” condi-
tion, we use this number as the baseline accuracy. This would
be achieved by a system that simply constantly predicts user
attention, and never not-attending. We did not find differences
caused by walking speed. Walking speed followed a normal
distribution with a mean of 1.25 m/s.

Evaluation of Single Features
Table 1 shows a comparison of the different kinds of features
for the three different evaluation schemes.

Identified User Scheme
This scheme achieved the highest accuracy overall. Here, fea-
tures from the Kinects’ skeleton data worked best: The top
features are Movement Trajectory (86% accuracy) and User
Position (69%). Features from the camera stream resulted
in worse prediction accuracies: Here, Face Presence (61%)
worked best, followed by Head Pose (60%) and Gaze Direc-
tion (58%). Shoulder Orientation (54%) and Walking Speed
(52%) did not compare well to the baseline accuracy of 53%.

Known User Scheme
In general, accuracy was lower in this scheme than for identi-
fied users, indicating individual differences in user behavior.
The top feature was Movement Trajectory (71% accuracy),
but this time followed by Face Presence (60%). User Position
was the fourth best feature here (58%). Head Pose reached
57% accuracy, Gaze Direction achieved 56%. Again, Shoul-
der Orientation (51%) and Walking Speed (50%) did not com-
pare well to the baseline (53%).

Unknown User Scheme
The final scheme led to the worst accuracy overall. In con-
trast to the other two schemes, here the top feature (Face Pres-
ence, 60% accuracy) was based on the camera, not the depth
data. Besides this feature, only Head Pose and Gaze Direction
(both 53%) performed comparable to the baseline (53%).

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


Figure 3. Participants’ X-Z-locations at which certain features could be measured. For example, the plot for Face Presence shows where our system
detected a face. The display is indicated by a half-circle. Percentages show the number of feature detections as a ratio of the whole dataset. The plots
show that video-based features are harder to assess robustly than features based on the depth-camera. Not surprisingly, camera-features are mainly
assessable when users walk straight towards the display, such that the system can see the face directly from the front for several subsequent frames.
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Figure 4. Comparison of feature sets in our three evaluation schemes.
These results show a superiority of location features for known users,
and better performance of face features for strangers. However, both fea-
ture sets can be combined to improve accuracy throughout all schemes.

Feature Locations
We further analyzed at which locations (distances) in front of
the sensors certain feature values could be measured. Figure 3
shows the results in a top-down view. While depth-based fea-
tures were almost always available, faces were only present in
about 63% of the frames, either because the system could not
recognize the face, or since the user simply had turned away
from the system. Features derived from the face data were
available in about a tenth of all frames. Looking at the related
locations, we found that this worked best when users walked
straight towards the system, presumably since this produced
multiple subsequent frames with a rather stable face image.

Evaluation of Feature Sets
We further compared three different larger sets of features:
1) all features, 2) features based on location data (i.e. depth
camera-based features: Movement Trajectory, User Position,
Shoulder Orientation, Walking Speed), and 3) features based
on face data (i.e. video-based features).

Figure 4 summarizes the results. They match the picture
obtained in the single feature evaluation: Location features
work best in the Identified User scheme and the Known User
scheme, while face features are superior in the Unknown User
scheme. Both feature sets outperformed the baseline and their
combination resulted in further improvement in all schemes.

DISCUSSION

Preferred Features Depend on Deployment Context
Comparing results between our evaluation schemes, we found
that features based on the Kinects’ depth cameras greatly out-
performed video-based features, if training data from the spe-
cific users is available. This indicates that movement trajec-
tories are user-specific, but recognizable across multiple rep-
etitions, as observed in our experiment. This is particularly
valuable from a privacy perspective, since location features

can usually be collected without the need to record video data.
Hence users can stay anonymous at the time of detecting at-
tention. Such a setup is usually desirable in workplaces (e.g.,
a display in the entrance area of an office or university build-
ing) or a supermarket with a known user base (employees,
customers) where people should not be identified and no pro-
files be created (e.g., when somebody arrives at work).

We thus conclude that systems in known environments, such
as an office space, should preferably use depth features. If
available, these features can be combined with video-based
ones to improve accuracy. In contrast, systems in public en-
vironments should definitely include camera-based features,
which are, however, more privacy-invasive. Note that for
known and identified user schemes, places with large user
numbers (shopping malls, train stations), scalability might be
an issue.

Face Features are Powerful but Less Robust
Our analysis showed that information derived from faces in
videos is less robustly available than depth-based features.
Faces were detected in about 63% of the frames. While such
presence of a face was the best single indicator for attention
for unknown users (with 60% accuracy, see Table 1), it also
meant that many frames had no face based on which the other
features such as gaze could be assessed. For this reason, head
pose and gaze information was only available for about a
tenth of our data points (see Figure 3).

We conclude that face images are a powerful source of infor-
mation for attention detection, but they may not always be ro-
bustly available. While future systems could aim to improve
on this with high-resolution video cameras, such a technical
improvement may still not capture cases where users’ faces
are simply not turned towards the system.

We thus recommend to combine both depth-based features
and face features. This is backed by our observation that com-
bining face features with depth-based location features even
improved prediction accuracy for unknown users, where loca-
tion features on their own were less accurate (see Figure 4).

CONCLUSION
In this work we presented the first quantitative comparison
of features available from depth and video data with regard
to how accurately they can determine user attention towards
a display. We found that face presence is the most accurate
feature in settings with unknown users, achieving at least 60%
accuracy (13.0% better than our baseline). Furthermore, we
found that accuracy can be increased in settings with a known
user base, in particular with features that preserve the user’s
privacy (+77.3% accuracy compared to the baseline).
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