
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Department “Institut für Informatik”
Lehr- und Forschungseinheit Medieninformatik

Prof. Dr. Heinrich Hußmann

Diplomarbeit

Survey and Review of Input Libraries, Frameworks,
and Toolkits for Interactive Surfaces and

Recommendations for the Squidy Interaction Library

Anton Zeitler
anton.zeitler@campus.lmu.de

Bearbeitungszeitraum: 15.04.2006 bis 14.10.2009
Betreuer: Dipl.-Medieninf. Raphael Wimmer
Verantwortlicher Hochschullehrer: Prof. Dr. Heinrich Hußmann

Survey and Review of Input Platforms and Recommendations for Squidy

Acknowledgments
I would like to thank Roman Rädle and Werner König from the Human-Computer
Interaction Group of the University of Konstanz. They supported me a lot and always
found some time to answer many questions. Furthermore, Jan Wehrheim and
Alexander Lang gave me valuable feedback.

III

Survey and Review of Input Platforms and Recommendations for Squidy

Abstract
This diploma thesis presents a survey and review of 28 input libraries, frameworks, and
toolkits. They originate from the domains multi-touch interaction, multi-modal
interaction, tangible interaction and augmented and virtual reality. The main
perspective is software engineering. Out of the set of software platforms the Squidy
Interaction Library is chosen as basis for the Curve project, an interactive desk
featuring a curved multi-touch surface. The software architecture of Squidy is discussed
and compared with the architecture of DirectShow, a multimedia subsystem of
Microsoft Windows. A number of improvements for further developments of Squidy are
recommended and described in detail. One improvement has been exemplarily
implemented.

Kurzzusammenfassung
Diese Diplomarbeit bietet eine Übersicht und eine Besprechung von 28 Bibliotheken,
Frameworks und Toolkits zur Verarbeitung von Eingabedaten. Diese entstammen den
Domänen Multi-Touch Interaction, Multi-Modal Interaction, Tangible Interaction und
Augmented und Virtual Reality. Hauptperspektive ist die Softwaretechnik. Aus dem
Bestand der Softwareplattformen wird die Squidy Interaction Library als Basis für das
Projekt Curve ausgewählt, einen interaktiven Arbeitstisch mit einer gekrümmten Multi-
Touch-Oberfläche. Die Softwarearchitektur von Squidy wird diskutiert und mit der
Architektur von DirectShow verglichen, einem Multimedia-Teilsystem von Microsoft
Windows. Für weiterführende Entwicklungen von Squidy wird eine Anzahl von
Verbesserungen empfohlen und im Detail beschrieben. Eine Verbesserung wurde
exemplarisch implementiert.

V

Survey and Review of Input Platforms and Recommendations for Squidy

Aufgabenstellung
Im Rahmen der Diplomarbeit soll eine Recherche nach bestehenden
Softwareplattformen durchgeführt werden, die sich zur Verarbeitung von Eingabedaten
für das Projekt Curve eignen. Aus dem Bestand dieser Softwareplattformen soll eine
fundierte und begründete Auswahl getroffen werden, die sowohl den qualitativen als
auch funktionalen Ansprüchen von Curve gerecht wird. Aufbauend auf der gewählten
Plattform sollen Vorschläge und Empfehlungen für notwendige Ergänzungen sowie
sinnvolle Verbesserungen der Plattform diskutiert und ausgearbeitet werden. Weiterhin
soll fehlende Kernfunktionalität der Plattform soweit wie möglich implementiert
werden.

VII

Survey and Review of Input Platforms and Recommendations for Squidy

"Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt, alle
Zitate als solche kenntlich gemacht sowie alle benutzten Quellen und Hilfsmittel
angegeben habe.”

München, den 14.10.2009 ____________________
Anton Zeitler

IX

Survey and Review of Input Platforms and Recommendations for Squidy

Table of Contents
1 Introduction ...1

1.1 Motivation of the Curve Project ..1
1.2 Status of the Curve Project ...2
1.3 Objective of this Work ...2
1.4 Outline of this Work ..3
1.5 Related Work ...3

2 Software Engineering Basics ..5
2.1 Software Design Principles ...5
2.2 Programming Paradigms ..6

2.2.1 Object-Oriented Programming ...6
2.2.2 Aspect-Oriented Programming ...7

2.3 Patterns ..7
2.3.1 Design Patterns ..7
2.3.2 Architectural Patterns ..8
2.3.3 Anti-Patterns ..9

2.4 Concurrency, Multi-Threading, and Parallel Processing9
2.5 Libraries, Frameworks, and Toolkits ...10

3 Requirements for an Input Framework ...11
3.1 Software Developer's Perspective ...11
3.2 Application Developer's Perspective ..12
3.3 End-User's Perspective ...12
3.4 Scientist's Perspective ..12
3.5 Curve's Perspective ..13
3.6 Technical Specifications ...13

3.6.1 Supported Communication Protocols ...13
3.6.2 Supported Interaction Devices and Interfaces ..14
3.6.3 Supported Types of Data ..14

4 Survey of Input Frameworks, Libraries, and Toolkits ..15
4.1 Augmented and Virtual Reality ...15

4.1.1 Unit ...15
4.1.2 ViSTA (DataLaViSTA) ..16

4.2 Multi-Modal Interaction ...16
4.2.1 OpenInterface ..17
4.2.2 Squidy Interaction Library ...18
4.2.3 vvvv ...18

4.3 Multi-Touch Interaction ...19
4.3.1 Bespoke Multi-Touch ..19
4.3.2 Community Core Vision ...20
4.3.3 EquisFTIR ..20
4.3.4 libavg ...20
4.3.5 libtisch ...21

XI

Survey and Review of Input Platforms and Recommendations for Squidy

4.3.6 mu3 ...21
4.3.7 Multi-Touch Vista ..21
4.3.8 multitouch ...22
4.3.9 MultiTouch.framework SDK ..22
4.3.10 multitouchframework ..22
4.3.11 OpenTouch ..23
4.3.12 pyMT ..23
4.3.13 Sparsh UI ..23
4.3.14 TouchKit ...24
4.3.15 Touchlib ..24
4.3.16 touchpy ...24
4.3.17 Touché ...24
4.3.18 xTouch ..25

4.4 Multi-Touch Interaction (Commercial) ...25
4.4.1 Microsoft Surface SDK ...25
4.4.2 Microsoft Windows Touch SDK ...26

4.5 Tangible Interaction ...26
4.5.1 Papier-Mâché ..26
4.5.2 reacTIVision ..27
4.5.3 TWING ...27

5 Compact Comparison of Frameworks, Libraries, and Toolkits29
5.1 Tabular Survey ...29
5.2 Pleading for the Squidy Interaction Library ..30

6 The Squidy Interaction Library ...31
6.1 Squidy Core ..32

6.1.1 Squidy Manager ..33
6.1.2 Squidy Designer ..33

6.2 Concepts in Squidy Core ..33
6.2.1 Processable ..33
6.2.2 Pipeline ...34
6.2.3 Nodes ...34
6.2.4 Pipes ..34
6.2.5 Piping ..35
6.2.6 Data Representation ...35
6.2.7 Data Processing ..36
6.2.8 Persistence ..36
6.2.9 Dynamic Reconnection ...37
6.2.10 Dynamic Compilation ...37
6.2.11 Squidy Remote ..38
6.2.12 Data Recorder ...38

6.3 Squidy Bridges ..38
6.4 Squidy Client Implementations ..38
6.5 Performance Considerations ...39

XII

Survey and Review of Input Platforms and Recommendations for Squidy

6.6 Planned Features ..39
6.7 Comparison of Squidy with DirectShow ..41

6.7.1 Elements of DirectShow ..42
6.7.2 Connection Process ...43
6.7.3 Filter Types ..44
6.7.4 Data Processing ..45
6.7.5 Allocators ..45

6.8 Parallel Processing in Squidy ...46
6.8.1 Stages ..46
6.8.2 Benefit of Parallel Processing ...47
6.8.3 Limitations of Parallel Processing ..47

7 Proposed Improvements to Squidy ..49
7.1 Node Types ...49

7.1.1 New Categorization ..49
7.1.2 Bridge Nodes ...50
7.1.3 Transformer Nodes ...50

7.2 Data Synchronization ...50
7.2.1 Start Time Stamp and Stop Time Stamp ..51
7.2.2 Reference Time ...51
7.2.3 Distributed Environment ..52

7.3 Data Allocator ..52
7.3.1 Data Object Creation on Demand ..53
7.3.2 Implementation Details ..54
7.3.3 Transfer of unique Attributes ...55
7.3.4 Dynamic Data Allocator Capacity ...56

7.4 Direct Invocation and Blocked Execution ...57
7.4.1 Parallel Processing ..57
7.4.2 Implementation Details ..58

7.5 Multi-Touch Input Node ..58
7.5.1 Advantages of the current Implementation ...58
7.5.2 Disadvantages and Proposals for Improvements ..58
7.5.3 Proposal for an overall Architectural Redesign ..60
7.5.4 Benefits of the proposed Redesigned Architecture61

7.6 Multi-Touch Calibration ..62
7.6.1 Surface Calibration ...62
7.6.2 Camera Calibration ..63
7.6.3 Implementation Details ..65

7.7 Image Stitching ..66
7.7.1 Stitching Process ...66
7.7.2 Available Implementations ...67
7.7.3 Implementation Details ..68

7.8 Management Interface ..68
7.8.1 Requirements ..69

XIII

Survey and Review of Input Platforms and Recommendations for Squidy

7.8.2 Remote Access using the Java Language ...70
7.8.3 Remote Access by a non-Java Client Application72
7.8.4 Use of Scripting Languages ..74
7.8.5 Remote Access by Scripting Languages ...74

7.9 Monitoring ..75
7.9.1 Inspection of Data Objects ...75
7.9.2 Logging ...77

7.10 Circular Pipelines ...77
7.10.1 Prevent Construction ..78
7.10.2 Eliminate Negative Consequences ..79

7.11 Dynamic Reconnection ...80
7.12 Further Improvements ...81

8 Remarkable Features of Competitors to Squidy ...85
8.1 Input Interpretation ...85
8.2 Gesture Recognition ...85
8.3 Input Abstraction ...86
8.4 Image Filtering ...86
8.5 Fiducial Markers ..87
8.6 Data Processing and Synchronization ..87

9 Implementation of Data Object Monitoring using Visitors ..89
10 Conclusion ..91
 Bibliography ...93
 Appendix ..99

 Source Code of Data Object Monitoring using Visitors ...99
 Source Code of Synchronization Latency Test ...105
 Comparison of Libraries, Frameworks, and Toolkits ...107

XIV

Introduction

1 Introduction
The Curve project [1] has been initiated at the University of Munich (LMU) and aims
to create a curved multi-touch desk. In the long run, this desk should also be able to
cooperate with tangible objects and other multi-modal interaction techniques. This
desk will require a versatile software platform which operates a multi-touch surface,
handles multi-modal user input, and suits all requirements of human-computer
interaction (HCI) research. Furthermore, this software platform should be the basis for
subsequent related research projects. Thus it has to be stable, flexible, extensible, and
easy to use for multiple collaborating researchers. The creation of such a software
platform is a challenge.

“Curve is a desktop-sized interactive surface with a horizontal and a slightly tilted
vertical surface connected by a smooth curve.” The approach “seeks to combine a
horizontal and a vertical surface into one large [seamless] interactive surface while
preserving the unique properties of each.” [1]

1.1 Motivation of the Curve Project
The motivation of the Curve project reads as follows [1]:

“In today’s computer use at desks a dividing line exists between the physical work
environment on the (horizontal) desktop and the virtual work environment on the
(vertical) computer screen. Most human-computer interaction is done by means of
keyboard and mouse combined with a vertical screen. For interacting with the physical
world on our desktop hands, fingers and pens are the primary tools. Various research
prototypes have tried to merge physical and virtual work environments on digital,
horizontal screens. As horizontal and vertical surfaces have complementary advantages

1

Illustration 1: The Curve desk

Survey and Review of Input Platforms and Recommendations for Squidy

and disadvantages they are not interchangeable. On the one hand, vertical surfaces are
well suited for displaying information but less practical for manual (touch-)interaction.
On the other hand, horizontal surfaces facilitate direct manual interaction with virtual
and physical objects while making it difficult to work with different documents at the
same time. In the following we describe the design of an interactive surface supporting
those properties and our findings of its ideal size based on an initial exploratory study.”

1.2 Status of the Curve Project
The ergonomic requirements of the Curve desk are currently evaluated within the scope
of another diploma thesis. A user study was conducted to gain information about the
optimal dimensions of the desk as well as the optimal radius of the integrated curve. [1]

Technical details of the hardware technologies used for the Curve desk are not yet
finalized. Several multi-touch technologies [2] are available, most likely FTIR
(frustrated total internal reflection) [3] and modulated light [4] will be used. However,
the uncertainty regarding details of the hardware platform does not seriously affect the
software platform. It is just one more reason why the software solution has to be able
to handle various hardware configurations.

Regarding the software platform for the Curve desk, this work is the first in a row of
further research activities.

1.3 Objective of this Work
This work treats technical aspects, especially technical aspects of a software platform
for the processing of multi-touch and multi-modal user input. It focuses on aspects of
software engineering and aims to provide a technical solution tailored to the
requirements of the Curve project.

The author originally pursued the plan to develop a new software platform from
scratch. However, during review of related work this plan was abandoned. Amount and
quality of existing solutions lead to the decision that it does not make sense to initiate
another entirely new software development project. Thus the objective changed to
determining the most qualified existing solution and to analyzing the need and
possibility of further improvements in the view of specific requirements of the Curve
project. This solution is the Squidy Interaction Library [5-7]. A number of
improvements is discussed and for one an implementation is given in this work.

Additionally, the review of related solutions lead to a survey of 28 software platforms
for processing input from multi-touch, multi-modal, and tangible interaction as well as
virtual and augmented reality. These platforms were characterized and compared and
were also rated to find the most appropriate one for the Curve project.

2

Introduction

1.4 Outline of this Work
This work starts in section 2 with a brief introduction to the field of software
engineering and development to provide some basic knowledge required for
comprehension of the rest of the work.

Section 3 continues with a specification of the requirements for a software platform for
the Curve desk which handles multi-modal and especially multi-touch input using a
curved surface.

The following section 4 is dedicated to the review and characterization of related work
in terms of existing software projects for multi-touch and multi-modal input. Moreover,
related fields of research including tangible interaction as well as virtual and
augmented reality are examined.

The subsequent survey in tabular form in section 5 lists details and features of the
projects that were presented in the preceding section and allows to compare them
easily. Furthermore, the most qualified project for the Curve project is selected and the
choice is justified.

Section 6 describes the internal structure and technical concepts of the selected
software platform. It also compares these concepts with those of an established
platform which is already long-term proven in practice.

Since the Curve desk demands for a versatile set of exceptional features, complements
for the selected project in terms of improvements and missing functionality as well as
concrete solutions for their realization are recommended in section 7.

In section 8 some remarkable unique features of some of the other reviewed projects are
highlighted.

An implementation of one of the preceding proposals for improvements is provided in
section 9 before this work closes with some final words in section 10.

1.5 Related Work
Related work, also looking into multiple software platforms, has been published by
Christoph Endres et al. [8] in the field of ubiquitous computing and by Pablo Figueroa
et al. [9] in the field of virtual reality. Bruno Dumas et al. [10] contribute their work in
the field of tangible and multi-modal interaction. The NUI Group published a book [11]
written by a community interested in multi-touch research which presents a survey of
hardware and software technologies used for multi-touch input.

To characterize the requirements of user input, Scott R. Klemmer and James A.
Landay [12] evaluated 24 applications working with physical user interfaces by four
traits: input technology, input form factor, output form factor, and how tangible input
and electronic output are coordinated.

3

Software Engineering Basics

2 Software Engineering Basics
Software engineering is a large field of research [13]. It covers many topics of the
software development process such as project management which contains project
planning, risk analysis and quality assurance. Further topics are requirements
engineering, architectural design, user interface design, software testing and object-
oriented design.

In this section, some basics of the design and implementation process of software
engineering are introduced. Since no new software project is developed within this
work, it is only a short introduction which helps to understand the ideas and terms
used in the subsequent parts of this work.

However, the presented principles, concepts, and methods are worth nothing if they are
not applied in an appropriate manner by talented and experienced software engineers
and programmers. One can easily misunderstand or overuse these ideas or apply them
in a wrong way. Software developers have to realize that “once more, the most elegant
solution is the one which comes closest to the nature of the problem.” [14] A crucial
requirement for good software design is a correct understanding of the domain of the
problem to solve, yet again the identification of the nature of the problem. Finally, a
software benefits in every respect from developers who care keenly about its
implementation [15].

2.1 Software Design Principles
Abstraction is a basic concept of software design. It permits to concentrate on a
problem at some level of abstraction without regard to irrelevant details. “At the
highest level of abstraction, a solution is stated in broad terms using the language of
the problem environment.” (p.342 in [13]) Successive steps of software design refine
lower levels of abstraction down to the actual implementation in source code. This is
the key for software engineers to have a chance to mentally cope with complex
problems and projects.

Another elementary objective in software development is reusablity (p.121 in [13]). A
common way to achieve reusabilty is to divide a software project into reusable
components or modules which results into modularity (p.343 in [13]). In some contexts
the terms component and module are used to denominate different elements or levels of
abstraction of a software structure but in general they can be regarded as synonyms.

Creation and use of reusable components results in shorter development cycles and
higher productivity. Modularity allows a program to become intellectually manageable
and also allows to develop multiple modules independently from each other. In
component-based software engineering, the entire architecture of a software project is
assembled from components (p.825 in [13]).

5

Survey and Review of Input Platforms and Recommendations for Squidy

Cohesion is another important software design principle (p.353 in [13]). It demands
that a module should concentrate on one specific task. Strong cohesion ensures clearly
understandable modules and avoids unforeseen errors and side-effects caused by
modules which do more than they are expected to do.

“Coupling is a measure of interconnection among module in a software structure.”
(p.354 in [13]) It tells how much a module relies on other modules. Coupling is also
named dependency and is inversely related to cohesion. Loose coupling or low
dependency results in strong cohesion. Ideally, a software structure should consist of
loosely coupled modules which makes it easier to understand, assemble, modify, test,
and reuse and avoids a possible “ripple-effect” of changes amongst modules.

The combination of abstraction, modularity, strong cohesion, and loose coupling is
closely related to the principle of separation of concerns. “In the context of software
evolution, a concern may be any criterion that allows us to separate parts of the
software that exhibit different rates of change or that have a different impact on
evolution.” [16] More general, separation of concerns is the act of “focusing one's
attention upon some aspect” [17] carried over to software development where it
demands to treat and implement each concern separately. An example for two different
concerns is the structure and the visual representation of a text document.

Last but not least, Refactoring is a technique to rework badly-structured source code
into well-structured source code. “Refactoring it the process of changing a software
system in such a way that it does not alter the external behavior of the code yet
improves its internal structure.” (p.XVI in [18]) It is applied in modern software
engineering methodology such as Extreme Programming (p.50 in [19]) but can also be
used to improve existing projects [20].

2.2 Programming Paradigms
Programming paradigms are fundamental styles of computer programming. They differ
in the concepts and abstractions used to represent the elements of a program (such as
objects, functions, variables, constraints, etc.) and the steps that compose a
computation (assignation, evaluation, continuations, data flows, etc.). Two
programming paradigms are introduced in this section.

2.2.1 Object-Oriented Programming
Object-oriented programming (OOP) is the realization step of an object-oriented
software engineering process. It uses classes as a method to form a software structure.
Classes “encapsulate the data and procedural abstractions required to describe the
content and behavior of some real world entity” (p.546 in [13]). Classes contain
attributes (variables) which represent the current state of a class, and methods
(functions) which operate on these attributes. An object is created as an instance of a
particular class. A class can be regarded as a template which is used to instantiate new
objects of the type of the class.

6

Software Engineering Basics

Important concepts of OOP are encapsulation, inheritance, and polymorphism (p.550 in
[13]). Encapsulation supports cohesion and loose coupling by hiding attributes and
methods of a class from other classes. Inheritance is a concept to realize levels of
abstraction by generalization and specialization of classes. Polymorphism supports
inheritance by providing a way to work with general methods of a class which actually
execute specialized implementations of inherited classes. These three concepts are
backed by the concept of interfaces which describe the external interface of a class
separated from its actual implementation.

Object-oriented software engineering usually results in a hierarchical class structure
with the most abstract functionality on the top level of the hierarchy encapsulating
classes which fan out to lower levels of abstraction. All projects reviewed for this work
which allow public access to their source code employ OOP.

2.2.2 Aspect-Oriented Programming
Compared to OOP, aspect oriented programming (AOP) [21] is rarely used. It is a
powerful technique to realize separation of concerns but it may take a while for a
programmer to internalize and master the ideas of AOP. However, AOP integrates
with OOP and complements it with additional functionality.

AOP introduces aspects which operate orthogonal to the levels of abstraction of a
software project. An aspect cross-cuts the software structure to allow detached
implementations of components which work simultaneously on multiple levels of
abstraction. The implementation of an aspect is automatically weaved into class
methods during the code compilation process. The weaving process is controlled by
pointcuts which are assigned to a particular aspect [22]. A pointcut allows a flexible
definition of rules defining which classes and methods are connected with an aspect.

An aspect modifies the normal program flow of object-oriented programs. It can be
applied for example to the entry point of each method of a class to verify the
availability of a required resource and to provide error handling.

2.3 Patterns
Patterns were generally defined by Christopher Alexander: "Each pattern describes a
problem which occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice.” [23]

Two specific forms of patterns relevant for software development are design patterns
and architectural patterns which are briefly introduced in this section.

2.3.1 Design Patterns
A specialized form of patterns applied to object-oriented software engineering are
design patterns. They are defined as “descriptions of communicating objects and classes

7

Survey and Review of Input Platforms and Recommendations for Squidy

that are customized to solve a general design problem in a particular context.” [24] In
other words, design patterns provide proven solutions for common tasks in OOP. They
help a software developer to build a well-designed software structure.

Only a small selection of existing design patterns [24] can be listed here:

• Observer: reduction of coupling by Inversion of Control [25]
• Composite: abstraction by a unique interface for individual and compositions of

objects
• Abstract Factory: encapsulation of object instantiation
• Proxy: hiding of actual implementation to control access and encapsulate additional

required operations
• Visitor: representation and extension of operations on other objects
• Object Pool: specialization of Abstract Factory including caching of objects [26]
• Dependency Injection: generalization of Abstract Factory including Inversion of

Control [25]

2.3.2 Architectural Patterns
In contrast to the relatively small context of a design pattern, “an architectural pattern
expresses a fundamental structural organization schema for software systems.” (p.25 in
[27]). It is a “template for [a] concrete software architecture” and is thereby an essential
decision at the beginning of a software development project as it determines the basis
for all subsequent development processes.

Layers
Layers can be found in nearly every software project as they are a typical instrument
to realize abstraction (p.31 in [27], [28]). An example for a layered architecture is the
OSI model for communication protocols [29]. It defines a stack of 7 layers of
abstraction from the application layer which actually operates on domain-specific data
types, over transport protocols for data packets, down to the physical medium for data
transport.

Layers can for example be realized by inheritance of classes or by creating a hierarchy
of modules which implement different levels of abstraction. Modules embedded in or
encapsulating other architectural patterns than layers are often using a layered
structure themselves. This also became evident during the review of existing software
projects for this work.

Pipes and Filters
The Pipes and Filters pattern is appropriate for systems which process a continuous
stream of data (p.53 in [27], [28]). Its architecture consists of a chain of processing
nodes called filters. These are connected by pipes and thereby grouped to a filter chain
or processing chain, also called the pipeline. Pipes can be designed as separate active
components or as a logical construct only. The primary data flow within this processing

8

Software Engineering Basics

chain is commonly unidirectional, the direction of data flow is called the downstream
direction in opposite to the upstream direction [30; 31].

The interfaces of the pipe and filter components as well as the data transport format
between both components should be defined identically for all components to allow
flexible rearrangement of the filters in a pipeline.

Model-View-Controller
The Model-View-Controller (MVC) pattern is an architectural solution for applications
with a user interface. It defines the model which is responsible for operations related to
the application domain, the view which displays the state of the application, and the
controller which executes user interaction with the model and the view (p.125 in [27],
[32]). MVC separates the concerns processing, output, and input of an application.

2.3.3 Anti-Patterns
In contrast to a pattern which demonstrates a good solution for a problem, an anti-
pattern denotes an explicitly bad solution for a problem. “An anti-pattern is a literary
form that describes a commonly occurring solution to a problem that generates
decidedly negative consequences.” [33] Anti-patterns help to identify and name bad
software design and suggest approaches how to improve it. They also try to raise the
awareness to anti-patterns of software developers and educate them by giving negative
examples.

Some examples of anti-patterns are:

• The Blob or God Class: one class monopolizes processing and is responsible for
“everything” (p.42 in [33])

• Spaghetti Code: very little software structure, large method implementations (p.64)
• Cut-And-Paste Programming: several similar or duplicated segments of code (p.75)

A software project which features multiple anti-patterns tends to develop itself into a
Big Ball of Mud. A Big Ball of Mud is a “haphazardly structured, sprawling, sloppy,
duct-tape and bailing wire, spaghetti code jungle.” [34] For a software developer, a Big
Ball of Mud is hard to understand and expensive to maintain.

2.4 Concurrency, Multi-Threading, and Parallel Processing
Subsequent parts of this work sometimes refer to multi-threading and parallel
processing. Both are aspects of concurrency which is ”concerned with the fundamental
aspects of systems of multiple, simultaneously active computing agents that interact
with one another.” [35]

Multi-threading is the concept of using multiple threads within a computer program. A
thread contains an implementation of a sequential program flow which can be executed
independently from other threads. Threads can be regarded as lightweight processes, in
terms of instances of computer programs, which run within another computer program.

9

Survey and Review of Input Platforms and Recommendations for Squidy

Processes and threads are commonly managed by the used platform. Multiple
simultaneously executed processes or threads perform parallel processing.

If the underlying hardware platform incorporates less processing units than the number
of simultaneously executed threads, an illusion of parallel processing is commonly
achieved by multi-tasking: Multiple threads share a processing unit and are executed
sequentially and interleaved based on a schedule (time-division multiplexing).

Contemporary (2009) hardware platforms often provide multiple processing units [36].
Concurrency enables a computer program to utilize the full processing power of such
hardware. But it also requires that software developers care for possible issues and
challenges arising from parallel execution of operations, such as synchronization of data
access and adherence of the correct order of operations.

2.5 Libraries, Frameworks, and Toolkits
Since software should be designed in a reusable way (see section 2.1), it is obvious that
the resulting reusable elements of a software project have to be organized in some way.
A common way to do this is to create various packages containing reusable software
modules. These packages can be used as a basis for other projects and can be provided
to other developers either for free or against payment. Particular variants of such
software packages are libraries, frameworks, and toolkits.

A library in terms of software is a generalized set of related algorithms which focuses
exclusively on code reuse [37]. It provides a set of independent functions which can be
called by another software using the library. Examples for such functions can be a
mathematical operation, loading of a file into memory, or a sorting algorithm.

A framework does not solely include reusable code but incorporates a software
architecture. There is no unique definition but possible definitions for a framework are
“a reusable design of all or part of a system that is represented by a set of abstract
classes and the way their instances interact” or “the skeleton of an application that can
be customized by an application developer.” [38] Object-oriented frameworks make use
of proven patterns and provide stable interfaces as well as generic components. They
reduce the required effort for development of customized applications, they are
extensible and they improve quality, reliability, and interoperability of software
projects [39].

A toolkit goes one step further. It is an “integrated toolset to enable users to create and
test designs for custom products or services that can then be produced 'as is' by
manufacturers.” [40] Toolkits are easy to use, contain libraries of reusable modules
commonly used in custom designs, and allow a user to create final products which do
not have to be revised by additional experts before they are published. In terms of
software, this can be a framework which includes additional tools for testing and
evaluation, or GUI (Graphical User Interface) elements which can be used together
with the framework [37].

10

Requirements for an Input Framework

3 Requirements for an Input Framework
When a software project has to be realized, the first step in the software engineering
process is requirements engineering. It describes the procedure of specifying
requirements for a project with respect to the demands of its various stakeholders
(p.255 in [13]). Even if no new software development project is initiated in this work, a
list of requirements which define selection and comparison criteria for the review of
existing projects is needed.

The author acquainted himself with the domains of multi-touch and multi-modal input
and created a list of requirements. He was also able to refine his list of requirements
together with stakeholders which were familiar with these domains. The concept of an
object-oriented framework (see section 2.5) is selected because it complies with the
needs of the project and the stakeholders and can be extended to a toolkit if necessary.

In an abstract and generalized form, the focus of the input framework is management
and control of the employed hardware devices such as cameras and sensors. It is also
responsible for further processing and abstraction of input data produced by these
devices. The framework must provide the resulting data in real-time in a unified
format.

To get a more precise specification of the requirements for the framework, the
perspectives of the relevant stakeholders for the Curve project are discussed separately
in the following sections.

3.1 Software Developer's Perspective
Software developers and especially successors of software developers prefer to work with
clearly structured software and source code which is easy to understand. Moreover, a
software developer's life is easy if he can change a feature of the software without being
afraid of disrupting any other part of it, or if he can add a feature without the need to
modify existing source code.

Even if some of these requirements are expected from a framework (see section 2.5),
experience of the author shows that they are not self-evident for every software
developer. This results in the following list of requirements regarding the people who
participate on the software development of the framework:

• modular, flexible, and easily extensible software design
• elaborate software architecture based on proven design patterns (see section 2.3)
• carefully written source code which follows clear conventions [15]
• documentation of architecture, modules and application programming API

(application programming interface)

11

Survey and Review of Input Platforms and Recommendations for Squidy

3.2 Application Developer's Perspective
An application developer who integrates the framework in his application is pleased to
have a simple interface to the framework which directly conforms to the semantics of
his application. Ideally, he can perform the integration once and then forget about it
because the interface and the structure of data transferred over it will never change
and universally matches any input device and interaction modality.

Therefore, the following points are important for application developers:

• output of input data in a unified data format through a unified and stable software
interface

• abstraction and interpretation of input data including mapping to application
semantics

3.3 End-User's Perspective
Experience shows that the end-user, regarded as the union of the diversity of many
end-users, typically likes to have many features and possibilities. This means he would
be happy to be able to use the framework on multiple platforms with many different
input devices, especially exactly with the devices he likes or owns, maybe
simultaneously with other users. He also wants to control all settings of these devices in
a convenient way.

Additionally, multi-touch applications can suffer from high latency. That is the time
which lies between the actual (inter)action of the user and the feedback of the
application. From practice it is known that recognizable latency can be annoying for
the user and should be reduced to a minimum. Therefore, the portion of latency
contributed by the framework should be as small as possible. As a reference example, a
popular multi-touch framework introduces about 30 ms latency on a contemporary
(2009) hardware platform [2].

These findings result in the following list of requirements:

• support of multiple input devices and users
• support of multiple types of input devices and input data
• support of multiple underlying hardware and software platforms
• configuration and control of input devices by the user's application
• possibility to customize and configure all data processing steps
• low latency of multi-touch input processing (less than 30 ms)

3.4 Scientist's Perspective
A scientist often incorporates the previously named stakeholders in one single person
and has some additional demands to support his research tasks. He ideally needs to
have multiple easy and quick ways to evaluate and compare multiple hardware and
software configurations. He also needs reproducible, comprehensible, and accurate input

12

Requirements for an Input Framework

data and often collaborates with other scientists to work together using bleeding edge
technology.

The subsequent list summarizes the individual requirements of a scientist employing
the framework:

• support for multiple rapid prototyping methods to allow quick execution of research
tasks with little effort

• interface for scripting languages as a particular method of rapid prototyping and
simplified development

• interface for logging output for diagnosis of problems and recording input activities
• access to raw and output data of every processing step on demand to quickly hook

up custom processing or diagnosis steps
• distributed processing of input data to support collaboration of multiple persons

working with multiple potentially distributed platforms, and also to allow research
on complex distributed system setups

• synchronization of multiple input devices and input data to ensure meaningful and
accurate correlations between all devices and their data

• synchronization interface which allows to synchronize an application with input
devices for synchronization with output devices and user interaction

• parallel processing of data processing steps as a technical instrument to fully utilize
contemporary (2009) hardware platforms and also to keep latency low

3.5 Curve's Perspective
The design of the Curve desk (see section 1.1) implies some special requirements which
have to be itemized more precisely. The following requirements originate from the
demand to get a handsome, planar, and undistorted view of the entire curved surface
which is captured by multiple cameras from a short distance with wide-angle lenses:

• support for simultaneous input of images from multiple video cameras
• distortion correction and seamless stitching of images in real-time
• geometric surface calibration of curved surfaces
• precise camera calibration including distortion correction of fish-eye lenses

3.6 Technical Specifications
In addition to the unspecific requirement listed above, some specific technical
requirements for the framework were collected. The following listing does not claim to
be comprehensive and emerges from previous knowledge, practical experience, and
plans for future research.

3.6.1 Supported Communication Protocols
• OSC including TUIO, which are popular protocols in the field of multi-touch

research

13

Survey and Review of Input Platforms and Recommendations for Squidy

• position and event protocols of libtisch which is a project of researchers cooperating
with the Curve team

3.6.2 Supported Interaction Devices and Interfaces
• multi-touch surfaces based on FTIR, DI, and capacitive sensing
• DiamondTouch, Second Light, Thin Sight and comparable multi-touch systems
• mobile displays which interact with the multi-touch surface using overlay techniques
• fiducial and other types of markers
• surface of objects, e.g. printed text documents or photographs
• shapes and shadows of objects including gestures
• keyboard, mouse, and similar input devices
• mobile phone or notebook via suitable interfaces such as WLAN or Bluetooth
• various types of sensors or tags communicating by NFC, RFID, or similar techniques

3.6.3 Supported Types of Data
• planar and spatial coordinates as well as motion and acceleration data of objects
• supplementary data of multi-touch events such as covered area and pressure
• camera and surface calibration data, especially for multi-touch surfaces
• images from video and photo cameras
• ID or URL of users, devices, and gestures
• abstracted interaction commands

14

Survey of Input Frameworks, Libraries, and Toolkits

4 Survey of Input Frameworks, Libraries, and
Toolkits

The original intention of this work was to create a new input framework which meets
all the requirements for Curve. Yet extensive investigation revealed way more related
work than expected. Overall 28 frameworks, libraries, and toolkits either in
implemented form or as a theoretical description were found. Thus the original plan
was changed from creating a new framework to adopting and extending an existing
one.

In order to come to a qualified decision which piece of work to take as basis for Curve,
all frameworks, libraries, and toolkits have been inspected and rated. They were
compared by basic characteristics, their features and extensibility, and compliance to
the requirements for Curve. Detailed studies or even evaluating each of them in
practice would have gone beyond the scope of this work.

Related work in terms of software projects covers primarily the field of multi-touch
interaction which is the focus of Curve. It also considered related work done in other
fields of research, in particular augmented and virtual reality, multi-modal interaction,
and tangible interaction. These fields have comparable demands on input data
processing. This section presents each related project in terms of framework, library,
and toolkit with a short abstract.

Due to constraints in terms of extent and expenditure of time regarding this work, the
survey covers the projects considered most relevant for the Curve project. It does not
include the projects ACTIF, Bespoke 3DUI, DIVERSE, DWARF, EVI3d, FLUID,
MORGAN (DEVAL), Studierstube (OpenTracker), Tinmith-evo5, VENSA, VPRN,
and VR Juggler (Gadgeteer) from the research field of augmented and virtual reality.
Moreover, Concerto, EMF, FAME, Flippo, GlovePIE, HephaisTK, ICARE, Icon,
iMap, iStuff, iStuff Mobile, Mengine, Pure Data, QuickSet, Santos, Service Counter
System, STARS, W3C Multimodal Interaction Framework, GestureTek, IntuiKit,
MAX/MSP, and trackd from the research field of multi-modal interaction are not
included.

4.1 Augmented and Virtual Reality
A multitude of input devices is used for HCI in augmented and virtual reality
applications. Additionally, projects from this field of research are often combined with
interfaces for output of three-dimensional computer graphics.

4.1.1 Unit
The Unit1 framework [41-43] focuses on an abstraction layer for interaction techniques.
“Interaction techniques involve the mapping of data from input devices to application

1 http://www.csc.kth.se/~alx/

15

http://www.csc.kth.se/~alx/

Survey and Review of Input Platforms and Recommendations for Squidy

semantics.” [41] The framework comes with a visual programming interface
implemented in Java3D.

It has a Pipes and Filters architecture comparable to OpenInterface and vvvv (see
sections 4.2.1, 4.2.3) which introduces units as the equivalent of filters. Units are
combined to interaction technologies in a Unit Graph. A unit has a number of
properties of a specific data type which can be routed to properties of other units with
matching data types. Thus different particular units vary in their input and output
interface and cannot be connected in arbitrary order because suitable properties must
be found for connection.

Unit allows distributed processing using Java RMI and already includes a number of
units for input devices, input transformation, and input interpretation. Units can be
replaced, remapped, and reconfigured at runtime. The authors of Unit are currently
working on porting the implementation from Java and Java3D2 to C++ and OpenGL3.

4.1.2 ViSTA (DataLaViSTA)
ViSTA4 [44] is a large toolkit for the development of virtual reality applications and
includes an abstraction layer for input devices. It is possible to control the toolkit using
a scripting language, an editor for visual programming is planned. The toolkit has not
been available to the public for many years but went open source in September 2009.
There was not enough time to evaluate the very large code base of ViSTA. Thus this
work concentrates on DataLaViSTA (see section 8.6), a framework which is part of
ViSTA.

DataLaViSTA [30] is an implementation of the Pipes and Filters architectural pattern.
It does not form an entire input framework but concentrates on data transport and
processing. The framework has been successfully used in research projects of its
authors. They address multiple challenges which have to be solved for efficient data
transport and processing in a distributed environment that is used for real-time
interaction applications. These are for example multi-threading, synchronization, and
inter-process communication.

The framework includes a layer structure for its pipes and filters. The base layer
contains basic implementations for pipes and filters and data transportation. Specific
filters and pipes are implemented in the common layer. The construction layer contains
algorithms to construct the filter chain.

4.2 Multi-Modal Interaction
A modality in terms of input processing of the computer in HCI describes a class of
devices or sensors which is being used by the human to provide input to the computer.
Multi-modal interaction allows to use or combine several modalities for this task.

2 http://java.sun.com/javase/technologies/desktop/java3d/
3 http://www.opengl.org/
4 http://www.rz.rwth-aachen.de/ca/c/piz/

16

http://www.rz.rwth-aachen.de/ca/c/piz/
http://www.opengl.org/
http://java.sun.com/javase/technologies/desktop/java3d/

Survey of Input Frameworks, Libraries, and Toolkits

4.2.1 OpenInterface
OpenInterface5 [45] is a very ambitious project for multi-modal input processing and
interaction. It has been planned since 2004, developed since 2006, and continues until
end of 2010. The project is being realized by a consortium of multiple academic,
research, and commercial organizations. OpenInterface implements a framework
consisting of a runtime platform and graphical editors for visual programming,
combined to a workbench with additional tools and components. The project aims to
“handle a rich and extensible set of modalities, enable a focus on new modalities or
forms of multimodality, support dynamic selection and combination of modalities to fit
the ongoing context of use, and enable iterative user-centered design.”6 OpenInterface
currently includes 12 example projects, and interfaces for more than 20 devices and
protocols which are also available from an online repository.

The OpenInterface platform uses a Pipes and Filters architecture for data processing
and is designed to be platform and language independent. The runtime platform
includes the OpenInterface Kernel. OpenInterface Components implement interfaces to
devices, process data, etc. and are defined as “reusable and independent software units
with exported and imported input/output interfaces.” They communicate through the
Kernel through an interface defined using OpenInterface CIDL (Component Interface
Definition Language) and can be developed using C, C++, Java, MATLAB, or C#.
CIDL code is generated from source code and is used to build proxy objects which
connect in between Components and the Kernel.

OpenInterface Pipelines are described using OpenInterface PDCL (Pipeline
Description and Configuration Language). A Pipeline defines a set of interacting
Components and is assembled and executed by the Kernel. The particular variant of
the employed Pipes and Filters architecture is comparable to Unit and vvvv (see
sections 4.1.1, 4.2.3), it uses multiple input and output ports with specific data types
which can connect to compatible types.

Two visual progamming environments are available, OIDE and SKEMMI. OIDE is a
standalone application and is not being further developed. SKEMMI provides more
functionality, is realized as a plug-in for the Eclipse platform, and supersedes OIDE.
The goals of the SKEMMI environment can be compared to the Squidy Interaction
Library (see section 4.2.2). These are integrated component development, multi-level
design (compare to semantic zooming), reusability of components, integrated
documentation, and integrated debugging at runtime.

The binary distribution package of OpenInterface is huge compared to most of the
other projects (Kernel setup file for Windows 43 MB, installed 139 MB, SKEMMI
installed 91 MB). It runs on the Linux and the Windows XP 32-bit platform (execution
failed on Windows Vista 64-bit with version 0.3.5.5c, 0.3.6 only tested on Windows XP
32-bit). During testing, OpenInterface behaved ponderous, it was difficult to construct
a working Pipeline with SKEMMI, and not all included examples were working. The

5 http://www.openinterface.org/platform
6 http://www.oi-project.org/

17

http://www.oi-project.org/
http://www.openinterface.org/platform

Survey and Review of Input Platforms and Recommendations for Squidy

Kernel sometimes locked up, or failed to assemble or execute a Pipeline while
displaying various error messages. Overall, development with SKEMMI and
OpenInterface felt rather uncomfortable, intricate and error-prone to the author. This
is very likely due to the not yet completed beta status of the project and the very
complex interaction of the multitude of elements of OpenInterface. Moreover, SKEMMI
and the OpenInterface Kernel have been and are still developed solely by one single
author, Jean-Yves Lionel Lawson, who has to handle this large development task on his
own.

4.2.2 Squidy Interaction Library
The Squidy Interaction Library7 [5-7] is a platform independent framework
implemented on the Java platform and consists of three logical parts. Squidy Manager
provides a flexible infrastructure for data processing, transport, management, and
persistence. Squidy Designer offers a comfortable GUI for interactive visual
programming and visual feedback. Squidy Client Implementations are external
applications which are executed on a client platform and provide input data to Squidy
Manager.

Squidy Manager is implemented using a multi-threaded Pipes and Filters architecture.
It manages Nodes for data processing which are connected via Pipes to form Pipelines.
In contrast to other comparable projects based on the Pipes and Filters architecture,
for example Unit (see section 4.1.1), the framework does not directly integrate the
internal properties of a Node into its data processing Pipeline and provides just a single
pair of input and output ports per Node, including automatic data type management.
Connection to external data sources and data targets is established using Bridges.
Squidy Designer uses semantic zooming for visualization of Pipelines and its contents.
A library of Nodes for multiple interaction modalities is already included.

The Squidy Interaction Library aims at being a platform for rapid prototyping of
multi-modal interfaces and iterative development of multi-modal applications. Many of
its objectives are similar to OpenInterface and SKEMMI (see section 4.2.1), are already
realized, and have been successfully applied in practice. More details and advantages of
the Squidy Interaction Library are presented and discussed in the sections 5.2, 6 and all
subsequent sections.

4.2.3 vvvv
With the vvvv8 toolkit, a developer combines a set of Nodes into a Patch by using a
visual programming interface. A Node is a processing element with a number of input
and output pins which can be connected and work in the same fashion as the
properties of Unit and ports of OpenInterface (see sections 4.1.1, 4.2.1). A Patch can be
used in the same way as a Node, multiple Patches can again be combined to another

7 http://www.squidy-lib.de/
8 http://vvvv.org/

18

http://vvvv.org/
http://www.squidy-lib.de/

Survey of Input Frameworks, Libraries, and Toolkits

Patch. vvvv provides a minimal GUI in terms of usability and conformity to
established user interface guidelines.

The designated audience of vvvv are developers of multimedia applications and
installations with physical interfaces. The current version of vvvv is shipped with 788
individual Nodes for 2D and 3D graphics and effects, animation, audio processing,
mathematical and logical operations, debugging, input and output devices, and other
purposes. The toolkit focuses on output and visual effects but it includes a video image
source Node based on DirectShow (see section 6.7), an image undistortion filter, and
some image trackers based on the freeframe9 plug-in system, including a fiducial
marker tracker based on the fidtrack library from the reacTIVision project (see section
4.5.2).

The pin configuration of Nodes and the structure of Patches is stored in XML files
which internally refer to native code implementations or to other Nodes or Patches.
They form a Pipes and Filters architecture and integrate multiple third-party libraries
which are included with the toolkit. Patches can only be executed within the runtime
environment of vvvv. A developer can also implement and integrate Nodes based on
native code into vvvv on himself, a Node for example for TUIO [46] has been created
by the Internet community10.

4.3 Multi-Touch Interaction
Multi-touch interaction focuses on input created through touches on a surface. These
touches commonly originate from multiple human fingers.

During detailed examination of the following projects it turned out that some of them
focus on GUIs for multi-touch input instead of providing the input data itself.
However, the author decided to keep them in the listing to provide a more
comprehensive view especially regarding multi-touch development.

4.3.1 Bespoke Multi-Touch
The Bespoke Multi-Touch11 framework is clearly structured and integrates with the
Microsoft XNA12 game development framework. Bespoke Multi-Touch comes with a
user interface component for XNA, and its architecture is comparable to the one of
XNA, too. The framework uses a hierarchical class structure covered by a class which
represents a multi-touch input surface and which acts comparable to a service. This
class signals multi-touch input events which can be handled by an application by using
C# delegates.

The employed image filters are taken from the AForge13 framework, DirectShow is used
for the interface to video cameras. The configuration of a multi-touch surface is stored

9 http://freeframe.sourceforge.net/
10 http://vvvv.org/tiki-view_forum_thread.php?comments_parentId=20637&forumId=22
11 http://www.bespokesoftware.org/multi-touch
12 http://www.xna.com/
13 http://code.google.com/p/aforge/

19

http://code.google.com/p/aforge/
http://www.xna.com/
http://www.bespokesoftware.org/multi-touch
http://vvvv.org/tiki-view_forum_thread.php?comments_parentId=20637&forumId=22
http://freeframe.sourceforge.net/

Survey and Review of Input Platforms and Recommendations for Squidy

in an XML configuration file. Since the framework is written using C#, scripting can
be done by Microsoft PowerShell which is able to access any .NET object.

4.3.2 Community Core Vision
Community Core Vision14 (CCV) is a newly developed multi-touch framework by the
NUI Group as a cross-platform alternative to Touchlib (see section 4.3.15). It includes a
GUI which allows to create and test standard multi-touch setups and stores the created
image processing configuration in an editable XML file. The framework comes with a
set of image filters based on OpenGL pixel shaders which are executed on the GPU
(Graphics Processing Unit), including a blob detector.

CCV is based on OpenFrameworks15, a software development library which provides
platform independent functionality for multi-media development in C++ including
support for image capture from video cameras. CCV provides a C++ interface which
can be implemented by a class to handle multi-touch input events. It is compatible
with the Windows, Mac OS X and Linux platforms but it uses three separate and
redundant sets of source code.

4.3.3 EquisFTIR
The EquisFTIR16 library [47] is designed to be very compact and fast and integrates
with the Microsoft XNA game development framework. It connects to cameras using
DirectShow and includes some optimized image filters which use compiler intrinsics to
utilize the SSE processing unit of modern CPUs. Multi-touch input events have to be
fetched by the application by polling them from in internal queue of the library.

4.3.4 libavg
libavg17 is a versatile library for input, processing, and output of audio, video, and
image data. It includes support for image capture from video cameras via multiple
interfaces for different hardware subsystems (libdc139418, CMU139419, Video4Linux20,
DirectShow). Furthermore, it comes with a large set of image filters including some
with GPU support, and contains blob detection and tracking functions. libavg also
includes support for scripting using Python21.

Since it is a library for software development, libavg does not provide ready-to-use
functionality for multi-touch systems but only functions to build such a system. A user
can use the provided functionality for image capture, image processing and graphical
output to develop a multi-touch input system. He needs skills in a programming
language or the Python scripting language to solve this task.

14 http://ccv.nuigroup.com/
15 http://www.openframeworks.cc/
16 http://research.cs.queensu.ca/~wolfe/equisftir/
17 http://www.libavg.de/
18 http://damien.douxchamps.net/ieee1394/libdc1394/
19 http://www.cs.cmu.edu/~iwan/1394/
20 http://linux.bytesex.org/v4l2/
21 http://www.python.org/

20

http://www.python.org/
http://linux.bytesex.org/v4l2/
http://www.cs.cmu.edu/~iwan/1394/
http://damien.douxchamps.net/ieee1394/libdc1394/
http://www.libavg.de/
http://research.cs.queensu.ca/~wolfe/equisftir/
http://www.openframeworks.cc/
http://ccv.nuigroup.com/

Survey of Input Frameworks, Libraries, and Toolkits

4.3.5 libtisch
The libtisch22 framework [48] supports multiple types of input devices and includes
input interpretation and presentation. It has a lightweight and easy to understand
software architecture and does not rely on external dependencies except an interface for
image capture from video cameras (libdc1394, Video4Linux, or DirectShow) and some
included small libraries for mathematical calculations. libtisch supports shadow
tracking [49] and comes with a Sudoku game as example application.

Moreover, it allows distributed processing and has a strict separation of layers which
are implemented as separate processes connected by sockets using proprietary,
compact, and text-based communication protocols. An application can connect to one
or in between two layers and process input data by parsing or generating commands
using the communication protocols of libtisch.

The hardware abstraction layer manages and unifies hardware and includes image
processing, blob recognition, and tracking. It outputs 2D coordinate data to the
transformation layer which applies surface calibration transformations to the data. The
interpretation layer detects gestures on the transformed data and signals them to the
widget layer. The latter one is designated for integration in a user application and
comes with two example widgets which use OpenGL for presentation.

4.3.6 mu3
mu323 [50] is a new framework which was released in alpha development stage in
September 2009. It focuses on analysis and abstraction of multi-touch and tangible
input data. The framework aims to identify and track multiple objects and users by
applying advanced methods for segmentation of input data and trajectory detection. It
does not yet support video cameras as a data source but it works on multi-touch input
data supplied by TUIO.

mu3 distinguishes itself by elaborate software architecture and design. The framework
wraps input data intro stream classes, which are transparently wrapped by calibration
classes to transform input data according to the calibration. Input streams are managed
by input providers which can be registered in an environment class. Input devices are
abstracted by a touch device class which supports registration of listener classes for
touch input notification. The design separates concerns and allows to develop and
extend each concern without affecting others.

4.3.7 Multi-Touch Vista
Multi-Touch Vista24 operates on pre-processed multi-touch input data such as 2D
coordinates of a finger contact. It provides an abstraction layer for multiple input data
sources and transmits the input data to an application using WCF25 (Windows
Communication Foundation). It also includes input interpretation logic and and a set
22 http://tisch.sourceforge.net/
23 http://code.google.com/p/mu3/
24 http://www.codeplex.com/MultiTouchVista
25 http://msdn.microsoft.com/en-us/netframework/aa663324.aspx

21

http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
http://www.codeplex.com/MultiTouchVista
http://code.google.com/p/mu3/
http://tisch.sourceforge.net/

Survey and Review of Input Platforms and Recommendations for Squidy

of user interface controls for use with WPF26 (Windows Presentation Foundation), and
a driver to provide input to Windows 7 via the framework (see section 4.4.2). Multi-
Touch Vista installs its core module as a Windows service which can be configured
through a configuration interface by a dedicated application.

The framework is well designed and flexible. It makes use of multiple technologies
(WPF, WCF, contracts, unmanaged code, native Windows API, Windows services,
etc.), design patterns (e.g. dependency injection), and consists of several separate
modules which are barely documented. Thus for programmers with few experience it is
hard to understand the internals of the framework. However, it is very easy to use as
an application programmer because it integrates into Microsoft Visual Studio, can be
configured using XAML27, and can be controlled using few lines of source code.

4.3.8 multitouch
The multitouch28 framework appears to be in an incomplete testing state, which is also
stated on the project website. Its focus is graphical output of the acquired input data
and it is able use Apple QuickTime29 for image capture from video cameras. Most of
the functionality of multitouch is hard-coded in the included examples.

4.3.9 MultiTouch.framework SDK
The MultiTouch.framework SDK30 [51] aims to be a standard solution for multi-touch
enabled applications on the Mac OS X platform. It focuses on connection to external
multi-touch devices and provides a simple and unified interface for application
developers. Input devices are connected by Input Modules which are realized as plug-ins
for the framework. It currently supports the Apple iPhone and iPod as input devices as
well as camera-based input.

The framework is currently redesigned by its authors and extended for use with
tangible widgets [52]. It is planned to release the redesigned version and the source
code to the public but currently neither a release schedule nor a license model have
been determined.

4.3.10 multitouchframework
The scope of multitouchframework31 is to provide a set of WPF controls for a multi-
touch GUI. It takes input data from a data source which sends TUIO commands and
translates them for its WPF controls. The framework recognizes a predefined set of
gestures. Since it is written using C#, scripting can be done by Microsoft PowerShell
which is able to access any .NET object.

No source code is provided with the framework except some usage examples. It
integrates into Microsoft Visual Studio and Microsoft Expression Blend for
26 http://windowsclient.net/wpf/
27 http://msdn.microsoft.com/en-us/library/ms752059.aspx
28 http://code.google.com/p/multitouch/
29 http://www.apple.com/en/quicktime/
30 http://hci.rwth-aachen.de/multitouch
31 http://code.google.com/p/multitouchframework/

22

http://code.google.com/p/multitouchframework/
http://hci.rwth-aachen.de/multitouch
http://www.apple.com/en/quicktime/
http://code.google.com/p/multitouch/
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://windowsclient.net/wpf/

Survey of Input Frameworks, Libraries, and Toolkits

development. An application developer can use the provided user interface controls and
a multi-touch input processing class to create own applications.

4.3.11 OpenTouch
The OpenTouch32 framework was created for Google Summer of Code 2007, a
programming competition for students. The framework is very small and has few
features and only rudimentary functionality. It seems to be in an extremely
experimental state and does not include useful examples. Therefore, it is hard to
determine which functionality and interfaces were planned to be realized. It uses parts
of reactiVision (see section 4.5.2), the SDL33 library, and OpenCV34 for video camera
access and image processing.

4.3.12 pyMT
The pyMT35 framework concentrates on rapid development of multi-touch user
interfaces. It is written with the Python scripting language, comes with a set of over 30
widgets and 32 examples which is a lot compared to other projects. The framework
supports OpenGL and is well documented.

PyMT can process input data from any data source providing multi-touch input data
but the only implemented data source is TUIO. Usage of pyMT is very simple. A
multi-touch application using two widgets which visibly reacts on a touch event can be
written with less than 10 lines of source code36.

4.3.13 Sparsh UI
Sparsh UI37 [53] aims at support of multiple different multi-touch input devices and has
its focus on gesture recognition. Its implementation is separated into a stable and an
experimental branch.

The stable branch consists of a gesture server implemented in Java which supports nine
gestures and includes some example applications. The gesture server receives multi-
touch input coordinates and events via a socket connection using a proprietary protocol
and recognizes gestures from the input data. The gesture server sends its results to an
application via another socket connection using another proprietary protocol.

The experimental branch provides interfaces to some multi-touch input data sources
such as Touchlib (see section 4.3.15). Additionally, a source code skeleton for a new
implementation of the gesture server in C++ is included. Overall, Sparsh UI leaves a
subjective impression of a not yet completed patchwork project which is in a process of
continuous change and is mixed from different programming languages and styles.

32 http://code.google.com/p/opentouch/
33 http://www.libsdl.org/
34 http://opencv.willowgarage.com/wiki/
35 http://pymt.txzone.net/
36 http://pymt.txzone.net/docs/api/tutorial-introduction-tut2.html
37 http://code.google.com/p/sparsh-ui /

23

http://code.google.com/p/sparsh-ui
http://pymt.txzone.net/docs/api/tutorial-introduction-tut2.html
http://pymt.txzone.net/
http://opencv.willowgarage.com/wiki/
http://www.libsdl.org/
http://code.google.com/p/opentouch/

Survey and Review of Input Platforms and Recommendations for Squidy

4.3.14 TouchKit
TouchKit38 from NOR_/D Labs has been designed for the multi-touch hardware
products of the company. The lightweight framework is realized as an extension for
OpenFrameworks and extends the application class of OpenFrameworks to provide
multi-touch input events. It uses OpenCV for image processing and supports OSC
through another included extension for OpenFrameworks. Moreover, TouchKit
captures images from a video camera or uses a video file as image source, both features
are provided by OpenFrameworks.

4.3.15 Touchlib
Touchlib39 is one of the few frameworks which use a Pipes and Filters architecture. The
surrounding filter graph management is done by some classes which have a layer
architecture as well as the filters itself. Touchlib stores and restores the entire filter
graph configuration in and from an XML file by iterating over all filters and their set
of parameters. The framework contains filters which use DSVideoLib or VideoWrapper
to capture images from a video camera. OpenCV is used for image processing and
OSCPack is used to send multi-touch input data with TUIO.

Touchlib comes with some sample applications and a configuration application which
assists the user in calibrating a multi-touch surface. Additionally, some flash
applications controlled by TUIO input data are included.

An application which uses Touchlib can be created by using one of the included sample
applications and manual modification of the XML configuration file. An application
developer can use the API to create and control one or multiple filter graphs, too. The
filter graph provides multi-touch input events either by explicit polling from an
internal queue or through a listener interface which can be registered by the application
which uses Touchlib.

4.3.16 touchpy
touchpy40 is a very small framework for the creation of multi-touch user interfaces and
is written with the Python scripting language. It does not provide much more
functionality than mapping TUIO input data to an event signaling mechanism which
can be used to control a Python application. A remarkable supplementary feature of
touchpy is the included plug-in for the Compiz window manager which enables multi-
touch user input for the Linux desktop.

4.3.17 Touché
Touché41 can be used on the Mac OS X platform only because it is based on the Apple
Cocoa framework. It offers a comfortable configuration GUI and a calibration assistant
for multi-touch surfaces. Video images can be captured from cameras supported by
38 http://labs.nortd.com/touchkit/
39 http://www.touchlib.com/
40 http://code.google.com/p/touchpy/
41 http://gkaindl.com/software/touche

24

http://gkaindl.com/software/touche
http://code.google.com/p/touchpy/
http://www.touchlib.com/
http://labs.nortd.com/touchkit/

Survey of Input Frameworks, Libraries, and Toolkits

Apple QuickTime and libdc1394. Besides video cameras, the Nintendo Wiimote is
supported as input device. Moreover, gesture recognition is supported and three sample
applications are included.

Touché consists of a considerable amount of source code which has been carefully
written. It combines multiple software architectures and is clearly structured. The
framework uses a filter chain for image data processing, a layered class hierarchy for all
other tasks, and acts as a stand-alone server application to which clients can connect to
receive multi-touch input data. Application clients can connect to the server either
using client classes from the Touché framework or using TUIO. Flash applications can
connect using a Flash XML protocol or the Flash Local Connection interface.

For fast image filtering, Touché comes with a set of 14 image filters written in GLSL
(OpenGL Shading Language) which are executed on the GPU. Blob detection is done
using OpenCV. The framework uses multi-threading and executes blob detection as
well as data transmission to clients in separate threads.

4.3.18 xTouch
The xTouch42 framework has not been released under this name yet. Its current name is
BBTouch which is still available as a part of the OpenTouch source code distribution
(see section 4.3.11). It is implemented using the Apple Cocoa framework and supports
the Mac OS X platform only.

BBTouch uses a model-view-controller architecture and includes a small demo
application. The framework captures video images using QuickTime and contains a
fixed image filtering procedure which is based on OpenCV. Tracked blob coordinates
can be sent to client applications using TUIO. BBTouch also includes classes for
customized OSC encoding and decoding.

xTouch shall support multiple cameras and fiducial markers. The author plans to
integrate faster image filters, too.

4.4 Multi-Touch Interaction (Commercial)
In contrast to the projects presented in the preceding section, this section describes
commercial products or parts of commercial products.

4.4.1 Microsoft Surface SDK
The Microsoft Surface SDK43 is designed to work with the Microsoft Surface multi-
touch table only and is well documented. It supports two gestures (tap, press and hold)
and six manipulations resulting from these gestures (drag, pan, flick, move, resize,
rotate). 24 multi-touch-enabled user interface controls are included.

A developer of an application based on the Surface SDK can choose to use the Core
layer where he has to handle multi-touch events and implement user interface controls
42 http://benbritten.com/category/multitouch/
43 http://www.surface.com/

25

http://www.surface.com/
http://benbritten.com/category/multitouch/

Survey and Review of Input Platforms and Recommendations for Squidy

on his own. The WPF layer comes with multi-touch-enabled user interface controls and
allows development using XAML and Microsoft Expression Blend.

4.4.2 Microsoft Windows Touch SDK
Microsoft Windows Touch44 in integrated into the Windows 7 operating system, the
associated SDK is provided for free to Windows developers as part of the Windows
SDK. Windows Touch supports a slightly extended set of gestures compared to the
Surface SDK and does not include multi-touch-enabled user interface controls.

Applications which want to use multi-touch input can receive Windows messages over
a standard Windows message queue. These messages signal multi-touch events
(WM_TOUCH) and detected gestures (WM_GESTURE). The pan, press and hold,
and zoom gestures are additionally mapped to standard Windows messages to allow
scrolling and simulated mouse interaction for applications which are not aware of
multi-touch input. Furthermore, the SDK offers a set of interfaces which enable a more
comfortable way for a developer to process the multi-touch input messages.

Windows Touch does not do image processing, it requires pre-processed touch
coordinate data and contact events. To provide multi-touch input data to Windows
Touch, an input device must support the Windows driver interface for human input
devices (HID). A driver which simulates a HID must be implemented using the
Windows Driver SDK to feed in data without a hardware device but by using software.
The MultiTouch Vista framework includes such a driver (see section 4.3.7).

4.5 Tangible Interaction
Tangible interaction refers to tangible objects for HCI which are commonly placed on a
surface monitored by the computer. Therefore, it is closely related to multi-touch
interaction. Depending on their type, tangible objects can optionally operate
independently from a surface. Thus tangible interaction is also close to multi-modal
interaction.

4.5.1 Papier-Mâché
The Papier-Mâché [12; 54; 55] toolkit is primarily designed to handle input directly
generated by physical objects but it also includes interfaces to photo and video cameras
for image input. Physical objects and objects detected on images are abstracted to
multiple hierarchically organized types of Phobs. The interface to video cameras is
provided by JMF (Java Media Framework) and image processing is done with JAI
(Java Advanced Imaging). The toolkit includes implementations of Phobs for barcodes
and RFID tags.

Papier-Mâché45 uses a complex system for input abstraction. Association Factories
match Phobs with Classifiers and produce different types of Association Elements

44 http://msdn.microsoft.com/en-us/library/dd562197(VS.85).aspx
45 http://hci.stanford.edu/research/papier-mache/

26

http://hci.stanford.edu/research/papier-mache/
http://msdn.microsoft.com/en-us/library/dd562197(VS.85).aspx

Survey of Input Frameworks, Libraries, and Toolkits

when a Classifier matches a Phob. Classifiers define decision criteria and can be applied
to Phobs. They determine if they can operate on a particular Phob type and if their
criteria match a particular Phob instance. Association Elements split into Association
Nouns and Association Actions which form the application interface for mapping
physical input to application logic. Nouns act as object selectors and Actions are
applied to selected Nouns. Partially, the implementation of this architecture does not
clearly separate concerns and is a little difficult to comprehend.

The integrated image-based object recognition process is based on background
subtraction, edge detection, and connection of components. When this process is used
together with a common camera-based multi-touch setup, it produces a result
comparable to simple blob detection. The image processing is based on Java and does
not focus on performance. Thus Papier-Mâché might be used for multi-touch input
processing without larger modifications when processing performance is no crucial
objective.

4.5.2 reacTIVision
The reactTIVision46 framework [56] recognizes and tracks fiducial markers. It is part of
the reactable project, a collaborative electronic music instrument with a tabletop
tangible multi-touch interface comparable to Xenakis (see section 4.5.3). Its authors are
also the inventors of TUIO [46]. The framework offers robust tracking of fiducial
markers and includes rudimentary support for multi-touch input. It supports input
from a single camera and comes with a set of fiducial markers. Recognition results are
published by the framework using the TUIO protocol.

The reacTIVision framework incorporates four selectable tracking engines, each
specialized on a particular type of fiducials. Image acquisition from video cameras is
done by PortVideo, a platform independent library. The fiducial recognition algorithms
and the TUIO implementation are located in separate libraries, too. TUIO client
implementations for ten platforms are included.

4.5.3 TWING
The TWING47 framework [57] has been developed for Xenakis48 [58], a music creating
tangible interface comparable to reactable (see section 4.5.2). It supports tangible and
multi-touch input of 2D coordinate data and object identifiers via a tracker interface.
TWING comes with implementations for two proprietary trackers (Jammt and
MatraX). A key feature of TWING is the interpretation of input data and issuing of
explicit user commands. The framework provides an interface where applications can
connect to receive such user commands. Four demo applications are included.
Moreover, the framework contains implementations of graphical controls for Windows
GDI, the Microsoft XNA framework, and the open source 3D rendering engine
Horde3D.

46 http://reactivision.sourceforge.net/
47 http://xenakis.origo.ethz.ch/
48 http://xenakis.3-n.de/

27

http://xenakis.3-n.de/
http://xenakis.origo.ethz.ch/
http://reactivision.sourceforge.net/

Survey and Review of Input Platforms and Recommendations for Squidy

TWING uses a MVC architecture (see section 2.3.2). Its source code has exceptional
good quality in terms of software design, structuring, readability, consistency, and
documentation. TWING also distinguishes itself by an elaborate input data
interpretation architecture (see section 8.2) which supports users in extending the
framework with new interaction techniques. Since TWING is written using C#,
scripting can be done by Microsoft PowerShell.

28

Compact Comparison of Frameworks, Libraries, and Toolkits

5 Compact Comparison of Frameworks,
Libraries, and Toolkits

The preceding section introduces each related project but makes it difficult to oversee
and compare all projects. Therefore, this section presents a compact survey for
comfortable comparison including more details of each project.

Subsequent to this comparison, one of these projects is selected as basis for Curve
research (see section 1.1) and reasons for the selection are given.

5.1 Tabular Survey
The following tabular survey lists a selection criteria which have been chosen based on
the requirements for an input framework (see section 3). The survey also gives generic
information about each project and includes information about the project's extent as
well as it rates the quality of its implementation from a subjective point of view.

Many of the criteria are assigned scores depending on the particular value chosen for a
criteria. The scores are chosen to correspond to the weighting the author of this work
wants to give to a specific criteria to reflect its importance. Thus the used scoring is
targeted to the requirements of the Curve project and includes a portion of
subjectivity.

The individual scores are summed up to an overall score. This overall score gives a clue
which project fits best for the the requirements of the Curve project. The electronic
version of this work is being accompanied by a worksheet which allows one to adapt
the individual scores to his requirements. It also recalculates the overall score.

The complete survey can be found in the Appendix of this work.

29

Illustration 2: Extract from the tabular Survey of Input Libraries, Frameworks, and Toolkits

Survey and Review of Input Platforms and Recommendations for Squidy

5.2 Pleading for the Squidy Interaction Library
The Squidy Interaction Library (in the following only Squidy) reaches the highest score
of all examined projects. Thus it is a potential candidate to choose as basis for Curve
research. Squidy is indeed by far the most appropriate candidate for this task. This
assertion has to be justified because it is not obvious.

Since the survey cannot disclose all details and features of a project, a selection of the
advantages of Squidy is listed in the following to prove Squidy's qualification.

• Squidy is platform independent because it is implemented on the Java platform. This
means it can run on many different hardware and software platforms.

• Squidy includes a GUI for visual programming. This enables fast development and
testing and makes it very easy for inexperienced users to create new input
configurations.

• Squidy offers the unique feature of interactive graphical feedback of input data as
well as interactive development and source code editing within the GUI even during
active processing of input data. Thereby it allows quick iterative development which
is ideal for research and rapid prototyping.

• The software architecture of Squidy allows to build reusable modules and to employ
them in a very flexible way. The level of abstraction of these modules is chosen to
match well with the requirements of HCI research. It obviates the need to care for
small details for beginners but still allows versatile and in-depth development for
experts.

• The software architecture of Squidy is well designed and its source code has been
carefully written by experienced programmers. This makes Squidy easy to maintain
and extend.

• Squidy already includes a set of 46 modules for input devices, data filtering, data
conversion, remote connection, etc. This set of modules already covers many use
cases and reduces the need for new development efforts.

• Squidy has successfully proven itself in multiple research projects of its authors.

• Last but not least, Squidy is very actively maintained and cooperation regarding
Squidy between its authors and the Curve research team showed to be very
beneficial and pleasant.

As mentioned before, this is only a selection of the characteristics of Squidy. None of
the other projects reviewed for this work can keep up with Squidy's amount of
advantages. They either provide none or only few of them.

For these reasons, Squidy is selected as basis for the Curve project. All subsequent
parts of this work present and discuss mainly technical aspects and possible further
improvements to Squidy.

30

The Squidy Interaction Library

6 The Squidy Interaction Library
The Squidy Interaction Library is a framework for the design, development, and
evaluation of multi-modal data input processing tasks. The term Library does not refer
to the software architecture of Squidy because in terms of software development it is
not a library but a framework. Squidy provides a set of ready-to-use device interfaces,
filters and interaction techniques for HCI. The term Library refers to this set.

Squidy has been designed with a focus on usability, rapid prototyping, iterative design,
employs visual data flow programming and allows visual debugging. Additionally, the
framework is built using a modular software design, makes use of loosely coupled
components, allows parallel data processing, and its implementation is platform
independent. Thus it is flexible and extensible and can take advantage of modern
multi-processing hardware architectures. The various benefits, influences, design
principles and new inventions of Squidy are described in detail by the inventors of
Squidy [5-7].

The following discussion concentrates on technical details and internals of the
framework which have not yet or only partially been described by its authors. It mainly
characterizes concepts and implementation details which are relevant for understanding
the framework itself rather than for a user of the framework. Moreover, by comparison

31

Illustration 3: Squidy Designer, the GUI of Squidy for visual programming

Survey and Review of Input Platforms and Recommendations for Squidy

with a long-term proven implementation of the employed Pipes and Filters
architectural pattern (see section 2.3.2), several approaches for further improvements
are pointed out.

At the time of writing (summer of 2009), all vital parts of Squidy were implemented
and running and the framework has already been used for various research projects at
the University of Konstanz in Germany, where it has been invented. It was not yet
completed, several technical solutions have been subject to change and improvement,
and work on Squidy is continuing to realize all plans and ideas. An overview of some of
these plans are presented in section 6.6.

On September 17 of 2009 the Squidy Interaction Library has been published as an open
source project licensed under the GNU LGPLv349 (Lesser General Public License 3.0).
It had been a closed source project of the Human-Computer Interaction Group at the
University of Konstanz before.

Since one of the basic requirements for the Curve project is the support of multi-touch
input (see section 3), it is important to mention that Squidy already contains a module
for multi-touch input. The module has proven itself in practice but lacks in multiple
important features compared to the dedicated multi-touch frameworks introduced
before. This issue is discussed in detail in the sections 7.5, 7.6, and 7.7.

Squidy is implemented in the Java programming language and has been successfully
tested on Microsoft Windows, Mac OS X, and Linux platforms by its authors. The
preferred development environment is the Eclipse50 development platform but it loads
and compiles successfully in NetBeans51, too. The Maven project management tool is
used for automatic building. Squidy makes use of several external libraries and
technologies such as Java Architecture for XML Binding52 (JAXB) for storage, or the
Piccolo framework for 2D visualization and zooming.

The Squidy Interaction Library is divided into three logical parts which are described
in this chapter: Squidy Core, Squidy Bridges, and Squidy Client Implementations.

6.1 Squidy Core
Squidy Core consists of two integral parts, Squidy Manager and Squidy Designer.
Squidy Manager is responsible for all kinds of data and process management as well as
serialization. Squidy Designer is used to create, modify, control, visualize and debug the
data processing configuration of Squidy.

Squidy's data processing uses a Pipes and Filters architecture (see section 2.3.2). Its
filters are called Nodes which can be connected using Pipes and thereby grouped to the
Pipeline. The data flow within the Pipeline chain is unidirectional.

49 http://www.gnu.org/licenses/lgpl.html
50 http://eclipse.org/
51 http://www.netbeans.org/
52 http://java.sun.com/developer/technicalArticles/WebServices/jaxb /

32

http://java.sun.com/developer/technicalArticles/WebServices/jaxb
http://www.netbeans.org/
http://eclipse.org/
http://www.gnu.org/licenses/lgpl.html

The Squidy Interaction Library

6.1.1 Squidy Manager
Squidy Manager provides the platform for all tasks performed by Squidy. When Squidy
Manager is executed, it runs invisibly to the user.

Squidy Manager is designed to work independently. This means it can run without
Squidy Designer and can process pre-configured Pipelines. Currently, the stand-alone
feature needs to be revised, see plans in section 6.6. Moreover, Squidy allows multiple
instances of the Squidy Manager to communicate with each other. This is realized by a
component called Squidy Remote which is explained in section 6.2.11.

6.1.2 Squidy Designer
Squidy Designer provides a GUI to create, modify, control, and debug Pipelines. It uses
visual representations of the Workspace, Pipelines, Nodes, and Pipes which are called
Shapes. These items are introduced in the next section 6.2.

Squidy defines only one single global Workspace for the user which is also reflected in
the user interface of Squidy Designer. The GUI employs the concept of semantic
zooming for all visual representations [59; 60]. According to Squidy's authors, “the
visual user interface reveals more detailed information and advanced operations on
demand by using the concept of semantic zooming. Thus, users are able to adjust the
complexity of the visual user interface to their current needs and knowledge (ease of
learning).” (p.4 in [5])

Squidy Designer requires Squidy Manager to be executed because it directly relies on
its functionality and only provides a visual representation of the data managed by
Squidy Manager.

6.2 Concepts in Squidy Core

6.2.1 Processable
Pipes, Nodes, Pipelines and the Workspace are individual classes. They are derived
from the class Processable which incorporates methods to do any kind of processing.
Processing itself is implemented using threads to permit asynchronous and independent
execution of each Pipeline or Pipeline segment. The object hierarchy of Processables
looks as follows:

A hierarchical structure between Processables is created by a collection of any number
of sub-Processables which can be assigned to a Processable. Sub-Processables are

33

Processable
 Pipe
 Piping
 Node
 Pipeline
 Workspace

Survey and Review of Input Platforms and Recommendations for Squidy

controlled by their parent Processable. Thereby processing of sub-Processables starts
and stops automatically if processing of the parent Processable starts or stops.

The Processables and sub-Processables of a Squidy Workspace are structured by the
following basic hierarchy:

6.2.2 Pipeline
The Pipeline class acts as a container for the processing chain which normally consists
of Nodes and Pipes. Multiple instances of Pipelines can be created. These can be
connected by Pipes, too. Since a Pipeline is also a Processable, it inherits the
management of sub-Processables. And it can contain other Pipelines which can be
integrated into the processing chain as well.

This principle allows to group functionality hierarchically. A Pipeline behaves and can
be used like a Node if it is observed from the group perspective. Squidy Designer
visualizes the contents of a Pipeline or its Node representation by semantic zooming,
depending on the zoom level. A similar concept called Patches can be found in vvvv (see
section 4.2.3).

6.2.3 Nodes
Nodes are elementary components of the architecture. They can be combined by the
user to provide the desired input functionality. A Node can for example represent an
interface to a device, a Bridge to a communication protocol or a data filter. Particular
examples for existing Nodes in Squidy are Wiimote, iPhone, TUIO protocol or Kalman
filter.

Squidy comes with a set of basic Nodes. However, a user can easily implement his own
Nodes based on the class AbstractNode. He does not need to know much about the
internals of the framework but mainly needs to implement the method process() within
his new Node class derived from AbstractNode. Multiple overloaded implementations of
the process() method can be provided by the user to handle different data types. These
overloaded methods are detected by the reflection mechanisms of Java and
automatically invoked by the AbstractNode class.

In Squidy Designer, the functional state of a Node is visually represented by color
coding: gray means stopped, green means active, and red indicates a malfunction.

6.2.4 Pipes
Pipes are the connections between Nodes. A Pipe holds a list of supported incoming
and a list of supported outgoing data types. Transmission of certain types of data

34

Workspace
 Pipeline[s]
 Pipeline[s]
 Node[s]
 Pipe[s]

The Squidy Interaction Library

between Nodes can be restricted by data type filtering which is done by removing data
types from the list of supported types.

Processing of the Pipe's data occurs in between the data type filtering. A Pipe does not
modify data but provides an interface for graphical real-time data feedback in Squidy
Designer which allows visual debugging.

In Squidy Designer, the functional state of a Pipe is visually represented similar to a
Node. The visual representation also contains an icon for access to the visual debugging
view.

6.2.5 Piping
The Piping class is an abstract base class for the actual data processing classes. It
contains two collections, one for incoming and one for outgoing Pipes. These collections
are propagated to the derived classes. Thus Nodes, Pipelines and the Workspace can
manage incoming and outgoing connections through their attached Pipes.

The connection points of a Piping object are called ports. Each Piping object has one
incoming and one outgoing port where Pipes can connect.

6.2.6 Data Representation
Within an instance of Squidy, data is transmitted within native Java objects. These
objects share the common interface IData. The properties of this interface consist of a
pointer to the object's source Node, a time stamp and any number of attributes of any
Java supported object type. The attributes are type safe as their mapping between type
and value is managed by the dedicated class DataConstant. The time stamp is set on
instantiation of a data object.

The class AbstractData implements IData and the common functionality of all data
types such as management of attributes, time stamp and basic serialization. All
specialized data classes are derived from AbstractData, for example DataPosition2D
which stores 2D coordinates.

The data types of Squidy form a hierarchical structure which is designed to support all
kinds of input devices. This hierarchy provides generic types such as a string and
highly specialized types for example for an entire hand. Data types are grouped into
semantic contexts to assist interpretation and processing of data.

35

Illustration 4: Data type hierarchy of Squidy

Survey and Review of Input Platforms and Recommendations for Squidy

The idea behind this hierarchy is to provide a simple structure of basic data types
which are easy to handle and to understand for a user of Squidy. Complex custom data
types can also be integrated but a developer should place them in a separate branch in
the hierarchy to clarify that these types are for special purposes and are not required
for most tasks in Squidy.

If a type of data is needed which is not yet implemented, one can create a new class
derived from AbstractData. The new data type can be used and transmitted within the
entire framework without any further modifications. Of course, suitable data processing
must be implemented if a Node should process a new type of data.

6.2.7 Data Processing
Java Reflection is used to determine which data types a Node is able to process.
Therefore, all overloaded implementations of the method process() which processes
incoming data are enumerated by the AbstractNode class on itself. Thereby user-
defined data processing methods of a derived class are found, which can process the
current data object. The AbstractNode class stores these methods in a map for caching
to accelerate further invocations.

If a Node needs to publish multiple types of data at once, a data container is required
to wrap the individual data objects. IDataContainer and its implementation
DefaultDataContainer define such a container for multiple data objects.

The following pseudo-code illustrates the internal data processing procedure of a Node:
publishing data from external Node:
 invoke process(container)
 put container in data queue
 notify processing thread
processing thread:
 while processing enabled
 wait for new container in data queue
 poll container from queue
 invoke beforeDataContainerProcessing(container)
 for each data in container
 look for matching process(data) overload of derived class
 invoke matching process(data) of derived class
 store processed data in container
 invoke afterDataContainerProcessing(container)
 publish container
 for each Pipe in outgoing Pipes
 invoke Pipe.process(container)
 get target of Pipe
 if number of Pipes > 1 then clone container
 invoke target.process(container)

6.2.8 Persistence
All objects within and including the Workspace are serializable. Squidy uses JAXB for
automatic serialization of class attributes. This allows to store and restore the entire
object hierarchy to and from an XML file with only a few lines of additional code: An
annotation containing the tag name for its XML representation needs to be added to
each class attribute which should be serialized.

36

The Squidy Interaction Library

6.2.9 Dynamic Reconnection
In HCI research and evaluation it is often necessary to modify the input chain to test
new devices and different setups. Most input frameworks require data processing to be
offline or in halted state to modify essential parts of their data processing. This can be
time-consuming during daily use. Squidy Designer allows to change data processing on-
the-fly while data input is active and running. Not only configuration parameters of
modules can be modified but the entire data processing chain can be rearranged,
modules can be added or removed. Data processing is only interrupted as long as it
takes to accomplish the desired modification by the user and continues automatically as
soon as the user has reconnected all involved modules.

This feature is implemented in the Processable class by two collections of incoming and
outgoing Pipes. During the reconnection process, these collections are updated
accordingly. An existing Pipe can be deleted and new pipes can be created. Squidy
Designer does currently not support to reconnect an existing Pipe to a different source
or target. Since the publishing process of a Node enumerates all items of the collection
of outgoing Pipes every time it publishes a data object, all modifications of this
collection become effective immediately. The collection of incoming Pipes is currently
not used during the reconnection and publishing processes.

6.2.10 Dynamic Compilation
A direct manipulation [61] interface allows the visual interactive configuration of
properties in the user interface by using control elements which results in immediate
feedback for the user. Squidy allows this kind of direct manipulation of Nodes. An
extension to this functionality is enabled by the integrated feature of Java source code
editing and dynamic compilation. Squidy Designer provides a user interface to edit each
Node's source code directly within its GUI and compiles and integrates the
modifications, also when input processing is active. Thus smaller code corrections can
be applied very fast without the need to switch to a development environment and to
interrupt the entire workflow.

To enable dynamic compilation, Squidy requires a Java compiler which is commonly
included in a Java Development Kit (JDK).

Dynamic compilation is implemented using a repository for dynamically compiled code
which is managed by two custom implementations of Java class loaders. When a class
is requested by the virtual machine, the DynamicCodeClassLoader class checks if the
source code for this class has been modified compared to the compiled version in the
code repository. If necessary, the class is recompiled by the installed Java compiler
before it is loaded. Alternatively, the HotDeployClassLoader class can be used which
does not need a Java compiler to be installed. It checks the repository for newer
versions of a class and reloads it if it detects a newer version.

37

Survey and Review of Input Platforms and Recommendations for Squidy

6.2.11 Squidy Remote
Several instances of Squidy Manager can connect to each other using a Node called
Squidy Remote. This Node represents a Bridge (see section 6.3) which translates
between Squidy data objects and the OSC protocol. The OSC protocol consists of plain
ASCII text and can be transmitted as a data stream via network interfaces. This
concept enables distributed processing of input data.

6.2.12 Data Recorder
The Data Recorder Node included with Squidy allows to serialize and deserialize a
stream of data objects. Each data object contains adequate methods for serialization
and deserialization to and from a string representation. These methods are invoked by
the Data Recorder. Data is stored in a file and can be replayed on demand while
retaining the original time span between data objects. Using this Node, specific
interaction tasks can be recorded for analysis and can be replayed for development,
testing, debugging and simulation purposes.

6.3 Squidy Bridges
A Bridge connects Squidy to any kind of data transmission protocol or provides
external connection to any kind of data interface different to its native internal
interfaces. The purpose of a Bridge is to translate between an external data
representation and the generalized internal data representation of Squidy. Squidy
Bridges follow the common design pattern of a bridge.

Bridges are a separate logical part of Squidy because they differ from the elements in
the processing chain. A Bridge has no universal purpose but only the purpose of data
mapping. To integrate a Bridge into a Pipeline, a Node has to be created which
represents the Bridge. The current implementations of Bridges are entirely integrated
into Node implementations.

A Bridge Node does not solely operate on generalized internal data types. Thus it is
normally located at the beginning or at the end of a Pipeline to perform data mapping
operations. If a Bridge Node is integrated in the middle of a Pipeline, incoming data
objects are also routed to the Node's output port besides processing by the Bridge
itself.

6.4 Squidy Client Implementations
A Squidy Client Implementation is an application or part of an application which runs
on a user client platform and communicates with Squidy. Communication is realized by
a communication protocol suitable for the application. Translation between this
protocol and Squidy data objects is done by a matching Squidy Bridge.

An example for a Squidy Client Implementation could be an application running on the
Apple iPhone which captures multi-touch input data generated by the user and

38

The Squidy Interaction Library

transmits it to a PC running Squidy via WLAN using the TUIO protocol. The TUIO
input data can be processed by Squidy's TUIO Bridge.

6.5 Performance Considerations
If some kind of input processing includes computationally intensive tasks, the Java
programming language and its virtual machine might not be the ideal choice. However,
multiple benchmarks53,54,55 prove that Java virtual machines can reach the performance
of implementations in native code depending on the evaluated algorithm or set of
functions. These benchmarks compare a Java implementation to functionally equal
code written in a lower-level programming language such as C or C++. This code is
compiled to native code for the underlying platform by an optimizing compiler. If
translation of the evaluated code into this language from Java is done by a skilled
programmer, the benchmarks show that the native code performs equally or
outperforms the Java code. The difference in performance depends on the skills of the
programmer and on the evaluated algorithm or set of functions.

Small tasks such as data flow control can be handled easily in Java and do not have
noticeable performance impacts. Image processing might require a fast implementation
in a lower-level programming language to reduce latency in a processing chain as much
as possible. Squidy can make use of the Java Native Interface56 (JNI) to delegate such
tasks to modules running in native code on the employed hardware platform.

Today's computers (2009) provide even more processing power on their graphics
adapters compared to the processing power of their CPU. Graphics adapters are driven
by a GPU which is designed for fast processing of 3D vertices and pixel data. A GPU
consists of several hundred logical processing units (streaming processors) which can
process large numbers of image pixels in parallel. This hardware architecture also
qualifies for conventional 2D image processing where many image pixels have to be
analyzed or modified: GPUs can take advantage of their distinct parallel processing
compared to the single or few processing cores of a conventional CPU. Consequently,
Squidy includes a multi-touch input module which utilizes GPU computation for blob
tracking.

Using a GPU for purposes other than their originally intended usage is labeled
GPGPU57 (General Purpose Computation on Graphics Processing Unit).

6.6 Planned Features
The following list outlines features, ideas, and goals of the authors of Squidy which
should be integrated in future versions of the framework. This list is not considered to
be complete and cannot be documented by references as it evolved from communication
and discussion with the authors of Squidy.
53 http://bruscy.republika.pl/pages/przemek/java_not_really_faster_than_cpp.html
54 http://www.freewebs.com/godaves/javabench_revisited/
55 http://www.stefankrause.net/wp/?p=9
56 http://java.sun.com/javase/6/docs/technotes/guides/jni/
57 http://gpgpu.org/

39

http://gpgpu.org/
http://java.sun.com/javase/6/docs/technotes/guides/jni/
http://www.stefankrause.net/wp/?p=9
http://www.freewebs.com/godaves/javabench_revisited/
http://bruscy.republika.pl/pages/przemek/java_not_really_faster_than_cpp.html

Survey and Review of Input Platforms and Recommendations for Squidy

• Documentation of Squidy is only minimal. Since detailed documentation is an
essential part of a software development project, missing documentation for source
code and individual Nodes included in the Squidy Interaction Library is planned to
be provided soon.

• Due to foregoing refactoring processes, the standalone operation mode of Squidy
Manager has been disabled and has to be re-enabled. Currently, Squidy Manager can
operate only in conjunction with Squidy Designer.

• A Node publishes its data objects directly to its target Nodes by requesting them
from its Pipes. Publishing data to the Pipe which contacts its target on its own
would encapsulate the publishing process.

• Logging of messages is realized with the Apache log4j58 framework. It shall be
replaced or at least wrapped by SLF4J59 (Simple Logging Facade for Java). Besides
abstraction from the actually used logging framework, SLF4J brings a feature called
parameterized logging which reduces processing costs when logging is disabled.

• Data objects are created by the new operator on demand. When a data object is not
needed anymore, the garbage collector of Java frees the memory allocated for it. An
object pool (see section 2.3.1) shall avoid this continuous process of creation and
destruction and reduce processing costs.

• In Squidy's current software architecture, a Shape is the visual representation of a
Processable. The Shape is directly connected to the Processable itself. This violates
the programming paradigm of separation of concerns which forbids to blend different
functionality within one module. A Shape controls modifications of its Processable.
For this reason the concern visualization could not be removed or modified without
losing or influencing the concern control. In this case, the model-view-controller
architectural pattern shall be applied. A controller class shall be put in between the
Processable (model) and its Shape (view) to encapsulate the concerns and to remove
their dependency.

• The JAXB framework should be replaced by the Hibernate60 persistence framework,
which relies on a relational database and therefore enables centralized and
distributed data storage (see section 6.6). JAXB should not be replaced entirely but
should be retained for data backup purposes and as data exchange format.

• It is planned to integrate version management of Nodes directly into the framework.
Source code of Nodes shall be managed directly by the SVN61 version control system.
Versioned properties of Nodes should be managed within the database on which the
Hibernate framework operates. Possible implementation approaches consider the
Hibernate interceptor mechanism which allows intervention in the serialization
process or use of a version property which Hibernate provides for each serialized
attribute.

58 http://logging.apache.org/log4j/
59 http://www.slf4j.org/
60 http://www.hibernate.org/
61 http://subversion.tigris.org/

40

http://subversion.tigris.org/
http://www.hibernate.org/
http://www.slf4j.org/
http://logging.apache.org/log4j/

The Squidy Interaction Library

• To support a quick and iterative development process directly in the user interface of
Squidy Designer, it shall be possible to duplicate Nodes. Duplication includes the
values of properties of the Node as well as its source code. Modification of the
duplicate shall not affect the original Node. A Node shall be able to coexist in
different binary versions compiled from different versions of its associated source
code. Version management shall be provided transparently for the user by Squidy.
This shall be realized using the integrated version control system interface and
version information contained in the name of the source code file.

• Squidy is typically distributed to the user in a Java archive file. This packaged file
format requires additional effort and processing power to integrate dynamically
generated code into the existing code base. The Java archive file must be updated
with the newly compiled classes. As a possible approach to solve this problem, an
external code repository outside the distribution package is planned.

• Multi-user support of Squidy is currently reduced to multi-device support. Each data
object owns an attribute which identifies its source Node. This allows to determine
the physical data source but not the user of this source. A dedicated user
identification mechanism shall be integrated. For multi-touch interaction, research of
identification of different person's hands is in progress.

• Integration of Squidy Manager and Squidy Designer in Squidy Core is realized using
native Java interfaces. The two parts should be decoupled to connect via IP. This
enhances Squidy Designer's functionality as a graphical management interface which
can remotely connect to instances of Squidy Manager. It allows to distribute Squidy
Manager to multiple different execution environments while the user can retain
control over all Squidy Manager instances from a central workstation.

• All Shapes in Squidy Designer have a fixed visual size except the possibility to make
use of semantic zooming. It shall be possible for the user to resize at least the Shape
representing a Pipeline. There is no concrete concept how to realize this feature yet.

6.7 Comparison of Squidy with DirectShow
DirectShow62 [31] is the subsystem for streaming media of Microsoft Windows. It was
part of DirectX63, a set of multimedia APIs for Windows, but was moved by Microsoft
in 2005 to become part of the common Windows APIs. DirectShow uses a Pipes and
Filters architecture and processes media samples within its filter chain. This
architecture has proven itself for many years of practical application in the Windows
operating system. DirectShow is primarily designed for media output instead of data
input but it contains many concepts similar to those in Squidy and can provide ideas
for concepts which are not yet included in Squidy. These ideas and concepts are
explained in section 7 and refer to the introduction to DirectShow given in the
following sections.

62 http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx
63 http://www.microsoft.com/windows/directx/

41

http://www.microsoft.com/windows/directx/
http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx

Survey and Review of Input Platforms and Recommendations for Squidy

DirectX includes a subsystem called DirectInput64 for managing input devices, too. It
seems to be obvious to compare Squidy to DirectInput because it is also focused on
data input, but the two approaches differ substantially. Squidy incorporates a versatile
architecture to handle and process any kind of input devices and data. In contrast,
DirectInput just concentrates on providing a unified API for established devices
including the mouse, keyboard, joystick, and other game controllers, as well as for
force-feedback (input/output) devices. Therefore, DirectInput could be used to
implement Nodes connecting to physical devices and providing input data to Squidy, of
course limited to the Windows platform.

An additional API from Microsoft related to DirectInput is XInput65 on the Windows
platform. Compared to DirectInput it is simplified and specialized for the game
controller device of the Microsoft Xbox 360 game console.

In this section, general aspects of Squidy and DirectShow are compared. The following
sections sometimes refer to further details of DirectShow, too.

6.7.1 Elements of DirectShow
The equivalent to Squidy's Nodes in DirectShow are filters, according to the name of
the applied software architecture. In DirectShow, the Pipeline equivalent is called the
filter graph. DirectShow is a very modular and extensible system which is entirely
based on COM66 (Component Object Model).

The Squidy Core contains Squidy Manager which provides the necessary infrastructure
for Nodes and data processing in the Pipeline. In DirectShow, the Filter Graph
Manager holds the same position, controlling all filters contained in the filter graph.
When talking about tasks accomplished by Squidy or DirectShow, this normally refers
to these management instances.

DirectShow includes a tool comparable to Squidy Designer, called GraphEdit. The tool
allows to build, manipulate, control and visualize DirectShow filter graphs. It comes
with the DirectShow SDK and is primarily targeted on application developers to test
and debug their applications. Therefore, the user interface of GraphEdit neither is
designed for end users nor provides a large set of features. A more advanced open
source version of a filter graph editor called GraphStudio67 is available, too. Contrary to
these tools, Squidy Designer is made for end users and focuses on usability and
comprehensive manipulation opportunities.

64 http://msdn.microsoft.com/en-us/library/ee416842(VS.85).aspx
65 http://msdn.microsoft.com/en-us/library/ee416996(VS.85).aspx
66 http://msdn.microsoft.com/en-us/library/ms877981.aspx
67 http://www.monogrammultimedia.com/graphstudio.html

42

Illustration 5: A Direct Show graph for replay of an MPEG video file

http://www.monogrammultimedia.com/graphstudio.html
http://msdn.microsoft.com/en-us/library/ms877981.aspx
http://msdn.microsoft.com/en-us/library/ee416996(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee416842(VS.85).aspx

The Squidy Interaction Library

A DirectShow media sample is similar to a Squidy data object but it offers only one
general interface which is identical for all types of data (IMediaSample or the extended
version IMediaSample2). This differs from Squidy which provides only a minimal
common interface (IData). All Squidy data types derive from this interface and form a
class hierarchy with an extended interface for each class depending on the individual
data type.

Squidy represents different data types by different individual classes. In contrast to
Squidy, DirectShow data types are named media types and are described by a data
structure (AM_MEDIA_TYPE) which contains meta data only. It consists of a fixed
set of properties and an optional format block of variable size depending on the media
type specified in the fixed property set. DirectShow media types identify themselves by
a pair of GUIDs for majortype (e.g. for video) and subtype (e.g. for a specific color
format). The media type data structure is not connected or transmitted with a media
sample, it is used as accompanying information during the filter connection process
described below.

DirectShow filters can own none or multiple input and output pins which can be
compared to the single input and output ports of a Squidy Node. One pin can connect
exactly to one other pin and can provide only one media type which is negotiated by
the participating filters during the connection process between two pins. Unlike
DirectShow, Squidy ports accept all kinds of data types and the attached Node can
dynamically consider at runtime if it processes a specific type of data. Furthermore, a
Squidy port can connect to multiple other ports simultaneously.

Squidy's ports allow to multiply data and to distribute it on multiple paths. This is not
possible in DirectShow, it needs a dedicated filter for this purpose. Due to the concept
of media samples and media types, only one implementation of this kind of filter is
required which fits for all media types. It needs to accept any media type on its input
pin and passes the same media type to all its output pins. The number of output pins
needs to adapt dynamically to the required number of outgoing connections. This
functionality is implemented in the Infinite Pin Tee Filter coming with DirectShow.

6.7.2 Connection Process
The filter connection procedure of DirectShow consists of a complex sequence of
requests and confirmations between two filters. This procedure is directed by the Filter
Graph Manager in order to find the ideal media type between two pins (output and
input) based on their capabilities and preferences. DirectShow also considers and
automatically inserts intermediate media type conversion filters which can be taken
from an inventory of installed filters. This inventory consists of all DirectShow filters
installed on the underlying Windows platform. Each filter has assigned a merit which
determines if or at what priority it should be considered as an intermediate filter
during the connection process.

43

Survey and Review of Input Platforms and Recommendations for Squidy

The filter connection mechanism of DirectShow is also used for automatic rendering.
Automatic rendering means that the Filter Graph Manager builds a filter graph which
renders all media types, provided by a source filter, to their default output devices.
These devices are represented by renderer filters. In case of a video stream this might
be the computer display, represented for example by the Video Mixing Renderer filter.
Other examples for renderer filters are the DirectSound Renderer for audio signals or
the File Writer which stores media samples in a file.

Advantages of Squidy
Connection of Nodes in Squidy does not require a negotiation process because each
Node connects with all input data types. Therefore, its entire connection process is less
complex than in DirectShow and it is easier to realize dynamic reconnection of Nodes
during runtime. Moreover, any number of different data types can be processed by
Squidy Nodes without additional costly connection processes.

Disadvantages of Squidy
Squidy offers no automatic Node connection mechanism equivalent to DirectShow. The
user has to build a Pipeline manually or construct it by programming a procedure
which creates instances of Nodes and connects them. Both approaches are possible with
DirectShow, too.

Without a negotiation process in Squidy, automatic construction of a Pipeline is
impossible. The user has to know which Nodes can handle which data type.
Additionally a small processing overhead is introduced by handling all types of data. A
Squidy Node has to inspect the incoming data type and distinguish further processing
for each data sample again and again whereby DirectShow can complete this task in
advance.

6.7.3 Filter Types
It already became clear that DirectShow distinguishes between categories of filters. A
specific filter implementation is assigned to a filter category by its function, it can also
belong to multiple categories. The filter categories do not have to be specified in a filter
implementation, they just help to organize filters:

• Source filters introduce data into the filter graph and construct new media samples.
Typically they have no input pins but only output pins.

• Transform filters process incoming media samples and produce output media
samples. They can reduce, multiply or convert data to a different media type.
Transform filters have input and output pins.

• Splitter filters are a special shape of transform filters. They split an input data
stream into two or more output data streams, typically including a
transformation of media types.

44

The Squidy Interaction Library

• Mux (multiplexer) filters are the opposite of splitter filters, they take multiple
input data streams and combine them into a single output data stream,
typically including a transformation of media types.

• Renderer filters receive media samples and apply final processing such as
presentation to the user, serialization or data transmission out of the filter graph.
Typically they have no output pins but only input pins.

In contrast to DirectShow, Squidy does not distinguish between types of Nodes.

6.7.4 Data Processing
Each DirectShow filter operates in its own thread, which is the same with Nodes in
Squidy. Additionally, each Squidy Node operates a data input queue which buffers
incoming data objects until they have been processed. A Node pushes or publishes data
objects downstream to the next Node.

The data processing model of DirectShow is more complex and more flexible. An input
pin in DirectShow can buffer incoming media samples but can also block an incoming
media sample until its filter is ready to process it. Moreover, it distinguishes between a
push and a pull transfer model, depending on the filter initiating data transfer: Looking
at a pair of filters, the upstream filter can emit (push) media samples, and the
downstream filter can request (pull) media samples.

To transport data between filters, pins have to implement a transport interface which
determines what transfer protocol and what transfer model is used by the specific pin
to transport data. This transfer protocol typically defines local memory transport by
media samples. DirectShow also supports transport of meta data while actual data
transport is done within a hardware component.

6.7.5 Allocators
An allocator in DirectShow, particularly a memory allocator, is an implementation of
the object pool design pattern (see section 2.3.1). It creates and allocates a pool of
reference counted media samples. A source filter requests a new media sample from the
allocator when it introduces data into the filter graph. For transport, a reference to a
media sample is transferred to the next filter and the media sample travels through the
filter graph. When the last reference is released from the media sample, it returns itself
to the allocator and can be reused by the source filter.

The same concept can be found in the C++ STL68 (Standard Template Library), it has
been invented by Alexander Stepanov. Allocators using a memory pool eliminate the
need of continuous costly allocation of new memory and reduces the amount of data to
be transferred between filters to a minimum. It also takes the liability of creating and
managing media samples away from the filter itself, it encapsulates memory
management. An allocator can hold multiple media samples to allow parallel processing
which is discussed in the sections 6.8 and 7.4.1.

68 http://www.sgi.com/tech/stl/

45

http://www.sgi.com/tech/stl/

Survey and Review of Input Platforms and Recommendations for Squidy

An allocator in DirectShow holds media samples of one type only. Furthermore, a filter
graph can contain multiple instances of allocators. This can become necessary if a filter
transforms media samples and the resulting media samples differ in size from the input.
An allocator is normally managed by the filter which fills its media samples with data.

Squidy does not have comparable mechanisms, it simply creates and destroys data
objects on demand.

6.8 Parallel Processing in Squidy
A primary demand on input processing is to keep latency as low as possible (see section
3.3). Use of parallel processing can be a way to satisfy this demand. For this reason,
further details regarding parallel processing are explained. Squidy as well as
DirectShow make extensive use of parallel processing. Each Squidy Node and each
DirectShow filter operate a thread for their processing task. Thus, the details discussed
in this section apply to Squidy and DirectShow and they also subject of the
subsequently following proposals of the author of this work (see section 7).

6.8.1 Stages
A stage is one processing element of the processing chain, in other words, it is the task
of one filter or one Node. Each Node operates its own worker thread. Incoming data
from an input Pipe is placed into a queue which is monitored by the worker thread.
The thread is notified when new items arrive in the queue. To clarify the benefit of this
approach, some characteristics of this design incorporated in a processing chain are
collected below:

• The minimal time tcmin to push a particular data object through the entire processing
chain (Pipeline) equals the sum of the individual processing times tf of each filter
(Node) which the data object passes.

• The rate of data objects introduced into the processing chain, expressed as time span
td between two data objects, may not fall below the time tfmax which is required by
the slowest filter in the processing chain to process a data object. Otherwise data
objects accumulate in the input queue of the filter and the chain becomes congested.
To resolve such a congestion, data objects have to be dropped from the input queue
of the filter.

• Optimal utilization of the processing chain with tcmin for each item of a continuous
stream of data objects is reached only if the input queue of any filter in the
processing chain never contains a new data object before the filter has completed
processing of the foregoing data object.

• Maximum utilization of the processing chain is reached if td equals tfmax.

• Maximum utilization of parallel processing takes place if tf of all filters in the
processing chain is equal.

46

The Squidy Interaction Library

• Optimal and maximal utilization of the processing chain and of parallel processing
takes place if td equals tfmax and tf of all filters in the processing chain is equal. This
also means tfmax equals tf.

6.8.2 Benefit of Parallel Processing
Parallel processing is typically applied to accelerate processing of tasks. Acceleration of
processing of stages can be gained by processing different data objects in parallel within
different threads in different filters in the processing chain. Therefore, parallel
processing of stages can solely accelerate processing of multiple (sequentially
introduced) data objects. Additionally, this applies only if tcmin is larger than td.

Minimum latency of input processing is equal to tcmin. Due to the preceding
characteristics, minimum latency cannot be reduced by parallel processing of stages.
Parallel processing is able to keep up tcmin when processing a continuous stream of data
objects if td goes below tcmin until it reaches tfmax. Linear processing also keeps tcmin but
td may not go below tcmin otherwise the linear processing chain becomes congested and
data objects have to be dropped.

This shows the benefit of parallel processing of stages with the Pipes and Filters
architecture: It is possible to operate at higher data rates than with linear processing if
tcmin of the entire chain is larger than tfmax of the slowest filter in the processing chain.
This is most likely true for all processing chains with more than one filter. It is obvious
that parallel processing has to be executed on a platform which provides multiple
processing units to take effect.

Thus, if a stage is divided into a number of sub-stages which are executed in parallel to
reduce tf, the maximum processable data rate derived from td scales with tfmax. In other
words: To process more data, the processing chain must be divided into more and
smaller stages. In an optimally designed processing chain, tf for all stages is equal.

6.8.3 Limitations of Parallel Processing
Since parallel processing of stages does not help to reduce latency, the sole remaining
approach to achieve this is to reduce tf of the individual stages. This could be achieved
for instance by parallel processing within a stage, by improving algorithms, or by
execution on a specialized hardware platform. The latter solution is applied by the
multi-touch input Node of Squidy and is refined by the subsequent proposals regarding
this Node. Latency could also be reduced by removing filters but this would modify the
processing chain and would only make sense if the chain contained unnecessary filters.

The data queue mechanism of Squidy is implemented using Java synchronization
mechanisms, particularly synchronized methods, wait(), and notify(). To place a data
object in the input queue, the source Node identifies the target Node via the connecting
pipe and invokes its process() method. The process() method adds the object to the
queue and notifies the associated worker thread.

47

Survey and Review of Input Platforms and Recommendations for Squidy

This procedure causes a small processing overhead because the involved
synchronization objects have to be managed and the operating system needs to
coordinate the participating threads, too. This overhead participates in the sum of tf
and thereby tcmin, increasing the overall input latency. Especially with very long
processing chains, this management overhead might sum up to an amount which affects
overall performance in a way that is noticeable by the user69 (about 75 ms [62]). To
keep latency as low as possible, it makes sense to disable the data queue mechanism if
parallel execution of sequential stages is impossible.

69 A C++ program to test the impact of synchronization was written in the course of this work (see Appendix). It operates on native synchronization
functions and thereby omits any additional overhead which could be introduced by wrapper functions of synchronization libraries or the environment of a
virtual machine. The test platform used the Microsoft Windows Vista x64 SP2 operating system and an Intel Core 2 Quad Q9550 CPU. Tests showed an
interesting behavior: Independently from the workload of a thread, the resulting synchronization overhead of two threads alternately waiting for each other
was either 0.006 ms or 0.024 ms between multiple test runs (equally distributed). The reason for this behavior could not be determined. Assuming the
worst case of 0.024 ms, about 3000 synchronization events have to occur to introduce a latency of 75 ms. With a device which introduces data at a rate of
50 Hz this would require a processing chain with 60 filters. However, this does not consider the overhead omitted through the native implementation,
overhead required for queue management, possible delays in thread scheduling due to multitasking, the possibility to use active (threaded) pipes with an
additional processing queue, and the latency introduced by all other data processing tasks in the processing chain.

48

Proposed Improvements to Squidy

7 Proposed Improvements to Squidy
Squidy is a sophisticated input framework but it is also work in progress and has
potential for improvements. The framework has been designed for HCI research
purposes. It is extended as far as required for current research which is also constrained
by time frames and availability of human resources. Therefore, neither all possible or
planned features are implemented nor are all of the existing features entirely mature.
To sum up, Squidy cannot be considered to have the status of a final product.

The Node for multi-touch input, one of the major concerns of this work, offers only
basic functionality compared to other specialized frameworks. The author of this work
addresses this and other issues and proposes concrete solutions to resolve them. These
solutions differ in their level of detail depending on their overall complexity.

7.1 Node Types
For a user of Squidy it could be helpful to be able to distinguish between Node types
similar to filter types in DirectShow (see section 6.7.3). Selection from a list of Nodes
could be visually arranged by their purpose and Squidy Designer is enabled to display
visual hits.

7.1.1 New Categorization
The following hierarchical categorization of Nodes is proposed. It is derived from the
filter classification of DirectShow with respect to the concept of Bridges of Squidy:

• Bridge Nodes (any number of input and output data types)

• Source Nodes (no input port, any number of output data types)

• Renderer Nodes (any number of input data types, no output port)

• Transformer Nodes (any number of input and output data types)

• Splitter Nodes (any number of input and more different output data types)

• Multiplexer Nodes (any number of input and less different output data types)

When implemented, each Node is aware of its category and subcategory (none or one of
the listed ones) and stores them in static attributes defined in AbstractData. To force
the developer of a Node to specify the Node's category and subcategory, two abstract
methods getCategory() and getSubCategory() are added to AbstractData and must be
implemented in the concrete Node.

To keep complexity low, a Node cannot belong to multiple categories. Squidy Designer
can make use of this information and provide matching visual representations to the
user. For example, Source and Renderer Nodes can omit the representation of their
input or output port. Moreover, Squidy Designer can present Nodes ordered by their
type.

49

Survey and Review of Input Platforms and Recommendations for Squidy

7.1.2 Bridge Nodes
A Bridge Node slightly widens the concept of Squidy Bridges compared to the original
intention of the inventors of Squidy. To translate data to and from Squidy data
objects, the data has not necessarily to be transmitted or communicated but it can also
be produced or rendered. Examined more closely, this is only a detail of a specific
Bridge how it internally gets or emits native data. This detail is transparent for all
other software components.

Thus for example a Node representing a device such as a laser pointer also acts as a
Bridge Node. It translates native data from the device to Squidy data objects. To
distinguish unidirectional Bridge Nodes such as the one for a laser pointer from
bidirectional Bridge Nodes, subcategories for Source and Renderer Nodes are
introduced.

7.1.3 Transformer Nodes
A Transformer Node modifies the input data it receives and emits the modified data.
The subcategories of Splitter and Multiplexer Nodes are based on the classification of
DirectShow.

The primary purpose of the Splitter Node category is to visualize the process of
splitting data objects into data objects of different types by a specific graphical
representation in Squidy Designer. Multiplexer Nodes have to care in particular for
synchronization of incoming data objects before they start to process them. However,
data synchronization is an issue for all Nodes processing input data.

7.2 Data Synchronization
When a Node receives input data objects from multiple Pipes which should be
processed together, all incoming data objects must be synchronized first. Only data
objects which correspond temporally may be processed and published, otherwise no
useful correlation of outgoing data objects can be guaranteed.

Squidy does not yet offer a solution to synchronize data. However, this feature can be
added with little effort. The input data queue of a Node already buffers incoming data.
This allows the Node to hold back data without temporal correspondence. The worker
thread of a Node can now iterate over all items in the input data queue, compare its
time stamps, and process and publish only complete sets of data from all incoming
Pipes with temporal correspondence.

Temporal correspondence can be defined by a maximum time span by which the time
stamps of two data objects differ. A useful basis to define the maximum time span
could be the duration of one sample. Unfortunately, this duration is unknown but
DirectShow offers solutions for this problem.

DirectShow defines the behavior of Renderer filters concerning time stamps, defines two
different times (stream time and media time), and provides interfaces for Source filters

50

Proposed Improvements to Squidy

(IAMPushSource and IAMLatency) to expose time offset and latency information. In
short, time management and synchronization in DirectShow is flexible but also
complex. For a basic synchronization mechanism, two simple concepts of DirectShow
related to time stamps shall be added to Squidy.

7.2.1 Start Time Stamp and Stop Time Stamp
In DirectShow the media type exchanged during the filter connection process can
contain an average duration per media sample. Furthermore, each media sample carries
two time stamps, a start time and a stop time. The latter information is the one which
is more useful as it is much more detailed.

By adapting this idea for Squidy and replacing the single time stamp of object creation
in the AbstractData class with a start time stamp and a stop time stamp, the basis for
synchronization has been laid. Secondary, the two time stamps provide information
about the data rate of the specific data objects which can be useful for other situations.

The current time stamp is set automatically on instantiation of the AbstractData class.
By having start and stop time stamps, the liability to set these values correctly is
delegated to the Source and Bridge Nodes. These Nodes have to be adapted and must
set the start and stop time stamps before publishing a data object. This change fits
very well to the concept of data object allocators in Squidy which is introduced in
section 6.7.5.

When a data object passes a Transformer or Bridge Node, both time stamps must be
carried over to the outgoing data objects as it is currently done with the single time
stamp. This can be solved automatically by data allocators (see section 7.3.3).

7.2.2 Reference Time
A meaningful time stamp requires an accurate time base from which it can be created.
If several time stamps should be comparable, they all have to be created from the same
time base. Such a time base is called reference time in DirectShow.

The current implementation of Squidy uses the system time acquired by the Java
method System.currentTimeMillis() as reference time. This Java method returns the
current time in milliseconds which should be sufficient for most input tasks. However,
the Java method System.nanoTime() provides access to the most precise system timer
available on the current platform70,71,72,73 and returns the current time in nanoseconds.
70 In the source code of Sun's JDK it can be verified if System.nanoTime() actually provides more precise time information by looking at its internal

platform-specific implementation. The implementation for Microsoft Windows can be found in the function os::javaTimeNanos()
(hotspot\src\os\windows\vm\os_windows.cpp). It relies on the functions QueryPerformanceCounter() and QueryPerformanceFrequency() of the Windows
API. The implementation in the JDK appears weird, as it converts the integer time values to floating point values, calculates the time in seconds and then
multiplies the result again to convert it to nanoseconds. This is likely to introduce rounding errors and requires more processing power compared to solely
integer based calculation. Nevertheless it can be expected that the accuracy of the result is better than one millisecond. There is no detailed documentation
from Microsoft how exactly the QueryPerformance functions work internally but this can obviously71 depend on the hardware platform and is not
necessarily reliable. However, Windows versions later than Windows XP make use of the reliable HPET72 (High Precision Event Timer) when it is
available on the hardware platform, according to Microsoft and other sources72,73. A numerical overflow of the time value occurs after approximately 292
years. Based on the assumption that Squidy is executed on current operating systems and hardware platforms which can make use of an HPET (High
Precision Event Timer) and because a more precise time stamp guarantees more accurate synchronization, System.nanoTime() should be used as source for
the reference time in Squidy.

71 http://www.virtualdub.org/blog/pivot/entry.php?id=106
72 http://en.wikipedia.org/wiki/High_Precision_Event_Timer
73 http://www.microsoft.com/whdc/system/sysinternals/mm-timer.mspx

51

http://www.microsoft.com/whdc/system/sysinternals/mm-timer.mspx
http://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://www.virtualdub.org/blog/pivot/entry.php?id=106

Survey and Review of Input Platforms and Recommendations for Squidy

7.2.3 Distributed Environment
Squidy can operate as a distributed system, too. Since each instance of Squidy Manager
uses the system time of the platform on which it is executed to create time stamps, the
system time of all these platforms has to be synchronized in a distributed environment
if accurate synchronization is required.

Time synchronization of all participating distributed platforms can be accomplished by
an external application or service. This is not an ideal solution as it delegates
responsibility to the user. Therefore, the Squidy Remote Node which encapsulates
communication between multiple instances of Squidy Manager should take care of this
task. It can make use of a standardized time synchronization protocol such as NTP74 to
synchronize the time in downstream direction between all instances of Squidy in
regular intervals. An example implementation of the NTP protocol in Java can be
found on the website of the NTP project75.

An implementation which synchronizes multiple instances of Squidy Manager does not
have to modify system time. This would require administrative user rights for the
underlying platform. Synchronization can operate on an internal Squidy time which is
constructed from an offset value relative to the system time of each individual platform
instead.

7.3 Data Allocator
Squidy neither makes use of an object pool nor of an allocator. The major advantages of
allocators have been explained in section 6.7.5 and Squidy could also benefit from these
advantages. An allocator also combines and encapsulates related tasks and makes them
easier to use for a developer.

The idea of DirectShow to use allocators appears convenient. Therefore, a custom
allocator should be integrated in Squidy. By using Java Generics76, an allocator class
can be applied to all Squidy data types.

Due to a detail of the implementation of Squidy, consequent use of data allocators
similar to DirectShow offers one more advantage: Squidy creates and publishes
duplicates of a data object when multiple target Nodes are connected, which is a costly
and often needless process. This is done as a precaution to be sure that modifications of
a data object in one partial downstream processing chain cannot affect another parallel
partial downstream processing chain. Without the copying procedure, the parallel chain
would operate on the same instance of the data object.

The need for data duplication originates from concepts of dataflow programming. They
demand for freedom from side effects and define the single assignment rule which
states to “disallow the reassignment of variables once their value has been assigned.”
[63] However, it is desirable to eliminate needless data duplication to reduce required

74 http://www.ntp.org/
75 http://support.ntp.org/bin/view/Support/JavaSntpClient
76 http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html

52

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://support.ntp.org/bin/view/Support/JavaSntpClient
http://www.ntp.org/

Proposed Improvements to Squidy

processing power and memory with respect to the rules of dataflow programming.
When using data allocators, duplicates can be created on demand and only if they a
required. A comparable strategy could also be implemented without data allocators but
would still cause additional continuous data object instantiations within the processing
chain.

Instantiation of a data object causes the creation of its time stamp which indicates
when the data value held by the object has been produced. This works well if a new
data object is instantiated for each new data value. When using an allocator, objects
are instantiated only once. A solution for this problem comes with start and stop time
stamps which are described in section 7.2.1.

7.3.1 Data Object Creation on Demand
To overcome the issue of continuous data object instantiation, each Node operates its
own data allocator. The data allocator is used by Nodes introducing data which are
Bridge and Source Nodes, other Nodes use it on demand only.

To understand what on demand means, it has to be defined when a data allocator is
required: It is required if a Node needs to create duplicates of the incoming data
objects, or if it creates a different type or a different number of data objects than the
incoming ones. The latter two cases do not need to be inspected because they are self-
explanatory.

A Node only needs to create duplicates of outgoing data objects if the following
conditions are true:

• The Node has more than one outgoing connection, thereby an instance of a data
object is published to multiple Nodes in parallel. These Nodes rely on unmodified
data objects from their upstream processing stage.

• At least one of the following downstream Nodes modifies data objects. This globally
modifies a single instance of a data object.

• The Node modifying data objects does not operate a data allocator. Thus it modifies
the original data objects, not new data object instances from its data allocator.

When all of these conditions apply, a Node has to initialize and use its data allocator.
It publishes duplicates of data objects created by its data allocator to all outgoing
Pipes which announced modification. All other outgoing Pipes (or the last one if all
Pipes modify the data objects) receive the original data object. Since the Node does not
know about the behavior of its downstream Nodes, the connection procedure between
Nodes has to be extended:

• The newly connected downstream Node announces upstream if it or one of its
downstream successors modifies data objects. This happens every time a new
connection is established. The announcement is propagated upstream and
remembered by each passed Node until it reaches either the beginning of the chain, a

53

Survey and Review of Input Platforms and Recommendations for Squidy

Node operating a data allocator, or a Node with more than one outgoing connection
which requires to initialize its data allocator.

• When the connection between two Nodes is deleted, the upstream Node needs to
start the announcement. It is propagated in the same way as on a new connection. If
it reaches a Node with more than one outgoing connection and which operates a data
allocator, the Node either needs to keep its data allocator or may destroy it. This has
to be decided depending on the remaining requirement of duplicates. If the Node
destroys its data allocator, the announcement must be propagated further upstream.

This procedure can be implemented in the class AbstractNode, transparently for
inherited Node classes.

7.3.2 Implementation Details
Data object creation solely on connection or disconnection of Nodes disregards some
major problems. These problems are identical to those for detecting circular Pipelines
described in detail in section 7.10. Their solution is comparable, too: The approach
described above has to be extended to determine usage of the data allocator
dynamically during data processing.

For upstream announcement, a new way to transfer information has to be introduced
because data flow is currently limited to downstream direction. DirectShow offers
comparable possibilities for example via the interface IQualityControl with the method
Notify(). The following solution introduces notifications as a synonym for
announcements.

• An new interface IAllocator is introduced. The DirectShow interface IMemAllocator
can be used as a template.

• A new generic allocator class AbstractAllocator implementing IAllocator is
introduced.

• New data allocator classes derived from AbstractAllocator for all data types are
introduced.

• The Piping class is extended by an attribute allocators representing a collection of
data allocators implementing IAllocator. If a Piping object publishes multiple data
types, a dedicated allocator for each type is operated.

• The Piping class is extended by a method duplicateData() which requires a Pipe, a
Squidy data type, and a boolean flag as parameters. The method enables or disables
duplication of data objects and thereby usage of the internal allocator for the
specified data type during the data publishing process.

• The Piping class is extended by an abstract boolean method isModifyingData()
which indicates if it modifies incoming data objects. Inherited objects, especially
Nodes, have to implement this method to force the developer of the Node to provide
this information and also allow to provide it dynamically. Per default, Piping objects

54

Proposed Improvements to Squidy

also iterate over their sub-Processables to accumulate the attribute from all Piping
objects which they contain.

• The IData interface and the AbstractData class are extended by an attribute to hold
a boolean flag multiplied which indicates that an upstream Piping object has
multiplied the data object without duplicating it. Object serialization of the
AbstractData class is extended to support the multiplied attribute. It is set to false
during instantiation.

• A new interface INotification is introduced. It follows the visitor design pattern (see
section 2.3.1) and contains the method visit() which requires a Piping object and a
Pipe as parameters. The interface can be extended to multiple visit() methods for
later extension of the notification functionality.

• A new class DuplicateDataNotification which implements INotification is introduced.
On construction, it requires a Squidy data type and a boolean flag indicating the
desired state of data object duplication as parameters, both are stored in attributes.
Its visit() method advises a Piping object to duplicate or not to duplicate data
objects for the specified Pipe and data type by invoking the Piping's duplicateData()
method.

• An new interface INotifyable is introduced. It contains the method notify() which
requires INotification and a Pipe as parameter.

• The Piping class is extended to implement INotifyable. The method notify() and the
internal processing structure is implemented to provide the same functionality
upstream as the method process() of AbstractData provides downstream. A data
allocator for notifications shall be omitted because of their relatively rare occurrence.
The notify() method is invoked by the downstream Piping object which publishes
notification objects upstream with the notification object and the employed Pipe as
parameters.

• The AbstractNode class is extended by a processing queue which holds objects
implementing the INotification interface. The processing queue can be processed
within the thread which is also used for data processing.

• When a Piping object multiplies a data object without duplicating it, it sets the
multiplied flag.

• When a Piping object which modifies incoming data objects receives a data object
with the multiplied flag set, it creates a new DuplicateDataNotification object and
publishes it upstream.

7.3.3 Transfer of unique Attributes
Data objects can carry unique properties in their attributes. This can be for example a
device identifier or the time when the original data object has been captured from a
device. When a data object passes a Node during data processing, especially a
Transformer Node which converts input data and creates new output data objects of a

55

Survey and Review of Input Platforms and Recommendations for Squidy

different type, the unique attributes should be retained and transferred to the
corresponding new data objects.

Without an allocator, this task has to be carried out by the developer of a Node after
he has created a new data object. He might forget it, do it in a wrong way or not adapt
it every time a new unique attribute is added. An allocator provides a solution to
encapsulate this task, force the developer not to forget it, and release him from
implementing attribute transfer.

An allocator can demand for a source data object when a new data object is requested
by the application. This can be realized by a method requiring a source data object as
parameter. Thus it can copy all unique attributes before it provides the new data
object to the caller. When using individual allocator classes for each Squidy data type,
specialized copy procedures can be implemented, too.

Due to existence of Node categories, a Node can create different types of allocators or
initialize an allocator depending on the Node category. A Source Node can allow to
request new data objects without providing a source data object, whereas a
Transformer Node can force the developer to provide a source data object.

Squidy Remote also instantiates new data objects but it uses serialization to
reconstruct the data objects. Thus their unique attributes can be reconstructed, too.

7.3.4 Dynamic Data Allocator Capacity
One might argue that it is useful to enable the capacity of a data allocator to grow and
shrink dynamically, depending on the number of object instances required. This allows
a Node which cannot cope with the rate of incoming data objects to buffer unprocessed
data objects in memory and to process it when it is ready.

Thorough reflection on this approach reveals the following arguments:

• A Node which cannot cope with the rate of incoming data objects is most likely not
able to catch up with its buffered data objects, except its processing behavior is very
unsteady. Therefore, it only makes sense to provide a small number of additional
data samples for temporary fluctuations of a Node's processing performance. It
should be possible to estimate a reasonable static number of available data objects in
the allocator.

• Buffering and not immediate processing data objects introduces additional latency
which is the opposite of the requirements for this framework. Depending on the type
of processed input data, it can make more sense to drop unprocessed data objects to
keep latency low at the expense of high data rate and completeness of data transfer.

• Dynamic allocator capacity might be useful for very long processing chains with
extensive parallel processing where static allocator capacity must be chosen very
large by default to be able to provide enough data objects for parallel processing in
all stages (compare section 6.8). This is likely to be a rare case.

56

Proposed Improvements to Squidy

• Validating and resizing a data allocator can be a costly operation which can affect
overall processing performance. Moreover, if allocator capacity is reduced and objects
are freed, the Java garbage collector is invoked and might interfere input processing
on a platform with heavy CPU load.

To sum up, dynamic data allocator capacity can be useful in some cases but its usage
should be avoided if possible. An implementation of a data allocator should provide
two optimized classes for static and dynamic capacity. This allows to leave the choice
to the developer or user of a particular Node which implementation to use.

7.4 Direct Invocation and Blocked Execution
The concept of data input queues of the Node class is related to the concept of dynamic
allocator capacity. A data input queue acts as a buffer for data objects and cooperates
very well with dynamic allocator capacity. Thus all arguments listed above (see section
7.3.4) apply to data input queues, too. It depends on the individual processing chain
and demands of the user if such a buffer is useful or counterproductive.

In order to allow this choice, a new publishing mode for Nodes called direct invocation
is introduced which also eliminates possible additional latency (see section 3.3). With
direct invocation, the process() command of the target Node directly invokes data
processing without placing incoming data objects in its data input queue. Thereby the
internal processing thread is bypassed and data processing is executed by the thread of
the preceding Node. The explicit purpose of this publishing mode becomes clear in
section 7.5.3.

Within the attributes of a Pipe it is possible to enable direct invocation optionally and
separately for each data type. Nodes can simultaneously operate with traditional
processing and direct invocation depending on the data type.

7.4.1 Parallel Processing
By using direct invocation parallel processing disappears. All processing is done within
the thread of the first Node of a processing chain segment which uses direct invocation.

If parallel processing shall remain enabled but buffering of data should be prevented,
direct invocation cannot be used. The maximum capacity of a Node's data input queue
has to be limited to one item instead. Additionally, the AbstractNode.process() method
gains the potential to block execution optionally until the data input queue has free
capacity again. Pins in DirectShow can behave similarly. If all Nodes throughout the
entire processing chain stick to Blocked execution, all Nodes are forced to assimilate the
speed of the slowest Node in the processing chain. Thus data congestion cannot occur
because Nodes which introduce data to the processing chain are limited, too.

If maximum input data queue capacity is set and blocked execution is not effective, all
incoming data samples to a Node which exceed the maximum queue capacity are

57

Survey and Review of Input Platforms and Recommendations for Squidy

dropped automatically by the Node. This data loss should be visually reflected in
Squidy Designer to warn the user.

Direct invocation and blocked execution reduce functionality to match a special
purpose instead of adding new functionality. This can be useful depending on the
application.

7.4.2 Implementation Details
Direct invocation, maximum queue capacity and blocked execution can be implemented
in AbstractNode.process() with a few lines of code. All three limitations are disabled by
default. Attributes to store the state of maximum queue capacity and blocked
execution have to be added to the AbstractNode class.

The state of direct invocation needs to be stored in an attribute of the Pipe class for
each data type transferred, and in an attribute of the AbstractData class. During data
publishing the state of direct invocation has to be copied from the Pipe to the
published data object and has to be evaluated by the AbstractNode.process() method.

7.5 Multi-Touch Input Node
A basic idea of Squidy is to reuse and combine the best state-of-the-art solutions for a
particular problem. This reduces the workload required for research projects and builds
upon proven knowledge. Thus the current multi-touch input Node of Squidy was
combined from several programming languages and techniques from several sources.

Multi-touch image processing runs in a separate process launched by Squidy from an
executable file on demand. This executable file is implemented in C++ and borrows
blob detection from Touchlib (see section 4.3.15). Moreover, it features image pre-
processing for background subtraction and image filtering by CUDA, which runs on
NVIDIA graphics adapters. The detected blobs are analyzed by a rudimentary finger
processing algorithm and transferred via OSC protocol to the corresponding Squidy
multi-touch Node which is implemented in Java and makes use of the OSC Bridge.

7.5.1 Advantages of the current Implementation
The multi-touch tracker module uses GPGPU for image pre-processing. Thereby it
transfers a large amount of workload to a specialized ASIC (application-specific
integrated circuit) and operates very fast compared to the same algorithms executed on
a conventional general-purpose CPU. It introduces only a small amount of latency into
the input processing chain.

7.5.2 Disadvantages and Proposals for Improvements
• The current implementation of image pre-processing is implemented using CUDA77

(Compute Unified Device Architecture), a proprietary architecture from NVIDIA78. It

77 http://www.nvidia.com/object/cuda_home.html
78 http://www.nvidia.com/

58

http://www.nvidia.com/
http://www.nvidia.com/object/cuda_home.html

Proposed Improvements to Squidy

requires a graphics adapter manufactured by NVIDIA to operate. To mitigate vendor
dependency, the source code specific to CUDA should be ported to use the
functionally equivalent OpenCL79 (Open Computing Language). OpenCL is an open
standard and is supported by multiple vendors. Moreover, an additional CPU-only
implementation should be provided to extend platform portability to platforms
without a GPU or an OpenCL API.

• Image processing for blob recognition is currently executed by the CPU while all
other image processing is executed by GPGPU. Image processing on the GPU
promises better performance, thus blob processing should also be transferred to the
GPU.

• Efficient GPGPU programming requires detailed technical knowledge of the GPU
and all involved components such as graphics memory management. Therefore,
taking care of efficiency can be an expensive task and is not necessarily a focus of
software development for research purposes. It should be verified if the current
GPGPU algorithms exploit the full potential of the hardware.

• The module uses fixed pre-processing steps and image filters only. It also applies blob
tracking and post-processing of blob data within an immutable workflow. This is not
a convenient situation for evaluation and research of multi-touch applications which
requires separation and arbitrary recombination of these tasks. The fixed processing
steps should be replaced by a flexible processing chain.

The Pipes and Filters architecture of Squidy would be ideal for this task. However, it
very likely causes a vast loss of performance if some filters in a processing chain
operate on the GPU and not all involved filters are aware of this fact. These filters
could cause expensive data transfer in memory between host and graphics device.

To gain maximum possible processing performance, the host CPU has to operate
using data located in the host memory and the GPU has to operate using data
located in its graphics memory. Graphics memory is located on the graphics device
which is connected to the host system via a bus subsystem (often PCI Express).
Depending on the task to execute, it can become necessary to transfer data between
host memory and graphics memory which is an expensive process and should
therefore be reduced to a minimum.

• The module currently supports only a vendor-specific camera interface (by IDS
Imaging80) because it makes use of features which are special to the corresponding
cameras. Therefore, only a limited number of cameras is supported. Moreover, the
multi-touch tracker operates satisfactorily on Windows only. IDS Imaging also offers
drivers for Linux, but according to the authors of Squidy they do not work as stable
as their Windows counterpart. To overcome these limitations, the camera interface
implementation should be replaced by a more general and platform independent one.
The module already contains a replaceable class representing the camera interface,
but it makes more sense to adapt the entire, well-proven video subsystem of another

79 http://www.khronos.org/opencl/
80 http://www.ids-imaging.de/

59

http://www.ids-imaging.de/
http://www.khronos.org/opencl/

Survey and Review of Input Platforms and Recommendations for Squidy

existing multi-touch framework to save time for implementation and reduce the
required effort.

7.5.3 Proposal for an overall Architectural Redesign
Based on the enumeration of disadvantages described above, the following solution for
an overall architectural redesign of the multi-touch input Node is proposed:

• Two new Squidy data types are introduced: DataImage and DataImageGPU.
DataImage provides a reference counted image in host RAM, DataImageGPU
provides a similar image in graphics RAM. The memory of DataImageGPU is
allocated as a frame buffer object (FBO) which enables it to be accessed as OpenGL
texture, OpenGL frame buffer, or GPGPU memory object for versatile GPU image
processing. With these data types, a concept comparable to DirectShow transport
interfaces [31] is introduced.

• A data allocator is introduced to gain performance.

• A new Camera Source Node is introduced which makes use of the data allocator
class and fills DataImage objects from its data allocator with acquired images from
an attached physical camera. The Camera Node connects to a native code
implementation via JNI.

• A new Squidy Transformer Node for image data transfer between host and graphics
RAM is introduced. It acts as converter between DataImage and DataImageGPU in
both directions depending on the input data type and connects to a native code
implementation via JNI.

• Parallel processing controlled by the CPU is not very useful for GPGPU as a GPU
operates its own thread management and does not require any CPU resources.
Therefore, all data objects of type DataImageGPU are published using direct
invocation by default (see section 7.4).

This assumes that there is only one GPU available which is fully utilized by
processing DataImageGPU objects. If multiple GPUs are available or processing does
not fully utilize the GPU, this situation has to be detected and direct invocation may
not be used. It this situation it would be counterproductive because it would prevent
parallel processing of data objects.

• A number of new Nodes for GPGPU image processing are introduced, such as Nodes
for background subtraction, high-pass filtering, color conversion, and blob detection.
These Nodes operate on the DataImage and DataImageGPU types and connect to a
native code implementation via JNI. They replace the internal image filters of the
current multi-touch Node implementation and provide equivalent implementations of
their individual filter task for CPU and GPU processing which are executed
depending on the input data type.

60

Proposed Improvements to Squidy

• A new Squidy data type DataBlob2D is introduced. It derives from the data type
class DataPosition2D and contains additional information for blob size. This data
type is used by the blob detection Node for data output.

• A new Squidy data type DataTouch is introduced. It derives from AbstractData and
contains properties for touch event, identifier, origin, bounds, time, device, path, and
ambiguity (compare section 8.1).

• A new Squidy data type DataTouchCommand is introduced. It derives from data
type class DataString and contains a command property as a string interpreted from
one or multiple DataTouch objects as well as all identifiers of DataTouch objects
used to create this command (compare section 8.1).

• A new multi-touch abstraction Transformer Node is introduced which processes
DataBlob2D objects and publishes interpreted multi-touch events as DataTouch
objects (compare section 8.1).

• A new multi-touch interpretation Transformer Node is introduced which processes
DataTouch objects and publishes interpreted multi-touch commands as
DataTouchCommand objects (compare section 8.1).

Multi-touch processing can be modeled by a Pipeline shown in illustration 6.

7.5.4 Benefits of the proposed Redesigned Architecture
The new architecture complies with the Pipes and Filters architectural pattern and
separates different functionality into different small modules which can be refined and
maintained with less effort than one large and comprehensive module. This also
complies with the architectural concepts of Squidy and with the concept of separation
of concerns. Further benefits are the following:

• It introduces new types of Nodes which can be reused in different contexts.

• It allows flexible image processing which is required to cope with different multi-
touch environments.

61

Illustration 6: A new multi-touch data processing chain

Survey and Review of Input Platforms and Recommendations for Squidy

• It allows to model, store, and reuse multiple different Pipelines for multi-touch
applications.

• It accounts for the requirements of GPGPU and enhances utilization of the GPU's
processing potential.

7.6 Multi-Touch Calibration
This section starts with a discussion about calibration of multi-touch input hardware to
explain the need for calibration and its backgrounds. After that, a possible
implementation for calibration in Squidy is proposed.

A multi-touch application requires knowledge about the position of touches from users
on the multi-touch surface which are detected by a camera. It needs this position to
interpret and to assign touches appropriately to elements visible on the surface at the
particular position. Thus a surface calibration is needed to correlate image pixels seen
by a camera with positions on the surface. For this purpose, a two-dimensional (2D)
coordinate space is assigned to the multi-touch surface which is commonly chosen to be
identical to the coordinate space of the graphical workspace presented to the user on
the surface.

If an application operating with a curved multi-touch surface wants to handle versatile
variants of surfaces, it can become vital to know the three-dimensional (3D) spatial
properties of the surface. Especially in combination with tangible and multi-modal
interaction, spatial position information of objects used for interaction is likely to be
valuable. This might exceed the practical requirements of the first prototype of the
Curve desk but can become vital for further research. A prerequisite for capture of
spatial positions is camera calibration which will be described later in this section.

7.6.1 Surface Calibration
Planar surfaces which are located in the field of view of one camera can be calibrated
with little effort. Due to prior knowledge of the rectangular and planar characteristics
of a surface, a simple linear coordinate transformation can be established between the
2D image coordinate space and the 2D surface coordinate space.

This allows to implement a straightforward surface calibration process which is used by
many multi-touch frameworks (see section 4). The user touches the four corners of the
rectangular surface, the touches are captured by the camera and the surface calibration
application determines the image coordinates of the touches.

An issue for multi-touch input is image distortion of the image provided by a camera
which causes error-prone coordinate transformations. Image distortion originates from
(often radial) distortion caused by the lens mounted on the camera. The smaller the
focal distance of the used lens the larger becomes the distortion. Distortion needs to be
determined to be able to define an accurate transformation between image coordinates
and surface coordinates.

62

Proposed Improvements to Squidy

Based on the assumption that image display on the surface is already calibrated and
provides a final undistorted view, the surface calibration procedure can be extended to
reduce the impact of distortion of the camera's lens. The multi-touch application
displays a grid of points spread over the entire surface to the user who has to touch all
these points. The application can integrate the image coordinates of these grid points
into its coordinate transformation. However, this does not really correct distortion
completely but reduces its impact by a more accurate calibration of smaller areas of the
surface.

In most cases when using a curved surface, it is still possible to calibrate this surface
with the procedure just described. It is necessary to use a dense array of surface
calibration points in curved regions of the surface to be able to construct a sufficiently
accurate coordinate transformation. If bending or deformation of the surface is very
intense or the angle between the camera viewing direction and the surface is small,
calibration and detection of points on the surface are not very accurate.

If the image display on the surface is not calibrated and requires a camera-assisted
surface calibration process first, more complex calibration techniques have to be
applied. This mainly concerns presentation to the user and is not part of this work.

7.6.2 Camera Calibration
If one wants to use complex or deformed surfaces viewed by multiple cameras it can
become necessary to retrieve more information about the cameras itself. Moreover,
tracking the position in 3D space of objects located above the surface is an interesting
task for Curve research (see section 1.1).

The following properties of a multi-touch surface table have to be determined to handle
these requirements properly:

• lens distortion of each camera to allow its accurate correction

• spatial position and field of view of of each camera to allow 3D calculations

• curvature or deformation of the surface to enable a correlation between 2D image
and 2D surface coordinates

It is impossible to determine all these parameters by the simple approach of surface
calibration (see section 7.6.1) because one cannot determine whether displacement of
coordinates results from lens distortion, camera position or orientation, or an also
unknown deformation of the surface. Therefore, other methods have to be applied to
determine all these properties.

Camera Parameters
Tsai [64] describes camera calibration in the following way: “A camera calibration in
the context of 3D machine vision is the process of determining the internal camera
geometric and optical characteristics (intrinsic parameters) and/or the 3D position and

63

Survey and Review of Input Platforms and Recommendations for Squidy

orientation of the camera frame relative to a certain world coordinate system (extrinsic
parameters).”

Methods for camera calibration allow to determine these camera parameters. Camera
calibration is a thoroughly explored field of research, only few examples of related work
can be named here. Another method besides the technique which Tsai proposes is DLT
[65]. The extended DLT method [66] also includes basic radial distortion correction.
Further methods for distortion correction can for example handle fish-eye lenses with
very short focal distance [67; 68].

Depending on the technique used for camera calibration it is often required to provide
a defined number of points with known spatial 3D coordinates together with a
correlating set of 2D image coordinates captured from the image of the camera to
calibrate. These points should be chosen to be evenly distributed throughout the field
of view of the camera which is commonly a part of the multi-touch surface. It is
difficult to obtain a sufficient number of points with known specific spatial 3D
coordinates from an unspecifically curved surface as input data for a camera calibration
algorithm because these 3D coordinates are part of the unknown variables to be
determined.

A solution for this dilemma is provided by wand-based camera calibration techniques
[69]. While being tracked by all cameras, a wand which carries markers is moved
throughout the space to be calibrated. The same technique can be applied to a multi-
touch surface if the user moves his fingers over the entire surface while the position of
the fingers is being tracked by the cameras. Additionally, some fixed reference points
from the edges of the surface can be involved to determine orientation and scaling of
the camera views.

3D and 2D Reconstruction
If a particular spatial point can be seen from at least two cameras which are calibrated
in the same world coordinate system, it is possible to reconstruct the 3D spatial
coordinates of this point from its 2D coordinates on the camera images. The DLT
method can achieve this by solving a system of linear equations [70].

Camera calibration allows to calculate an accurate coordinate in 3D space but this
position has no direct relation to the 2D coordinate space of a multi-touch surface.
Thus a correlation between the two coordinate spaces must be established to determine
the 2D position of a touch on the surface.

The obvious way to achieve this is to construct a virtual 3D representation of the
multi-touch surface onto which a 2D coordinate space representing the real surface is
mapped. When a touch occurs on the surface, the shortest possible line between the
detected spatial 3D coordinates and the virtual 3D representation of the surface can be
calculated. The intersection point of this line with the virtual surface provides the
required 2D coordinates of the touch.

64

Proposed Improvements to Squidy

Construction of a virtual 3D representation of the multi-touch surface can be done
based on the coordinates of fingers tracked during wand-based camera calibration
because these coordinates are already spread over the entire surface. A more accurate
but also more expensive method is camera-based 3D scanning of the surface. The
typical setup of a multi-touch table including back projection and cameras enables use
of structured light to reconstruct the surface [71; 72]. Various approaches for both
structured light and camera-based 3D scanning exist which include 3D scanning
without prior camera calibration and use of structured light for camera calibration
itself.

Further Aspects
Since the camera calibration steps of tracking, calculation, and reconstruction are error-
prone, there are also techniques which aim to minimize this error [73]. Furthermore,
multiple frameworks for camera calibration exist. One is the Camera Calibration
Toolbox for Matlab81, another one is BazAR.82 Stephan Rupp presents a modular
software framework for camera calibration [74] which handles the camera calibration
steps described above including an abstraction of the required GUI.

7.6.3 Implementation Details
Except the necessity of a suitable calibration procedure for the user, surface and
camera calibration information has to be published to Nodes interested in camera
calibration. Surface calibration is called 2D camera calibration in the implementation
because it realizes a versatile technique which does not necessarily have to be applied
to multi-touch surfaces only. A convenient solution consists of the following points:

• A new Squidy data type DataPoint2DArray is introduced. It contains an array of 2D
coordinates.

• A new Squidy data type DataPoint3DArray is introduced. It contains an array of 3D
coordinates.

• A new Squidy data type DataCameraCalibration2D is introduced. It derives from
DataPoint2DArray and fills it with 2D coordinates in the coordinate space of a
camera image. Additionally, it complements DataPoint2DArray by correlating 2D
coordinates in the coordinate space of the surface.

• A new Squidy data type DataCameraCalibration3D is introduced. It derives from
DataPoint2DArray and fills it with 2D coordinates in the coordinate space of a
camera image. Additionally, it complements DataPoint2DArray by correlating 3D
coordinates in the world coordinate space and includes a set of DLT camera
calibration parameters.

• A new CameraTransformation2D Transformer Node is introduced which accepts
DataCameraCalibration2D, DataPoint2DArray, and DataPoint2D as input objects

81 http://www.vision.caltech.edu/bouguetj/calib_doc/
82 http://cvlab.epfl.ch/software/bazar/

65

http://cvlab.epfl.ch/software/bazar/
http://www.vision.caltech.edu/bouguetj/calib_doc/

Survey and Review of Input Platforms and Recommendations for Squidy

and applies 2D transformation to DataPoint2D+ objects based on
DataCameraCalibration2D and outputs corresponding DataPoint2D+ objects.

• A new CameraTransformation3D Transformer Node is introduced which accepts
DataCameraCalibration3D, DataPoint2DArray, DataPoint3DArray, DataPoint2D,
and DataPoint3D as input objects. It applies 3D reconstruction into world coordinate
space to DataPoint2D+ objects based on DataCameraCalibration3D and outputs
corresponding DataPoint3D+ objects. It applies 2D projection into image coordinate
space to DataPoint3D+ objects based on DataCameraCalibration3D and outputs
corresponding DataPoint2D+ objects.

• A Camera Node stores its camera calibration information in
DataCameraCalibration+ objects.

• A new class DataPublishRequest which implements INotification is introduced (see
section 7.3.2). On construction, it requires a Squidy data type
(DataCameraCalibration+) as parameter which is stored in an attribute. Its visit()
method advises a Node to publish its calibration information if it produces
information of the requested data type. Visitor objects of this class can be published
upstream by Nodes to request calibration information on demand.

• DataCameraCalibration+ objects are published by a Camera Node once when data
processing starts, when camera calibration is modified, or when a
DataPublishRequest initiates the publishing process. A CameraTransformation+
Node always stores the last DataCameraCalibration+ object it receives.

7.7 Image Stitching
Multiple cameras are required for the Curve desk (see section 3.5) to capture its entire
surface for multi-touch input processing. The field of view of each camera can overlap
with the field of view of all adjacent cameras to get a gapless representation of the
surface. When all cameras have sufficient overlap and are accurately calibrated, it is
possible to detect multi-touch input seamlessly and correctly even if it spreads the field
of view of multiple cameras.

However, this does not provide a visual representation of the entire surface of the desk
but only partial views. Moreover, these views probably look severely distorted because
of lens distortion and especially because of the curved surface if no image correction is
applied. This stands in contrast to the requirement for Curve to have an undistorted
seamlessly combined view of the surface which allows use cases such as document
scanning and tracking of fiducial markers on the entire surface.

7.7.1 Stitching Process
The solution for these requirements is image stitching. Image stitching is the process of
blending multiple adjacent images into a single and ideally seamless image. It is
commonly used for panorama photography to construct a panorama picture from

66

Proposed Improvements to Squidy

multiple photos. This kind of photos is normally shot one after another by a single
camera. The same technique can be used to blend the images which were shot at a
single point in time by multiple cameras.

Particular approaches for image stitching vary slightly in the processing steps applied
to the images. However, the process of image stitching is complex and requires much
processing power. It includes distortion correction, key point or image feature finding
and matching, color and intensity adaption (normalization), and blending of all input
images into one output image [75-77]. A tutorial which describes all steps of the process
in detail is available [78].

For blending video images captured by a fixed installation of multiple cameras such as
a multi-touch desk like Curve, most of these steps have to be performed only once
because the sole variable parameter are the images itself. The cameras are normally not
moved or adjusted, and relative color and intensity of their images remain constant.
Thus all steps except image blending can be omitted during normal operation of the
multi-touch desk [79; 80]. These steps can be performed once and can also be combined
with the calibration procedure of a multi-touch surface (see section 7.6.1).

Camera calibration (see section 7.6.2) data can be an additional input for the image
stitching algorithm [81] or can add precision if required camera calibration information
is only estimated [77].

7.7.2 Available Implementations
An implementation of image stitching comes from the PTStitcherNG tool from the
Panorama Tools83. It has been optimized for speed on various hardware platforms.
Another implementation is Nona which is part of Hugin84, a GUI for the Panorama
Tools and Nona. Nona supports multi-threading and more image correction features
compared to PTStitcherNG. Additionally, Nona has experimental support for image
processing on the GPU.

An employee of NVIDIA implemented an image stitching pipeline in CUDA which runs
on GPU and operates very fast85. Fast operation is a very useful quality to achieve low
processing latency of an input processing chain. Parts of the image stitching pipeline
are planned to be published within the OpenVIDIA86 project, another part (SIFT) is
already available to the public87.

During a student workshop88 at the University of Erlangen-Nürnberg some parts of the
Panorama Tools were implemented using GPGPU with CUDA. The new
implementations partially show a speedup of a factor of multiple hundred times
compared to the implementations running on a common CPU.

83 http://panotools.sourceforge.net/
84 http://hugin.sourceforge.net/
85 http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Advances_in_GPU_based_Image_Processing.pdf
86 http://openvidia.sourceforge.net/
87 http://www.csc.kth.se/~celle/
88 http://www12.informatik.uni-erlangen.de/edu/map/

67

http://www12.informatik.uni-erlangen.de/edu/map/
http://www.csc.kth.se/~celle/
http://openvidia.sourceforge.net/
http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Advances_in_GPU_based_Image_Processing.pdf
http://hugin.sourceforge.net/
http://panotools.sourceforge.net/

Survey and Review of Input Platforms and Recommendations for Squidy

Any of these implementations have to be adapted for the use with Squidy and multi-
touch input applications as they are targeted at still image stitching. This means they
execute the entire stitching process for each image by default instead of the image
blending step only. Sticking to this behavior wastes a lot of processing power and
introduces additional latency.

7.7.3 Implementation Details
The foundation for image stitching - or more appropriate video stitching - has been laid
with the new multi-touch processing chain (see section 7.5.3) which introduces new
data types and a new Camera Node.

• A new ImageStitcher Multiplexer Node is introduced which accepts
DataCameraCalibration2D, DataCameraCalibration3D, DataImage, and
DataImageGPU as input objects. It synchronizes all incoming DataImage+ objects of
the same data type from multiple Pipes and applies an image stitching process to
these objects based on DataCameraCalibration+. The Node provides equivalent
implementations for image stitching for CPU and GPU processing which are
executed depending on the input data type. The output data of the Node is a
blended image in a DataImage+ object matching the input data type as well as a
composed DataCameraCalibration+ object matching the blended image.

• An ImageStitcher Node initiates calculation of all image stitching parameters each
time it receives new or modified camera calibration information or when a new
camera is added to its input port. It stores these parameters and applies only a
minimal set of operations required for image blending based on the stored parameters
to incoming DataImage+ objects.

• An ImageStitcher Node stores its composed camera calibration information in
DataCameraCalibration+ objects.

• DataCameraCalibration+ objects are published by an ImageStitcher Node once when
data processing starts, when camera calibration is modified, or when a
DataPublishRequest initiates the publishing process. An ImageStitcher Node always
stores the last DataCameraCalibration+ object it receives.

7.8 Management Interface
The preceding sections presented possible improvements regarding existing features of
Squidy. Based on these proposals the need for image stitching has been discussed. This
section introduces entirely new functionality.

One of the requirements defined for the input framework (see section 3) is support of
scripting of input tasks. Another requirement is support for a control channel to allow
an application which uses Squidy to send commands upstream to any Node. Both
requirements rely on a management interface which allows to control and to monitor
Squidy Manager and the Processables it holds. In this context the term management

68

Proposed Improvements to Squidy

interface refers to the concept of an interface with the purpose of management, not to a
specific interface class or technology.

Currently, Squidy Designer and Squidy Manager are strongly coupled: Squidy Designer
directly invokes methods of Squidy Manager to control it. A management interface in
between both components is able to decouple them and allow external control of
Squidy Manager. When a management interface has been realized in Squidy, Squidy
Designer acts as a client and Squidy Manager acts as a server. This allows Squidy
Designer to remotely connect to Squidy Manager, too (see section 6.6).

Additionally, many control tasks are currently directly implemented in Shape classes
within Squidy Designer. Thus Squidy Designer and Squidy Manager have to be
refactored to an MVC architecture first (see section 2.3.2). Controllers are not only
required to separate model and view but also as junctions for the management
interface.

In DirectShow, the Filter Graph Manager provides COM interfaces for all management
tasks and allows access to all filters inside the graph. Each filter and each pin exposes a
standard interface (IBaseFilter and IPin) for common tasks such as requesting its name
or state. Additionally, each filter and pin can expose any number of specialized
interfaces. DirectShow defines overall 190 COM interfaces89 which already include a
number of specialized interfaces for tasks such as camera control. A software developer
is free to add and implement further custom interfaces if required.

7.8.1 Requirements
Some use cases of the management interface can be differentiated:

A)Direct access from within one instance of a JVM (Java Virtual Machine) by
• Squidy Designer.
• classes within Squidy Manager itself.
• a Java client application which integrates Squidy classes.

B) Remote access using the Java language (from another instance of a JVM) by
• Squidy Designer.
• another instance of Squidy.
• an external Java client application.

C) Remote access not using the Java language by
• a non-Java client application.
• a scripting language.

Since Squidy Designer enables the user to access all relevant management tasks of
Squidy Manager, it can be used as a template to identify groups of functionality which
the management interface has to expose:

• enumeration, creation, modification, interconnection, and deletion of Processables
• readout and modification of properties of Processables

89 http://msdn.microsoft.com/en-us/library/dd390343(VS.85).aspx

69

http://msdn.microsoft.com/en-us/library/dd390343(VS.85).aspx

Survey and Review of Input Platforms and Recommendations for Squidy

• invocation of methods of Processables
• enumeration of specific properties and methods of Processables
• serialization and deserialization of Processables
• monitoring state of Squidy Manager, Processables, and data objects

This outline of use cases and functionality reveals that access to nearly any aspect of
Squidy Manager is required. These aspects can change and evolve over time. Thus a
suitable management interface has to allow access to a mutable set of methods and
properties. Of course, the basic management interface itself has to be invariant.

Another challenge to solve is to find ideally one single solution which is able to handle
local and remote access as well as language independent access to the management
interface.

7.8.2 Remote Access using the Java Language
Use case A reflects the current situation in Squidy and works with and without a
management interface. The following list picks a small selection out of the pool of
existing solutions suitable to cover use case B which is a common use case in many
applications. All of these solutions support TCP and/or UDP as transport interface
and can be used over LAN, WLAN or the Internet:

Java RMI (Remote Method Invocation)
The Java RMI90 API is a package supplied with the Java Runtime Environment. It
allows to treat remote Java objects in the same way as local Java objects. Moreover, it
requires classes and its methods to be modified for remote invocation. Beside this
disadvantage, it offers a low degree of abstraction. Thus it is used as a base technology
for other remote management solutions.

Cajo
The Cajo91 framework has been built to provide an easy-to-use and dynamic way of
remote method invocation. It is based on reflection and does not require modification of
classes which should be remotely accessible. Cajo does not contain more features than
required for remote method invocation and complies with the reflection based
processing of Squidy.

JMX (Java Management Extensions)
JMX92 has been designed for management and monitoring of applications. It requires
management objects called MBeans to be implemented which are responsible for
management tasks. Furthermore, JMX includes a lookup service, security management
and allows the use of different connectors for transport between client and server. The
standard connector uses RMI.

90 http://java.sun.com/javase/technologies/core/basic/rmi/
91 http://cajo.dev.java.net/
92 http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

70

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://cajo.dev.java.net/
http://java.sun.com/javase/technologies/core/basic/rmi/

Proposed Improvements to Squidy

These features might have to be supplemented for a management interface based on
RMI or Cajo when it is used in large environments with many users. On the other
hand, the additional management objects of JMX require additional effort for
implementation. This effort can be reduced when the MBeans concept is considered
during refactoring of Squidy to an MVC architecture. Controllers can be designed with
this purpose in mind and can implement an MBean interface.

JMS (Java Message Service)
JMS93 is a message oriented middleware API which defines a communication standard
to enable asynchronous communication between components. Asynchronous
communication reduces dependencies but requires more effort for handling of
outstanding requests between client and server. A JMS implementation available from
Sun is the Java System Message Queue service which also allows to use JMX over JMS.

JMS is not a management protocol itself but a transport protocol. In case of using it in
conjunction with JMX it adds one more level of complexity to the communication
process. It is currently hard to assess if Squidy can make use or even requires this
feature. To keep overall complexity of Squidy low, JMS should only be used if practical
use of the management interface shows that JMS is needed.

Spring Remoting
Spring94 is a large application framework written in Java which provides functionality
needed in many applications. One part of the framework is Spring Remoting. It is a
wrapper for multiple underlying remote method invocation technologies including RMI,
JMS, and JAX-RPC for web services.

Similar to Cajo, Spring Remoting allows to build remote interfaces without modifying
the affected classes. It uses a configuration file where the developer has to define
remote objects. Spring Remoting does not explicitly provide management functionality.

Conclusion
To sum up, Cajo is a good choice for a quick implementation of the management
interface for a small environment with few users. JMX is harder to implement but it
offers more possibilities and because of its convenient architecture it will pay off if
Squidy becomes larger. It can even be used over JMS if required later. Thus JMX is
the recommended solution to integrate into Squidy to implement the management
interface .

Spring Remoting would be a good alternative to Cajo. Unfortunately it is not very
reasonable to use Spring Remoting within an application not based on the Spring
framework because Remoting makes use of features provided by the framework.
However, it makes sense to think about migrating Squidy to the Spring framework.

93 http://java.sun.com/products/jms/
94 http://www.springsource.org/

71

http://www.springsource.org/
http://java.sun.com/products/jms/

Survey and Review of Input Platforms and Recommendations for Squidy

Spring offers sophisticated solutions for the MVC concept, AOP, serialization, and
remote connection including support for JMX.

7.8.3 Remote Access by a non-Java Client Application
Use case C for the management interface demands for a way to connect the Java
programming language natively to other programming languages. This is not expected
to be a focus of Squidy but is discussed briefly. The remote access solutions listed
above mainly connect to a Java counterpart, only RMI can cooperate with different
programming languages. The following solutions are platform independent and except
for Jace also language independent.

OSC (Open Sound Control)
It is obvious to consider the OSC95 protocol as it is widely used to transport multi-
touch input data (see section 3.6.1). OSC is a message-based protocol for data transfer.
Its messages are encoded using ASCII text. The protocol itself does not define any
specific commands, it defines the syntax and contextual structure of data and
commands which are transported by OSC.

Therefore, a management interface based on OSC has to specify a management
protocol consisting of a set of management commands. Besides an OSC bridge, it also
requires an encoder and an interpreter to be designed to translate between textual OSC
commands and the object structure of Squidy. A management protocol based on OSC
either has to define a general set of commands which rely on Java reflection or a
specific set of commands for specific functionality. The former approach means a lot of
manual programming effort for a user of the protocol, except he builds a framework
like Cajo around it. The latter approach is easy to use but the protocol and its
translation must be maintained and extended manually for each modification and each
new feature which should be supported.

OSC is a good choice if one aims at implementing a minimal approach with a very
reduced set of management functions. Squidy Remote could be extended to support
some management commands with little effort. However, if more complex management
tasks should be performed, such as remotely working with Squidy Designer, it is very
inefficient to rely on OSC due to the characteristics of the protocol described above. In
terms of abstraction, OSC resides far below RMI because it defines nothing but rules
for a text-based protocol.

SOAP
SOAP96 is an XML-based protocol targeted for information exchange with web services.
It also defines RPC and supports object-oriented development. It can be compared with
RMI or Cajo as it allows to invoke methods remotely but does not include specific

95 http://opensoundcontrol.org/
96 http://www.w3.org/TR/soap/

72

http://www.w3.org/TR/soap/
http://opensoundcontrol.org/

Proposed Improvements to Squidy

management functionality. Compared to RMI or Cajo, it requires additional processing
power and bandwidth due to XML parsing and XML transport overhead.

SOAP is commonly implemented in frameworks for web services. Classes or objects
which should be published for remote access must be specified in a description file
written in WSDL (Web Services Description Language). Frameworks supporting SOAP
for Java are for example Apache Axis2/Java and Apache CXF. Both frameworks have
a lot of additional functionality mainly for web services. Apache CXF includes support
for JAXB which can be useful as Squidy currently relies on this technology for
serialization.

However, JAXB support cannot compensate the missing management architecture
compared to JMX. Moreover, JAXB serialization in Squidy shall be replaced by
Hibernate anyway (see section 6.6). Thus integration of a web services framework
should only be considered if language-independent access to the management interface
becomes essential for some reason.

CORBA (Common Object Request Broker Architecture)
Another solution to access the management interface from an application not written in
Java is to use a middleware architecture such as CORBA.97 CORBA is the name of a
standard for interoperability of objects and data between software components written
in multiple computer languages and running on multiple computers.

CORBA implementations are available for many platforms and programming
languages. An implementation for Java is the EJB (Enterprise JavaBeans) technology.
It can replace Cajo or JMX. However, the concepts of CORBA and EJB are complex
compared to JMX and even more Cajo. Moreover, EJB do not include a remote
management concept as JMX does. Thus CORBA and EJB appear to be oversized and
provide too little abstraction for Squidy.

With RMI-IIOP98 (Remote Method Invocation over Internet Inter-ORB Protocol) it is
possible to use RMI in Java and connect to a CORBA counterpart. RMI-IIOP is a
transport protocol for RMI which replaces the standard JRMP (Java Remote Method
Protocol) and is integrated into the Sun JRE.

Jace
If Java should be accessed from an application implemented with C++, the Jace99
library can be used. Jace provides a set of C++ classes to access JNI from the C++
programming language. This requires to create a remote proxy client application based
on the proxy design pattern [24] which wraps the management interface and acts as a
standard Java client. The proxy client application has to provide access to the
management interface via JNI to the Jace library.

97 http://www.corba.org/
98 http://java.sun.com/products/rmi-iiop/
99 http://sourceforge.net/projects/jace/

73

http://sourceforge.net/projects/jace/
http://java.sun.com/products/rmi-iiop/
http://www.corba.org/

Survey and Review of Input Platforms and Recommendations for Squidy

7.8.4 Use of Scripting Languages
A number of scripting languages exist which can be executed in a JVM. They come
with a compiler which compiles the scripting language to Java byte code or an
interpreter which runs within the JVM. The big advantage of these approaches is that
the scripting language can make use of all features of the JVM and has full access to
Java classes. This allows a seamless integration with applications written in Java such
as Squidy.

An example for implementations of scripting languages is BeanShell100, a Java-based
interpreter with a language syntax comparable to Java. Other examples are Jython101
(an implementation of Python in Java), Rhino102 (JavaScript in Java), Tcl/Java103 (Tcl
in Java), or Kahlua104 (Lua in Java).

Beside scripting languages, there are also implementations of mature programming
languages for the Java platform which follow the same technical concepts as the
scripting languages. Examples are Groovy105 and Scala106. Groovy extends the features
of the Java language but also simplifies it, while Scala intends to be an alternative to
the Java language to enable programmers to be more productive.

Languages based on the JVM could also be one of the next steps of the evolution of
Squidy. Interactive design and development could be improved for the user by
integration of multiple interpreting languages into Squidy. The user could then choose
the language of his choice to implement processing tasks of a Node in place of being
forced to use the Java language and dynamic compilation (see section 6.2.10). Together
with the management interface and a source code injection functionality into Nodes,
this would enable complete external scripting support for presumably all relevant use
cases of Squidy.

Another way to use a scripting language in conjunction with Java is to use JPype107.
“JPype is an effort to allow Python programs full access to Java class libraries. This is
achieved not through re-implementing Python [...] but rather through interfacing at the
native level in both Virtual Machines.”

7.8.5 Remote Access by Scripting Languages
If Cajo is used to implement the management interface, BeanShell would be a good
choice for scripting. “Since BeanShell and cajo both use Java reflection as the basis for
object method invocation; cajo makes it possible to have remote method invocations
appear syntactically identical to local ones, using a very small wrapper.”

100 http://www.beanshell.org/
101 http://www.jython.org/
102 http://www.mozilla.org/rhino/
103 http://tcljava.sourceforge.net/
104 http://code.google.com/p/kahlua/
105 http://groovy.codehaus.org/
106 http://www.scala-lang.org/
107 http://jpype.sourceforge.net/

74

http://jpype.sourceforge.net/
http://www.scala-lang.org/
http://groovy.codehaus.org/
http://code.google.com/p/kahlua/
http://tcljava.sourceforge.net/
http://www.mozilla.org/rhino/
http://www.jython.org/
http://www.beanshell.org/

Proposed Improvements to Squidy

Scripting languages running in the JVM can make direct use of all features and
techniques available for Java, including remote access and management technologies.
Thus, the management interface can directly be accessed, too.

The technical approach of JPype requires a remote proxy client application as
described in section 7.8.4 to access the management interface because the Python
virtual machine it needs to interact with a JVM.

Last but not least, JavaScript can be used from a web browser which supports Java
and JavaScript. If a proxy client application is implemented as a Java applet, it can be
loaded into the web browser. Due to the integrated interface of the web browser
between JavaScript and Java, JavaScript can gain full access to the management
interface of Squidy.

7.9 Monitoring
The term monitoring combines tasks such as logging and inspection of data objects or
system status. The following proposals rely on the management interface (see section
7.8). The management interface can offer functions to monitor the system status as it
can directly access the classes containing this information.

Squidy already contains monitoring mechanisms for a user of Squidy Designer. The
user gets visual feedback from a colored glow effect which represents the status of
Nodes, Pipelines, and Pipes. He is able to visualize the data flow within each Pipe, he
can use the Data Recorder Node for logging, and the GUI of each Node allows access to
the textual error logging output of the Node.

However, there is no comprehensive possibility to inspect and trace data objects from
the perspective of a software developer. Furthermore, textual logging of errors,
warnings, and information is only performed if a developer cares for this task and does
not forget to insert appropriate logging statements in his source code. More extensive
monitoring facilities would enable a developer or an application using Squidy to detect
problems faster. Thus it helps during research and evaluation of new configurations and
to resolve malfunctions during practical use.

7.9.1 Inspection of Data Objects
Squidy already contains a monitoring feature which allows to inspect data objects
passing through a Pipe. For this purpose, a feedback object which implements the
interface ProcessingFeedback can register itself with a Pipe. However, this concept is
currently limited to one feedback object per Pipe and it does allow only a momentary
view on the data objects. Therefore, the following improvements shall be integrated
into Squidy.

• Allow more than one feedback object per pipe by managing a collection of feedback
objects. Thus, passing data objects can be inspected by multiple inspectors
simultaneously, for example by Squidy Designer and via the management interface.

75

Survey and Review of Input Platforms and Recommendations for Squidy

• An attribute consisting of a collection of visitor objects shall be added to the class
AbstractData. A visitor object has to implement a new interface IDataVistor which
follows the visitor design pattern (see section 2.3.1). The interface includes a visit()
method which accepts IProcessable and IData as parameters.

• A visitor object has to implement serialization and deserialization to allow
persistence and transfer via Squidy Remote. IDataVistor includes the methods
serialize() and deserialize() which are called by AbstractData.

• An acceptVisitor() and a dismissVisitor() method which accept a visitor object
implementing the interface IDataVistor shall be added to the interface IData and
implemented in the class AbstractData. The methods store or remove the visitor
object in or from its collection of visitor objects. This allows multiple visitor objects
to be attached to or detached from a data object.

• Transformer Nodes which make use of their data allocator and create new outgoing
data objects from their incoming data objects have to transfer all visitor objects to
the corresponding new data objects (see section 7.3.3). Consequently, if a Node has
multiple outgoing Pipes, the publish() method in AbstractNode has to copy all visitor
objects to all instances of a published data object. If a Node has multiple incoming
Pipes, possible duplicate visitor objects have to be eliminated. Therefore,
AbstractData shall reject duplicate visitor objects which are added to its collection of
visitors by the acceptVisitor() method.

• Piping objects shall provide the methods addDataVisitorFactory() and
removeDataVisitorFactory() which operate on arguments of type
IDataVisitorFactory and store them in an attribute consisting of a collection of
visitor factory objects. IDataVisitorFactory is an interface following the abstract
factory design pattern (see section 2.3.1) and provides a function createDataVisitor()
which returns a new object which implements IDataVisitor.

• Every time a data object is published by a Piping object, it invokes
createDataVisitor() of all visitor factory objects attached to it to create new data
visitor objects. These new objects are attached to the collection of visitor objects of
the data object by invoking its acceptVisitor() method.

• Every time a data object is published by a Piping object, the visit() method of all
objects stored in the collection of visitor objects of the data object has to be invoked
with the Piping object itself and the data object as parameters. IData and
AbstractData shall provide a method notifyVisitors() for this task which accepts with
IProcessable a parameter.

• All methods related to visitors shall be synchronized to allow safe concurrent
processing.

The modifications described above allow to connect multiple inspectors to a Pipe and
to trace the path of a data object throughout the processing chain. An external module
or application can inject visitor objects to trace each data object starting from any

76

Proposed Improvements to Squidy

Piping object by providing an implementation of IDataVisitorFactory. The visitor
factory is free to return no, always the same, or multiple custom implementations of
visitor objects to inspect or even modify data objects. Additionally, visitor objects can
remove themselves from a data object at any time.

7.9.2 Logging
Squidy includes basic logging by Apache log4j. As already mentioned in section 6.6,
log4j should be replaced by SLF4J. Both frameworks do not significantly differ in their
usage; logging methods have to be invoked manually by the developer.

Detailed logging, which allows to trace each function call automatically, can be done by
using AOP (see section 2.2.2). Logging is a classical example when to apply AOP to
implement a new concern throughout an entire application without affecting or
modifying the source code of the rest of the application. AOP allows to define an aspect
logging for any selection of join points defined by a pointcut. By adding the advices
before and after and letting them invoke logging methods, entry and exit of each
method matching the pointcut can be logged.108

Aspect-oriented logging can provide very detailed feedback with little effort. Logging
control and output can be provided though the management interface, too. It is also
supported by Java through the AspectJ109 extension [22]. The Eclipse platform supports
AOP by AJDT110 (AspectJ Development Tools).

Moreover, the Spring framework integrates complete support for AOP. This feature can
be used by applications which use the Spring framework as basis (see conclusion of
section 7.8.2).

7.10 Circular Pipelines
It is possible to construct circular Pipelines with Squidy. This means output data
objects of a Node returns via the processing chain to the input port of the Node. When
such a Pipeline is started this can result in multiple presumably undesirable situations
with negative consequences, depending on the behavior of the participating Nodes:

• A fixed number of data objects circulates in the Pipeline, uses processing power and
does not perform any useful task.

• A continuously growing number of data objects circulates in the Pipeline until the
program terminates due to a low memory situation.

• A deadlock occurs because resources occupied by the data objects or the data objects
itself are not released due to their continuous circulation while the same resources
shall be allocated elsewhere.

• A deadlock or stack overflow occurs when direct invocation (see section 7.4) is used
because this situation results in an infinite recursive function call sequence.

108 http://en.wikipedia.org/wiki/Aspect-oriented_programming
109 http://eclipse.org/aspectj/
110 http://eclipse.org/ajdt/

77

http://eclipse.org/ajdt/
http://eclipse.org/aspectj/
http://en.wikipedia.org/wiki/Aspect-oriented_programming

Survey and Review of Input Platforms and Recommendations for Squidy

Since Squidy does not solely operate locally but can also operate as a distributed
system, it is necessary to find a solution which can cope with this situation. The
solution either has to prevent construction of circular Pipelines or dissolve the negative
consequences of circular Pipelines.

In rare cases circular Pipelines can be constructed intentionally. This can be useful to
allow a simple way to provide feedback output from a Node as input to an upstream
Node. The data filtering mechanism of Pipes allows to control the data flow
accordingly. However, the user may forget to set these filters correctly and has to use
different Squidy data types for the actual payload and the feedback data. A solution
which handles the issue of circular Pipelines should still allow this Pipeline
configuration but should eliminate its potential problems.

7.10.1 Prevent Construction
Chandy et al. [82] described an algorithm for distributed deadlock detection. Its basic
idea is that a process waiting for a resource sends queries to all dependent processes
containing the originator of the query and the last sender of the query. The query is
updated and forwarded by all traversed processes to their dependent processes. If the
query returns to the originator a deadlock situation is found.

A modified version of this algorithm could be used to prevent construction of circular
processing Pipelines. This is basically the same situation except that the problematic
resource is a circulating data object itself:

• The Processable class is extended by an immutable attribute for a UUID (universally
unique identifier) which is created and assigned during instantiation of a Processable
object. Object serialization of the Processable class is extended to support the UUID
attribute. A UUID is required to identify a specific object instance to allow safe
comparison with instances of the same class in other instances of Squidy.

• The new Squidy data type DataPipe is introduced. It contains a UUID for a Node
and a UUID for a Pipe.

• When a connection between two Nodes shall be established, the employed Pipe is
connected to the source Node first. The target Node publishes a new DataPipe object
and initializes it with the UUID of the source Node of the Pipe and with the UUID
of the Pipe. Additionally, it blocks execution for a definable timeout and waits for a
notification containing both UUIDs to continue execution. In case of a timeout,
execution continues normally. Otherwise if a matching notification arrives,
connection between the two Nodes is rejected.

• When a Node receives a DataPipe object, it compares the contained UUID with its
own UUID. If the UUIDs differ, the Node publishes the DataPipe object unmodified
to all outgoing Pipes. Otherwise the Node looks for the outgoing Pipe matching the
UUID contained in the DataPipe object and notifies the target Node of this Pipe.
The notification includes both UUIDs as a distinctive feature for this notification.

78

Proposed Improvements to Squidy

This approach could be implemented in AbstractNode, transparently for inherited Node
classes. However, it is not recommended to implement it because it has three major
disadvantages:

First, either the procedure of connecting two Nodes has to be executed asynchronously
in a separate thread, or it has to block execution of the calling thread to wait for the
return of the published DataPipe object. In both cases a timeout has to be defined
because no confirmation for absence of a circular Pipeline is available. It cannot be
safely determined if a circular Pipeline exists because a circulating DataPipe object can
still arrive after the timeout. If the connection between the Nodes is established
regardless of this problem after the timeout has occured, data objects can be published
over the Pipe and can cause one of the undesirable situations described above when a
circular Pipeline exists.

Second, the data objects might not be able to return safely to the source Node. Either
due to a partially stopped Pipeline or due to lost or dropped data objects for example
because of lacking processing power or a temporarily unreachable remote target Node.
It is possible to ignore the current processing state of a Pipeline or Pipeline segment
and to always publish DataPipe objects, but it is not possible to avoid the problem of
lost or dropped data objects. Thus it cannot be safely determined if a circular Pipeline
exists.

Third, this approach requires that DataPipe objects are always routed through all
Pipes independently of active data filters. This can cause detection of a circular data
flow which is actually not existent. Moreover, it contradicts the demand that it should
still be possible to construct a partially circular Pipeline if desired. It would be possible
to solve these problems by adding and evaluating a list of data types to DataPipe
objects. However, this would generate a complex process.

7.10.2 Eliminate Negative Consequences
Instead of detecting the circular Pipeline during connection of Nodes, it can be detected
and treated during data processing. The basic idea of the approach described above
remains but its major disadvantages are eliminated:

• The Node class is extended by an immutable attribute for a UUID as described
above for Processables.

• The IData interface and the AbstractData class are extended by an immutable
attribute to hold the UUID of the source Node. Object serialization of the
AbstractData class is extended to support the UUID attribute. A UUID is required
to identify a specific Node instance because during data processing, data objects can
be converted to different data types and can be serialized and deserialized for
transfer to other instances of Squidy.

• The Node class is extended by an integer attribute dropped which counts the number
of dropped data objects.

79

Survey and Review of Input Platforms and Recommendations for Squidy

• When a data object is instantiated, its UUID attribute is initialized with the UUID
of the source Processable.

• When a Node receives a data object, it compares the contained UUID with its own
UUID. If the UUIDs are equal the Node drops the data object and increases the
count of dropped.

• When a Transformer Node which creates new data objects processes a data object,
the UUID has to be transferred to the corresponding new data object (see section
7.3.3).

This functionality can be implemented in AbstractNode, transparently for inherited
Node classes. The dropped attributes can be used to provide feedback to the user or to
an application employing Squidy.

The drawback of this approach compared to the prevention of construction of a
connection is the need of additional processing power for comparison of the UUIDs of
each data object in each Node in the Pipeline during data processing. This drawback
should have negligible impact because a single comparison of a 128-bit value (size of
UUID) is a cheap operation.

7.11 Dynamic Reconnection
The process of dynamic reconnection of Nodes is currently not synchronized in Squidy.
Read and write access on the involved objects is unsafe because they can be executed
concurrently and interleaved. Thus it can lead to undefined behavior or abnormal
program termination on connection or disconnection of a Pipe during execution of the
method AbstractNode.publish(). The affected attributes are Piping.outgoingPipes,
Pipe.source, Pipe.target, additionally all related getter and setter methods, and related
operations.

The method AbstractNode.publish() contains a loop iterating over all connected
outgoing Pipes of the Node. Access on the involved objects needs to be synchronized
which can be done in several steps:

• Synchronize access to Piping.outgoingPipes by adding the synchronized attribute to
the methods AbstractNode.publish(), Piping.setOutgoingPipes(),
Piping.addOutgoingPipe(), and Piping.removeOutgoingPipe().

• In AbstractNode.publish(), encapsulate the body of the loop over the outgoing Pipes
by a synchronized block using the intrinsic lock provided by the Pipe object
processed in the current loop iteration.

• Synchronize access to Pipe.target by adding the synchronized attribute to the
methods Pipe.getTarget(), Pipe.setTarget(), and Pipe.delete(). Synchronization of
getTarget() and setTarget() is not mandatory because the target attribute is
initialized before a Pipe is added to a Node but it adds safety to the class. These
methods might be used in different contexts or might be called in different order
which can cause a failure.

80

Proposed Improvements to Squidy

For the latter reason, the methods Pipe.getSource() and Pipe.getSource() should be
synchronized to protect access to the source attribute, too. Moreover, the incoming
collection of Pipes in Piping should be synchronized equally, even if the current
program flow does not trigger potential concurrency failures.

7.12 Further Improvements
This section describes some further approaches for improvements in Squidy in a very
short form. Before they can be realized, they have to be reconsidered and specified.
This is not done within this work because of constraints regarding the author's time
available for this task and the permissible extent of this work. However, these ideas
should not get lost.

Data Type Hints
Besides the visualization of Node types (see section 7.1), it would be convenient for a
user of Squidy Designer to know which data types a particular Node handles on it
input and output ports. Therefore, this information should be presented to the user. A
concrete concept for a realization within the user interface has to be developed first. A
possible approach can be a temporary information display when the mouse pointer
touches the visual representation of a port. Moreover, Squidy Designer can present
Nodes ordered by support for a specific data type.

Abstract Caching Class
Squidy currently contains some manually implemented object caches and multiple
manually predefined static objects of the same type but with different properties
because these objects are repeatedly required and should not be constructed and
destructed at every use. A more consistent and convenient way to handle these objects
can be an abstract caching class which can be used for any kind of object. This class
can basically work like an allocator (see section 6.7.5) but can also suppress duplicate
objects and allow simultaneous access to one particular object.

Index for Data Type Lookup
The various enumerated custom process() methods in AbstactNode for different data
types are stored using a HashMap class for caching (see section 6.2.7). This is not an
ideal solution because many lookups (for many data objects) in a hash map can become
relatively expensive in terms of processing power.

Thus the hash map should be replaced by a simple array and AbstractData should
carry an integer index for this array depending on its data type. The index value can
be generated by data object allocators consistently for a specific data type within an
instance of Squidy. Using an enumeration or static assignment of an integer index per
data type (as currently contained in IData) is inappropriate because it must be
maintained and synchronized with IData implementations manually.

81

Survey and Review of Input Platforms and Recommendations for Squidy

Injection of Processing and Properties
A radical change of one of the basic models of Squidy helps to gain flexibility,
reusability and separation of concerns. Concrete Nodes are derived from the
AbstractNode class to implement their specific operations on data objects. Thereby
data transport functionality of the Node and data processing functionality are mixed.

By using the dependency injection design pattern (see section 2.3.1) data processing
can be separated from a Node. It can be realized with an interface which contains the
abstract methods of AbstractNode and a process() method. Processing classes
implementing this interface can then be injected into a Node. Moreover, AbstractNode
does not need to be abstract anymore but can just be a finalized internal
implementation of a Node. A developer of new Nodes does not need to care about
inheritance from AbstractNode anymore.

Properties of Nodes are currently located directly in the Node implementation as
attributes of the Node class and are enumerated using JAXB annotations for
persistence and presentation to the user. They can be stored in a property class
instead. This class can provide an universal interface111 for all types of properties. The
processing interface can refer to this property interface and reusable sets of properties
could be implemented.

This circumvents the potential problem that changes in AbstractNode affect all derived
Nodes. It also allows implementation of Squidy Bridges and all other data processing
tasks as reusable modules. Processing functionality can be combined using the proxy
design pattern and sets of properties can be combined in collections or using the
composite design pattern (see section 2.3.1). The dependency injection also simplifies
the realization of internal and external scripting (see section 7.8.4).

AOP for Persistence
Currently all attributes of classes have to be annotated manually for persistence
functionality with JAXB. Even with the planned migration to the Hibernate
persistence framework (see section 6.6) either annotations or XML configuration files
have to be used to manually define for each class which attributes have be stored at
which location.

With aspect-oriented programming (see section 2.2.2) it is possible to keep the concern
of persistence away from the implementation of classes which should be stored.
Persistence can be defined, maintained, and changed in an aspect at one centralized
point. The aspect can be designed to match and to weave itself for example into new
and existing Nodes and a developer of a Node does not have to know what he has to
consider for persistence support because it is added automatically.

111 http://msdn.microsoft.com/en-us/library/bb761474(VS.85).aspx

82

http://msdn.microsoft.com/en-us/library/bb761474(VS.85).aspx

Proposed Improvements to Squidy

Partial Image Filtering
Image filtering as it is required for multi-touch input or processing of other large data
objects is commonly applied to an entire data object before the next processing step is
applied. Therefore, a latency equal to the duration of data processing for one data
object is introduced each time a processing step is applied to a real-time data source. It
would be helpful to reduce this latency as far as possible to meet the requirements for
an input framework (see section 3). A solution to achieve this can be partial data
processing which are illustrated in the following using the example of image filtering.

Since most image filtering algorithms do not process the entire image simultaneously,
images can be partitioned into smaller parts for transport and processing. It can also be
necessary to leave a small overlap between image parts depending on the image
filtering algorithm or to create image filters tailored to partitioned images.
Additionally, a container data type for partitioned images can be introduced which
automatically cares for decomposition and recomposition of the images.

Smaller parts of an image can be for example half of the image or only one line of
pixels. In a processing chain using parallel processing, partitioning into continuously
smaller parts can cause overall latency of the chain to converge to the processing time
of one image of the slowest filter in the chain.112 However, more parts cause more data
objects and more overhead for handling of these data objects. Thus a suitable balance
must be found.

Improved Configuration Management
Squidy currently uses one configuration file which stores the entire configuration of the
workspace. There is no explicit functionality for the user to load and save specific
configurations or files. The idea behind this limitation is that all data should be stored
in a single workspace which can be hierarchically organized by grouping of objects and
semantic zooming.

The current implementation has some drawbacks such as no folders similar to a file
system, no moving of objects between hierarchical levels, no user rights management,
no possibility for partial copies or backups, etc. Constant development of the project
can become a problem because of incompatible changes in a single Node
implementation. This happened multiple times to the author during exploration and
testing of Squidy for this work and can lead to an unusable configuration file
containing the entire workspace.

These findings should be considered when the persistence functionality of Squidy is
modified to work with Hibernate (see section 6.6).

112 An example: In a processing chain consisting of 5 filters each filter requires 10 ms (tf) to process an entire image data object. This sums up to 50 ms
latency (tl) for an image when it has passed the processing chain. Now, the data object is partitioned into 10 parts (p), each filter requires 1/10 of 10 ms to
process one part which is 1 ms. This results in 5 ms latency (tlp) until processing of the first part is finished and seems to sum up to 50 ms again for all 10
parts. But the first filter in the chain already starts to process the second part after 1 ms which also takes 5 ms to pass the filter chain and passes the last
filter 1 ms after the first part. After only 5 + 9 = 14 ms the entire image has passed the processing chain (tl = tlp + (p - 1) * tf / p with tf being the
processing time of the slowest filter and if partitioning into parts scales linearly and all filters process data in parallel).

83

Survey and Review of Input Platforms and Recommendations for Squidy

Bridge to libtisch
One of the requirements defined for this work is a connection to libtisch (see sections 3
and 4.3.5). To fulfill this requirement, a Bridge Node for the libtisch protocols can be
developed.

Tools for Bridge Implementations
This is just a note for people interested in developing Squidy Bridges to native
programming languages: Tools such as SWIG113 (Simplified Wrapper and Interface
Generator), cxxwrap114, or xFunction115 can automate and simplify this task. They
relieve the developer from implementing and maintaining JNI source code manually.

113 http://www.swig.org/
114 http://cxxwrap.sourceforge.net/
115 http://www.excelsior-usa.com/xfunction.html

84

http://www.excelsior-usa.com/xfunction.html
http://cxxwrap.sourceforge.net/
http://www.swig.org/

Remarkable Features of Competitors to Squidy

8 Remarkable Features of Competitors to
Squidy

Some of the projects which were compared to Squidy in sections 4 and 5 offer
remarkable features which are not or not equally included in Squidy. The following
selection of features emphasizes and describes their singularity and should be another
inspiration for the future development of Squidy.

8.1 Input Interpretation
Squidy only contains basic functionality in terms of multi-touch input abstraction (see
section 7.5). Blob tracking and rudimentary identification of fingers is integrated in the
multi-touch Node. Compared to specialized systems for multi-touch input, it is a simple
and inflexible solution. This limitation results from the need for a tailored solution for
previous research projects. More powerful solutions can be easily integrated in Squidy
but have not been realized, yet.

The mu3 framework (see section 4.3.6) concentrates on this functional gap. It abstracts
multi-touch input data, in particular detected blob coordinates, into information about
pressure, distance, type of touch and the tangible which interacts with the multi-touch
surface. This information is combined to segments. These segments are tracked and
analyzed and as a result, multi-touch events in terms of new, released, split, joined,
joined and split, and tracked touch are generated. These events refer to an identifiable
touch object with properties for origin, bounds, time, device, path, and ambiguity.

mu3 is currently in an early state of development and written in Java, as is Squidy.
Therefore, it can be integrated directly by implementing a suitable Node.

8.2 Gesture Recognition
Gesture recognition in Squidy is based on the wiigee116 library. Wiigee is specialized on
interpretation of data generated by acceleration sensors, especially by the sensors of the
Nintendo Wiimote. Usage of wiigee is comfortable because it can be trained for new
gestures by the user who simply performs the desired gesture in a training mode.
However, wiigee is not tailored to recognition of complex multi-touch gestures.

Expertise in multi-touch and tangible gesture recognition and input interpretation can
be contributed by TWING (see section 4.5.3). It has a sophisticated but simple
architecture which hands over incoming Requests (multi-touch events) to Behaviors
which match a Request. Behaviors such as a OneFingerScrollingBehavior issue
Commands such as a ScrollCommand which are handled and published by a Command
Processor. The resulting behaviors are lightweight, reusable, exchangeable at runtime,
and separate concerns [57]. TWING currently includes 22 Commands and 23 Behaviors.

116 http://wiigee.org/

85

http://wiigee.org/

Survey and Review of Input Platforms and Recommendations for Squidy

TWING is written in C# using Microsoft Visual Studio and requires Windows and
the .NET Framework to run. Since it concentrates on data processing and does only
few interaction with the underlying platform, TWING should also work on the Mono
platform to be independent from the operating system. Its architecture allows to
connect input and output interfaces to use for example TUIO or another OSC-based
protocol. However, it is also possible to port the C# class structure of TWING to Java
without large modifications for integration into Squidy because both programming
languages have comparable language features.

8.3 Input Abstraction
As described in the preceding section, the mu3 framework abstracts multi-touch input
data. The Unit framework (see section 4.1.1) goes one step further and defines an
interaction technique abstraction layer for all kinds of input devices. The concept for
the abstraction layer of Unit involves that interaction techniques can be constructed
from input data of devices or from other interaction techniques. Moreover, interaction
techniques are modular and can be exchanged with others during runtime.

Unit has a Pipes and Filters architecture which is roughly comparable to Squidy's. Its
interaction technique abstraction layer is implemented as a set of units which are
comparable to Nodes. This concept complies well with the concepts of Squidy and can
be integrated by creating a set of Nodes and a unified interaction technique command
data type for the same purpose. Gestures are a concrete form of interaction techniques.
Thus Squidy already contains limited support for interaction techniques by means of its
gesture recognition Nodes. However, comprehensive support of interaction techniques
would relieve applications using Squidy of the task of data interpretation and data
mapping to application semantics and would make applications more independent from
the used input devices.

The Papier-Mâché toolkit (see section 4.5.1) also integrates complex mechanisms for
input abstraction and is a potential source for ideas for a comparable solution for
Squidy.

8.4 Image Filtering
The current implementation of the multi-touch Node and the proposal for a new multi-
touch input concept (see section 7.5.3) already include a solution for fast image
filtering. The CCV and Touché frameworks (see section 4.3.2, 4.3.17) also execute
image filtering on the GPU but they use OpenGL pixel shaders for this task. This can
be an alternative to the use of CUDA and OpenCL.

Although OpenGL pixel shaders have only limited functionality compared to GPGPU,
they have some advantages. Their limited functionality makes them easier to
understand for developers. Furthermore, an application might want to display the
images on the screen after they have been processed by the GPU. It would save
processing power and time to display the image which is already located as a 2D

86

Remarkable Features of Competitors to Squidy

texture in the memory of the graphics adapter by simply using an OpenGL command
instead of transferring the image to the host memory and back.

This feature might require that the displaying application runs in the same JVM or
process as Squidy. In any event it requires that the displaying application runs on the
same platform as Squidy to allow access to the graphics adapter. Finally, OpenGL and
OpenCL can also cooperate and access the same memory locations on the graphics
hardware.

8.5 Fiducial Markers
The reacTIVision framework (see section 4.5.2) is one of the few frameworks which is
able to detect and track fiducial markers. Another fiducial maker tracker is integrated
in ARToolKit117 which was not included in the comparison of all frameworks because it
is mainly a solution for prototyping and realization of small augmented reality projects.

Squidy currently supports input from reacTIVison via TUIO. With the image
processing chain proposed in section 7.5.3, a feature similar to reactTIVision's fiducial
marker tracking could easily be added directly to Squidy. The fidtrack library is part of
reactTIVision and handles the marker processing. It is licensed under the LGPLv2118
(Lesser General Public License 2.1). Its integration would allow to omit the additional
separate framework for fiducial markers.

8.6 Data Processing and Synchronization
In contrast to the preceding ideas which are about functionality, this proposal refers to
the Pipes and Filters architecture of Squidy.

DataLaViSTA (see section 4.1.2) uses a Pipes and Filters architecture, multi-threading,
actively processing pipes, handles synchronization issues, introduces push and pull
models for data transfer, can cope with upstream and downstream data, supports
distributed processing, and encapsulates system specific implementations to handle
inter-process communication. It also integrates a concept similar to allocators (see
section 6.7.5) which is called packet recycling.

This makes DataLaViSTA an interesting reference implementation of the Pipes and
Filters architectural pattern. Inspection of the source code is likely to reveal new
technological ideas and solutions for Squidy. According to the project website the
source code of DataLaViSTA is freely available for research institutions.

117 http://artoolkit.sourceforge.net/
118 http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

87

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://artoolkit.sourceforge.net/

Implementation of Data Object Monitoring using Visitors

9 Implementation of Data Object Monitoring
using Visitors

In the course of this diploma thesis a data object monitoring mechanism based on
visitor objects (see section 7.9.1) has been implemented for Squidy. This mechanism
has been chosen for implementation because it has no dependencies to most of the
other proposals described in section 7 which show a sequential dependence. Moreover,
the extent of required modifications for the realization was manageable within the time
constraints for this work.

The proposal for data object monitoring includes an abstract factory interface for data
visitor objects which allows to provide a custom factory producing any kind of visitor
objects. During implementation of serialization of data visitor objects it turned out that
the corresponding factory has to be serialized, too. Otherwise deserialization is not able
to reconstruct data visitor objects because these are only produced by their specific
factory. Therefore, serialization was extended to IDataVisitorFactory.

89

Illustration 7: UML diagram of the implementation of data object visitors

Survey and Review of Input Platforms and Recommendations for Squidy

Additionally, a data visitor object has to know the factory by which it was produced
which is also the one required for serialization. Thus IDataVisitor has been extended to
provide this information. Moreover, the class AbstractDataVisitor has been introduced
as a base class for data visitor objects. It stores the reference to its factory and forces a
developer to initialize the factory attribute by providing solely a parameterized
constructor method.

The source code included in the printed version of this work contains entirely new files
created for the implementation and differences to the existing source code of Squidy.
Required changes in the import section for modified files have been omitted in the
printed version. The electronic version includes the entire source code of Squidy and a
set of all files modified for this implementation.

For testing purposes, the Squidy Node MouseIO which processes input from the
computer's mouse was modified. A test implementation of a data visitor object factory
producing data visitor objects which output the mouse coordinate to the debugging
console was added. Furthermore, a MouseIO Node, a FlipXY2D Node, and an empty
Node were composed to a Pipeline. The FlipXY2D Node swaps x and y coordinates of
2D coordinates. When being executed, the logging output of this Pipeline shows the
messages of the visitor objects attached to DataPosition2D objects traveling through
the processing chain. These messages are generated each time a data object is being
published through a Pipe between two Nodes:
DEBUG ... de.ukn.hci.squidy.extension.basic.MouseIO: x = 0,342 y = 0,485
DEBUG ... de.ukn.hci.squidy.extension.basic.FlipXY2D: x = 0,485 y = 0,342
DEBUG ... de.ukn.hci.squidy.extension.basic.MouseIO: x = 0,321 y = 0,493
DEBUG ... de.ukn.hci.squidy.extension.basic.FlipXY2D: x = 0,493 y = 0,321
DEBUG ... de.ukn.hci.squidy.extension.basic.MouseIO: x = 0,283 y = 0,519
DEBUG ... de.ukn.hci.squidy.extension.basic.FlipXY2D: x = 0,519 y = 0,283
DEBUG ... de.ukn.hci.squidy.extension.basic.MouseIO: x = 0,250 y = 0,530
DEBUG ... de.ukn.hci.squidy.extension.basic.FlipXY2D: x = 0,530 y = 0,250
DEBUG ... de.ukn.hci.squidy.extension.basic.MouseIO: x = 0,213 y = 0,541

The source code for data object monitoring using visitors can be found in the Appendix
of this work.

90

Conclusion

10 Conclusion
Overall 28 existing input libraries, frameworks and toolkits have been presented,
reviewed, and rated. The rating result is a definite justification for the recommendation
to chose the Squidy Interaction Library as the software platform for processing of input
data for the Curve project.

The amount of related work that serves almost identical purposes, while coming from
several different areas of research, shows that it is profitable to stay informed about
developments from "foreign" domains. If the domain of multi-modal interaction had
not been considered, the Squidy Interaction Library, a versatile input framework fit for
use, might have remained undiscovered. Furthermore, the initial approach to start a
new software development project for an input software platform for the Curve project
would have consumed much more resources than the way of adapting Squidy will
consume.

The description of Squidy from the perspective of software development complements
the recent publications from its inventors. Future software development on Squidy, on
the Curve project, and in fact any project employing Squidy will benefit from these
insights and the manifold recommendations introduced in this work.

Besides realization of the suggested improvements of multi-touch support, the next
required steps to advance the Curve project will be further research on image stitching
techniques and their integration into Squidy. Results from these efforts and practical
evaluation of the Curve desk will show how the project could benefit from adding
support for camera calibration and reconstruction of spatial object positions.
Implementation of data synchronization, allocators for data objects, and monitoring
functionality will improve reliability and performance and supports further
development and evaluation processes of Squidy.

Last but not least, the included tabular survey is also of independent interest: By
adapting its rating parameters it can be used to make well founded decisions for other
projects which require a software platform for input processing as well. Thus it can
hopefully serve as a valuable guide for anyone looking for a basis for his own work.

91

Bibliography

Bibliography
[1] Raphael Wimmer, Florian Schulz, Fabian Hennecke, Sebastian Boring, Heinrich

Hußmann. Curve: Blending Horizontal and Vertical Interactive Surfaces. In
Adjunct Proceedings of the 4th IEEE Workshop on Tabletops and Interactive
Surfaces (IEEE Tabletop 2009). 2009.

[2] Johannes Schöning, Peter Brandl, Florian Daiber, Florian Echtler, Otmar
Hilliges, Jonathan Hook, Markus Löchtefeld, Nima Motamedi, Laurence Muller,
Patrick Olivier, Tim Roth, Ulrich von Zadow. Multi-Touch Surfaces: A Technical
Guide, 2008, [p. 19].

[3] Jefferson Y. Han. Low-Cost Multi-Touch Sensing through Frustrated Total
Internal Reflection. In UIST '05: Proceedings of the 18th annual ACM
symposium on User interface software and technology. 2005.

[4] F. Echtler, T. Sielhorst, M. Huber, G. Klinker. A Short Guide to Modulated
Light. In TEI '09: Proceedings of the conference on tangible and embedded
interaction. 2009.

[5] Werner A. König, Roman Rädle, Harald Reiterer. Interactive Design of
Multimodal User Interfaces - Reducing technical and visual complexity. In:
Journal on Multimodal User Interfaces (JMUI), 2009

[6] Werner A. König, Roman Rädle, Harald Reiterer. Squidy: A Zoomable Design
Environment for Natural User Interfaces. In CHI EA '09: Proceedings of the 27th
International Conference Extended Abstracts on Human Factors in Computing
Systems. 2009.

[7] H.C. Jetter, W.A. König, H. Reiterer. Understanding and Designing Surface
Computing with ZOIL and Squidy, 2009.

[8] Christoph Endres, Andreas Butz, Asa MacWilliams. A Survey of Software
Infrastructures and Frameworks for Ubiquitous Computing. In: Mobile
Information Systems 1, January 2005, [pp. 41-80].

[9] Pablo Figueroa, Walter F. Bischof, Pierre Boulanger, H. James Hoover. Efficient
comparison of platform alternatives in interactive virtual reality applications. In:
Int. J. Hum.-Comput. Stud. 1. Duluth, MN, USA, 2005, [pp. 73-103].

[10] Bruno Dumas, Denis Lalanne, Dominique Guinard, Reto Koenig, Rolf Ingold.
Strengths and weaknesses of software architectures for the rapid creation of
tangible and multimodal interfaces. In TEI '08: Proceedings of the 2nd
international conference on Tangible and embedded interaction. 2008.

[11] NUI Group Authors. Multi-Touch Technologies. NUI Group, 2009.
[12] Scott R. Klemmer, James A. Landay. Toolkit Support for Integrating Physical

and Digital Interactions. In: Human-Computer Interaction 3, July 2009, [pp. 315-
366].

[13] R.S. Pressman, D. Ince. Software Engineering: A Practitioner's Approach.
McGraw-Hill New York, 2005.

93

Survey and Review of Input Platforms and Recommendations for Squidy

[14] Daniel Mölle. Design by Demut - Die Auswirkungen von
Entwurfsentscheidungen. In: iX Magazin für professionelle Informationstechnik 9.
Hannover, Germany, September 2009, [pp. 92-95].

[15] R.C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall PTR Upper Saddle River, NJ, USA, 2008.

[16] Tom Mens, Michel Wermelinger. Separation of Concerns for Software Evolution.
In: Journal of Software Maintenance 5. New York, NY, USA, 2002, [pp. 311-315].

[17] E.W. Dijkstra. On the role of scientific thought. In: Selected Writings on
Computing: A Personal Perspective New York, NY, USA, 1982, [pp. 60-66].

[18] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999.

[19] K. Beck, C. Andres. Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, 2004.

[20] William F. Opdyke. Refactoring Object-oriented Frameworks. 1992.
[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, J.

Irwin. Aspect-Oriented Programming, 1997.
[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G. Griswold. An

Overview of AspectJ. In: Lecture Notes in Computer Science, 2001, [pp. 327-353].
[23] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language: Towns,

Buildings, Construction. Oxford University Press, USA, 1977.
[24] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., 1995.

[25] Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern, 2004

[26] Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated
with UML, Vol. 1. John Wiley & Sons, Inc., 2002.

[27] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael
Stal. Pattern-oriented Software Architecture: A System of Patterns. John Wiley
& Sons, Inc., 1996.

[28] D. Garlan, M. Shaw. An Introduction to Software Architecture. In: Advances in
Software Engineering and Knowledge Engineering, 1993, [pp. 1-40].

[29] H. Zimmermann. OSI reference model - The ISO model of architecture for open
systems interconnection. In: IEEE Transactions on communications 4, 1980, [pp.
425-432].

[30] Ingo Assenmacher, Bernd Hentschel, Marc Wolter, Torsten Kuhlen.
DataLaViSTA: A Packet-based Pipes and Filters Architecture for Data Handling
in Virtual Environments. September, 2006.

[31] Microsoft Windows SDK Documentation (MSDN) - DirectShow.
http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx.

[32] Glenn E. Krasner, Stephen T. Pope. A Cookbook for using the Model-View
Controller User Interface Paradigm in Smalltalk-80. In: J. Object Oriented
Program. 3. Denville, NJ, USA, 1988, [pp. 26-49].

94

http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx

Bibliography

[33] W.J. Brown, R.C. Malveau, H.W. McCormick III, T.J. Mowbray. AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley & Sons,
Inc. New York, NY, USA, 1998.

[34] B. Foote, J. Yoder. Big Ball of Mud. In: Pattern Languages of Program Design
654-692, 2000, [p. 99].

[35] Rance Cleaveland, Scott A. Smolka. Strategic Directions in Concurrency
Research. In: ACM Comput. Surv. 4. New York, NY, USA, 1996, [pp. 607-625].

[36] P. Gepner, MF Kowalik. Multi-Core Processors: New way to Achieve High
System Performance, 2006.

[37] Jason I. Hong, James A. Landay. An Infrastructure Approach to Context-Aware
Computing. In: Hum.-Comput. Interact. 2. Hillsdale, NJ, USA, 2001, [pp. 287-
303].

[38] Ralph E. Johnson. Frameworks = (Components + Patterns). In: Commun. ACM
10. New York, NY, USA, 1997, [pp. 39-42].

[39] Mohamed Fayad, Douglas C. Schmidt. Object-Oriented Application Frameworks.
In: Commun. ACM 10. New York, NY, USA, 1997, [pp. 32-38].

[40] Eric von Hippel, Ralph Katz. Shifting Innovation to Users via Toolkits. In:
Manage. Sci. 7. Institute for Operations Research and the Management Sciences
(INFORMS), Linthicum, Maryland, USA, 2002, [pp. 821-833].

[41] Alex Olwal, Steven Feiner. Unit: Modular Development of Distributed
Interaction Techniques for highly Interactive User Interfaces. In GRAPHITE '04:
Proceedings of the 2nd International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia. 2004.

[42] Alex Olwal, Steven Feiner. Interaction Techniques using prosodic Features of
Speech and Audio Localization. In IUI '05: Proceedings of the 10th International
Conference on Intelligent User Interfaces. 2005.

[43] Christian Sandor, Alex Olwal, Blaine Bell, Steven Feiner. Immersive Mixed-
Reality Configuration of Hybrid User Interfaces. In ISMAR '05: Proceedings of
the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality.
2005.

[44] T. Van Reimersdahl, T. Kuhlen, A. Gerndt, J. Henrichs, C. Bischof. ViSTA: a
multimodal, platform-independent VR-Toolkit based on WTK, VTK, and MPI.
June, 2000.

[45] Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean Vanderdonckt, Benoit
Macq. An Open Source Workbench for prototyping Multimodal Interactions
based on Off-the-Shelf Heterogeneous Components. In EICS '09 Proceedings of
the 1st ACM SIGCHI Symposium on Engineering Interactive Computing
Systems. 2009.

[46] M. Kaltenbrunner, T. Bovermann, R. Bencina, E. Costanza. TUIO: A Protocol
for Table-Top Tangible User Interfaces. In Proc. of the The 6th Int�l Workshop
on Gesture in Human-Computer Interaction and Simulation. 2005.

95

Survey and Review of Input Platforms and Recommendations for Squidy

[47] Christopher Wolfe, J. David Smith, T. C. Nicholas Graham. A Low-cost
Infrastructure for Tabletop Games. In Future Play '08: Proceedings of the 2008
Conference on Future Play. 2008.

[48] Florian Echtler, Gudrun Klinker. A Multitouch Software Architecture. In
NordiCHI '08: Proceedings of the 5th Nordic Conference on Human-Computer
Interaction. 2008.

[49] Florian Echtler, Manuel Huber, Gudrun Klinker. Shadow Tracking on Multi-
Touch Tables. In AVI '08: Proceedings of the Working Conference on Advanced
Visual Interfaces. 2008.

[50] Michiel Hakvoort. A Unifying Input Framework for Multi-Touch Tables. In
10thTwente Student Conference on IT. 2009.

[51] S. Hafeneger, M. Weiss, G. Herkenrath, J. Borchers. PocketTable: Mobile Devices
as Multi-Touch Controllers for Tabletop Application Development. In
Proceedings of Extended Abstracts of Tabletop '08. 2008.

[52] Malte Weiss, Julie Wagner, Yvonne Jansen, Roger Jennings, Ramsin Khoshabeh,
James D Hollan, Jan Borchers. SLAP Widgets: Bridging the Gap Between
Virtual and Physical Controls on Tabletops. In CHI '09: Proceeding of the
twenty-seventh annual SIGCHI conference on Human factors in computing
systems. 2009.

[53] Prasad Ramanahally, Stephen Gilbert, Thomas Niedzielski, Desirée Velázquez,
Cole Anagnost. Sparsh UI: A Multi-Touch Framework for Collaboration and
Modular Gesture Recognition. In: ASME Conference Proceedings 43376, 2009,
[pp. 137-142].

[54] Scott R. Klemmer. Papier-Mâché: Toolkit Support for Tangible Interaction. In
Adjunct Proceedings of the UIST. 2003.

[55] Scott R. Klemmer, Jack Li, James Lin, James A. Landay. Papier-Mache: Toolkit
Support for Tangible Input. In CHI '04: Proceedings of the SIGCHI conference
on Human factors in computing systems. 2004.

[56] Martin Kaltenbrunner, Ross Bencina. reacTIVision: A Computer-Vision
Framework for Table-Based Tangible Interaction. In TEI '07: Proceedings of the
1st international conference on Tangible and embedded interaction. 2007.

[57] Andreas Angerer, Markus Bischof, Bettina Conradi, Peter Lachenmaier, Kai
Linde, Max Meier, Philipp Pötzl, Elisabeth André. TWING Framework: An
architecture targeting the challenges of multitouch and tangible input on a table
surface.

[58] Markus Bischof, Bettina Conradi, Peter Lachenmaier, Kai Linde, Max Meier,
Philipp Pötzl, Elisabeth André. Xenakis: Combining tangible interaction with
probability-based musical composition. In TEI '08: Proceedings of the 2nd
international conference on Tangible and embedded interaction. 2008.

[59] H.-C. Jetter, W. A. König, J. Gerken, H. Reiterer. ZOIL - A Cross-Platform User
Interface Paradigm for Personal Information Management. In Personal
Information Management: PIM 2008, CHI 2008 Workshop. 2008.

96

Bibliography

[60] Werner A. König. Referenzmodell und Machbarkeitsstudie für ein neues
Zoomable User Interface Paradigma. University of Konstanz. 2006.

[61] B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.
In: Computer 8. Los Alamitos, CA, USA, 1983, [pp. 57-69].

[62] I. Scott MacKenzie, Colin Ware. Lag as a Determinant of Human Performance in
Interactive Systems. In CHI '93: Proceedings of the INTERACT '93 and CHI
'93 conference on Human factors in computing systems. 1993.

[63] Wesley M. Johnston, J. R. Paul Hanna, Richard J. Millar. Advances in Dataflow
Programming Languages. In: ACM Comput. Surv. 1. New York, NY, USA, 2004,
[pp. 1-34].

[64] R. Tsai. A versatile Camera Calibration Technique for High-accuracy 3D
Machine Vision Metrology using Off-the-Shelf TV Cameras and Lenses. In: IEEE
Journal of robotics and Automation 4, 1987, [pp. 323-344].

[65] YI Abdel-Aziz, HM Karara. Direct Linear Transformation from Comparator
Coordinates into Object Space Coordinates in Close-Range Photogrammetry,
1971.

[66] GT Marzan, HM Karara. A Computer Program for Direct Linear Transformation
Solution of the Colinearity Condition, and some Applications of it, 1975.

[67] Richard Hartley, Sing Bing Kang. Parameter-Free Radial Distortion Correction
with Center of Distortion Estimation. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 8. Los Alamitos, CA, USA, 2007, [pp. 1309-1321].

[68] Thomas Stehle, Daniel Truhn, Til Aach, Christian Trautwein, Jens Tischendorf.
Camera Calibration for Fish-Eye Lenses in Endoscopy with an Application to 3D
Reconstruction. In Proceedings IEEE International Symposium on Biomedical
Imaging (ISBI). 2007.

[69] J. Mitchelson, A. Hilton. Wand-based multiple Camera Studio Calibration, 2003
[70] DLT Method. http://www.kwon3d.com/theory/dlt/dlt.html.
[71] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, R. Scopigno. A low cost 3D

Scanner based on Structured Light, 2001.
[72] Hiroshi Kawasaki, Ryo Furukawa, Ryusuke Sagawa, Yasushi Yagi. Dynamic

scene shape reconstruction using a single structured light pattern. In: Computer
Vision and Pattern Recognition, IEEE Computer Society Conference, Los
Alamitos, CA, USA, 2008, [pp. 1-8].

[73] Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian
Kueblbeck. Robust Camera Calibration using Discrete Optimization. In:
International Journal of Applied Science 13, 2006, [pp. 250-254].

[74] Stephan Rupp. A modular software framework for camera calibration. In
SEPADS'06: Proceedings of the 5th WSEAS International Conference on
Software Engineering, Parallel and Distributed Systems. 2006.

[75] Thomas Haenselmann, Marcel Busse, Stephan Kopf, Thomas King, Wolfgang
Effelsberg. Multicamera Video-Stitching, June 2006

97

http://www.kwon3d.com/theory/dlt/dlt.html

Survey and Review of Input Platforms and Recommendations for Squidy

[76] Matthew Brown, David G. Lowe. Automatic Panoramic Image Stitching using
Invariant Features. In: Int. J. Comput. Vision 1. Hingham, MA, USA, 2007, [pp.
59-73].

[77] Martin Byröd, Matthew Brown, Kalle Åström. Minimal Solutions for Panoramic
Stitching with Radial Distortion. In Proceedings of the British Machine Vision
Conference (BMVC). 2009.

[78] Richard Szeliski. Image Alignment and Stitching: A Tutorial. In: Found. Trends.
Comput. Graph. Vis. 1. Hanover, MA, USA, 2006, [pp. 1-104].

[79] H. Dhand, LP Daggubati. Towards Obtaining an Ideal Real Time Panoramic
Video. In: Lecture Notes in Computer Science, 2006, [p. 698].

[80] Mai Zheng, Xiaolin Chen, Li Guo. Stitching Video from Webcams. In ISVC '08
Proceedings of the 4th International Symposium on Advances in Visual
Computing, Part II. 2008.

[81] Wai-Kwan Tang, Tien-Tsin Wong, Pheng-Ann Heng. A System for Real-time
Panorama Generation and Display in Tele-immersive Applications. In: IEEE
Transactions on Multimedia 2, 2005, [pp. 280-292].

[82] K. Mani Chandy, Jayadev Misra, Laura M. Haas. Distributed Deadlock
Detection. In: ACM Trans. Comput. Syst. 2. New York, NY, USA, 1983, [pp.
144-156].

98

Appendix

Appendix
Source Code of Data Object Monitoring using Visitors

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/ProcessingFeedbackable.java
Changes: extended interface for multiple simultaneous feedbacks

public interface ProcessingFeedbackable {
public void addProcessingFeedback(ProcessingFeedback feedback);
public void removeProcessingFeedback(ProcessingFeedback feedback);

}

File: core/squidy-designer/src/main/java/de/ukn/hci/squidy/designer/model/PipeShape.java
Changes: changed call according to interface

public void initialize() {
[...]
pipe.addProcessingFeedback(visualization);
[...]

}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/model/Pipe.java
Changes: implemented support for multiple simultaneous feedbacks

public IDataContainer process(IDataContainer dataContainer) {
[...]
// Processing feedback.
if (processingFeedback != null) {

for (ProcessingFeedback feedback : processingFeedback) {
feedback.feedback(incomingData.toArray(new IData[incomingData.size()]));

}
}
[...]

}

private Collection<ProcessingFeedback> processingFeedback;
public void addProcessingFeedback(ProcessingFeedback feedback) {

if (feedback == null) {
return;

}
if (processingFeedback == null) {

processingFeedback = new ArrayList<ProcessingFeedback>();
} else if (processingFeedback.contains(feedback)) {

// prevent duplicates
return;

}
processingFeedback.add(feedback);

}

public void removeProcessingFeedback(ProcessingFeedback feedback) {
if (processingFeedback != null && feedback != null) {

processingFeedback.remove(feedback);
}

}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/data/IData.java
Changes: extended interface

public interface IData {
[...]
public boolean acceptVisitor(IDataVisitor visitor);
public boolean dismissVisitor(IDataVisitor visitor);
public void notifyVisitors(IProcessable<?> processable);
[...]

}

99

Survey and Review of Input Platforms and Recommendations for Squidy

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/data/AbstractData.java
Changes: added collection and handling of visitors, extended serialization

// all visitors assigned to this object
private Collection<IDataVisitor> visitors;
/**
 * @param visitor to add
 * @return true if visitor has been added
 */
public boolean acceptVisitor(IDataVisitor visitor) {

if (visitor == null) {
return false;

}
if (visitors == null) {

visitors = new ArrayList<IDataVisitor>();
} else if (visitors.contains(visitor)) {

// prevent duplicates
return false;

}
return visitors.add(visitor);

}

/**
 * @param visitor to remove
 * @return true if visitor has been removed
 */
public boolean dismissVisitor(IDataVisitor visitor) {

return (visitors != null) ? visitors.remove(visitor) : false;
}

/**
 * notify all visitors that we are ready to receive their visit
 */
public void notifyVisitors(IProcessable<?> processable) {

if (visitors != null && processable != null) {
for (IDataVisitor visitor : visitors) {

visitor.visit(processable, this);
}

}
}

public void deserialize(Object[] serial) {
source = ReflectionUtil.loadClass((String) serial[0]);
timestamp = TimeUtility.getTimestamp((String) serial[1]);
attributes = CoreUtility.getAttributesOfSerial((String) serial[2]);
visitors = CoreUtility.getVisitorsOfSerial((String) serial[3]);

}

public Object[] serialize() {
String attributesSerial = CoreUtility.getSerialOfAttributes(attributes);
String visitorsSerial = CoreUtility.getSerialOfVisitors(visitors);
return new Object[] { source.getName(), String.valueOf(timestamp), attributesSerial,

 visitorsSerial };
}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/data/IDataVisitor.java
Changes: new file, definition of IDataVisitor

package de.ukn.hci.squidy.manager.data;
import de.ukn.hci.squidy.manager.IProcessable;
public interface IDataVisitor {

public IDataVisitorFactory getFactory();
public void visit(IProcessable<?> processable, IData data);
public String serialize();
public void deserialize(String serial);

}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/data/IDataVisitorFactory.java
Changes: new file, definition of IDataVisitorFactory

package de.ukn.hci.squidy.manager.data;
public interface IDataVisitorFactory {

public IDataVisitor createDataVisitor();
public String serialize();
public void deserialize(String serial);

}

100

Appendix

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/data/AbstractDataVisitor.java
Changes: new file, implementation of AbstractDataVisitor

package de.ukn.hci.squidy.manager.data;
public abstract class AbstractDataVisitor implements IDataVisitor {

private IDataVisitorFactory factory;
public AbstractDataVisitor(IDataVisitorFactory factory) {

super();
this.factory = factory;

}

/*
 * @return factory which produced this visitor
 */
public IDataVisitorFactory getFactory() {

return factory;
}

/*
 * custom deserialization for remote transport if required
 */
public void deserialize(String serial) {
}

/*
 * custom serialization for remote transport if required
 */
public String serialize() {

return null;
}

}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/model/Piping.java
Changes: implemented support for data visitor factories

private Collection<IDataVisitorFactory> visitorFactories;
/**
 * @param visitor factory to add
 * @return true if visitor factory has been added
 */
public boolean addDataVisitorFactory(IDataVisitorFactory factory) {

if (factory == null) {
return false;

}
if (visitorFactories == null) {

visitorFactories = new ArrayList<IDataVisitorFactory>();
} else if (visitorFactories.contains(factory)) {

// prevent duplicates
return false;

}
return visitorFactories.add(factory);

}

/**
 * @param visitor factory to remove
 * @return true if visitor factory has been removed
 */
public boolean removeDataVisitorFactory(IDataVisitorFactory factory) {

return (visitorFactories != null) ? visitorFactories.remove(factory) : false;
}

/**
 * create new visitors and attach them to all data objects
 * @param container of data objects
 */
protected void attachVisitors(IDataContainer container) {

if (visitorFactories != null && container != null) {
for (IDataVisitorFactory factory : visitorFactories) {

for (IData data : container.getData()) {
data.acceptVisitor(factory.createDataVisitor());

}
}

}
}

101

Survey and Review of Input Platforms and Recommendations for Squidy

/**
 * notify all visitors that we are ready to receive their visit
 * @param container of data objects
 */
protected void notifyVisitors(IDataContainer container) {

if (container != null) {
for (IData data : container.getData()) {

data.notifyVisitors(this);
}

}
}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/model/AbstractNode.java
Changes: added data visitor processing during publishing

public final void publish(final IDataContainer dataContainer) {
[...]

attachVisitors(container);
notifyVisitors(container);

[...]
}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/util/CoreUtility.java
Changes: implementation of serialization procedure for data visitors and data visitor factories

public static String getSerialOfAttributes(Map<DataConstant, Object> attributes) {
if (attributes == null) {

return "";
}
[...]

}

/**
 * @param visitors
 * @return serialized string
 */
public static String getSerialOfVisitors(Collection<IDataVisitor> visitors) {

if (visitors == null) {
return "";

}

StringBuilder serial = new StringBuilder("");
for (IDataVisitor visitor : visitors) {

serial.append(visitor.getFactory().getClass().getName()).append(":");
serial.append(visitor.getFactory().serialize()).append(":");
serial.append(visitor.serialize()).append(";");

}

return serial.substring(0, serial.length() - 1);
}

/**
 * @param serial
 * @return list from serialized string
 */
public static Collection<IDataVisitor> getVisitorsOfSerial(String serial) {

if ("".equals(serial)) {
return null;

}

Collection<IDataVisitor> visitors = new ArrayList<IDataVisitor>();
StringTokenizer attributeTokens = new StringTokenizer(serial, ";");
while (attributeTokens.hasMoreTokens()) {

String[] parts = attributeTokens.nextToken().split(":");

IDataVisitorFactory factory = ReflectionUtil.createInstance(parts[0]);
if (factory != null) {

factory.deserialize(parts[1]);
IDataVisitor visitor = factory.createDataVisitor();
if (visitor != null) {

visitor.deserialize(parts[2]);
visitors.add(visitor);

}
}

}

return visitors;
}

102

Appendix

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/data/impl/DataTestVisitor.java
Changes: new file for testing purposes, implementation of DataTestVisitor

package de.ukn.hci.squidy.manager.data.impl;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import de.ukn.hci.squidy.manager.IProcessable;
import de.ukn.hci.squidy.manager.data.IData;
import de.ukn.hci.squidy.manager.data.IDataVisitorFactory;
public class DataTestVisitor extends AbstractDataVisitor {

private static final Log LOG = LogFactory.getLog(DataTestVisitor.class);
public DataTestVisitor(IDataVisitorFactory factory) {

super(factory);
}

public void visit(IProcessable<?> processable, IData data) {
if (data instanceof DataPosition2D) {

DataPosition2D d2d = (DataPosition2D) data;
LOG.debug(processable.getClass().getName() + ": x = " + String.format("%.3f", d2d.x)

 + " y = " + String.format("%.3f", d2d.y));
}

}
}

File: core/squidy-manager/src/main/java/de/ukn/hci/squidy/manager/data/impl/DataTestVisitorFactory.java
Changes: new file for testing purposes, implementation of DataTestVisitorFactory

package de.ukn.hci.squidy.manager.data.impl;
import de.ukn.hci.squidy.manager.data.IDataVisitor;
import de.ukn.hci.squidy.manager.data.IDataVisitorFactory;
public class DataTestVisitorFactory implements IDataVisitorFactory {

/*
 * create a new visitor
 */
public IDataVisitor createDataVisitor() {

return new DataTestVisitor(this);
}

/*
 * custom deserialization for remote transport if required
 */
public void deserialize(String serial) {
}

/*
 * custom serialization for remote transport if required
 */
public String serialize() {

return null;
}

}

File: basic/src/main/java/de/ukn/hci/squidy/extension/basic/MouseIO.java
Changes: temporarily added constructor and data visitor factory for testing of new features

// TEST: DataPosition2D visitor
public MouseIO() {

super();
addDataVisitorFactory(new DataTestVisitorFactory());

}

103

Appendix

Source Code of Synchronization Latency Test
#include <stdio.h>
#include <conio.h>
#include <tchar.h>
#include <math.h>
#include <windows.h>

#define WORKLOAD 20
#define ITERATIONS 100000

HANDLE hMasterReady, hSlaveDone;
__int64 iSum;

void Workload()
{
 // overflows quickly but is for testing only
 for (int i = 0; i < WORKLOAD; i++)
 iSum += iSum - (__int64)sqrt((double)iSum);
}

DWORD WINAPI Slave(LPVOID pbQuit)
{
 SetEvent(hSlaveDone);
 while (!*(LPBOOL)pbQuit) {
 WaitForSingleObject(hMasterReady, INFINITE);
 Workload();
 SetEvent(hSlaveDone);
 }
 CloseHandle(hMasterReady);
 CloseHandle(hSlaveDone);
 return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
 LARGE_INTEGER liStart, liEnd, liFreq;
 HANDLE hSlave;
 BOOL bQuitSlave;
 DWORD dwMasterTime, dwSlaveTime, i;
 __int64 iMasterSum, iSlaveSum;

 bQuitSlave = FALSE;
 QueryPerformanceFrequency(&liFreq);

 hMasterReady = CreateEvent(NULL, FALSE, FALSE, NULL);
 hSlaveDone = CreateEvent(NULL, FALSE, FALSE, NULL);
 hSlave = CreateThread(NULL, 0, Slave, &bQuitSlave, 0, 0);

 // Master
 QueryPerformanceCounter(&liStart);
 iSum = 2;
 for (i = 0; i < ITERATIONS; i++)
 Workload();
 QueryPerformanceCounter(&liEnd);
 dwMasterTime = (DWORD)((liEnd.QuadPart - liStart.QuadPart) * 1000 / liFreq.QuadPart);
 iMasterSum = iSum;

 // Slave
 WaitForSingleObject(hSlaveDone, INFINITE);
 QueryPerformanceCounter(&liStart);
 iSum = 2;
 for (i = 0; i < ITERATIONS; i++) {
 SetEvent(hMasterReady);
 WaitForSingleObject(hSlaveDone, INFINITE);
 }
 QueryPerformanceCounter(&liEnd);
 dwSlaveTime = (DWORD)((liEnd.QuadPart - liStart.QuadPart) * 1000 / liFreq.QuadPart);
 iSlaveSum = iSum;

 bQuitSlave = TRUE;
 SetEvent(hMasterReady);

 printf("Master: sum %I64d in %d ms\nSlave: sum %I64d in %d ms\n\nDifference: %d ms\n
 Overhead: %.6f ms\n",
 iMasterSum, dwMasterTime, iSlaveSum, dwSlaveTime, dwSlaveTime - dwMasterTime,
 (double)(dwSlaveTime - dwMasterTime) / ITERATIONS);

 return 0;
}

105

Appendix

Comparison of Libraries, Frameworks, and Toolkits
This section consists of two parts: A tabular comparison of Libraries, Frameworks and
Toolkits and which is introduced by the legend of scoring criteria.
Criterion Value Score Description

Name name of the project

Former Names former names of the project

URL primary URL

URL (secondary) secondary URL

Year of Invention year of invention

Latest Version version number of latest released version or latest revision from repository of version control system

Authors authors of the project, only names of people

Organizations organizations participating in the project

Scope scope of the project, such as multi-touch input, input abstraction, graphical visualization

Special Features features which are really special to the project, such as XNA support, Python interface, artificial intelligence

Input Devices list of supported devices such as camera, mouse, laser pointer, or any if just a driver or interface has to be added

Programming Languages programming languages used for the implementation

Number of Contributors >10 30 number of people who have contributed source code according to authors or log of version control system
6..10 20
3..5 10
1..2 0
unknown 0

Origin research 0 has been invented during research at university or comparable institution
community 0 has been invented by the Internet community or private groups or persons
commercial 0 has been invented by a company or another commercial institution

License royalty-free 40 free for everything and everyone
BSD 35 BSD License119

LGPLv2 30 GNU Lesser General Public License 2.1120

LGPLv3 30 GNU Lesser General Public License 3121

GPLv2 20 GNU General Public License 2122

GPLv3 20 GNU General Public License 3123

commercial/free 15 you need to pay for it but may it use for free for non-commercial purposes
commercial 0 you need to pay for it or at least you need to pay for the platform to use it
unknown 0

Project Status stable 20 suitable for production use
beta 15 might still contain bugs, suitable for testing, research, and early development stages of own projects
alpha 0 early access, incomplete, suitable for testing only
unknown 0

Maintenance Status active 35 somebody maintains the project
inactive 0 nobody maintains the project

Implemented yes 50 the project has been implemented, not only described somewhere
no 0

Binaries available yes 20 executable files of the project are available to the public
no 0

Source Code available yes 50 source code of the project is available to the public
limited 25 source code of the project is available under certain conditions
no 0

Windows yes 25 supports the Microsoft Windows platform
no 0

119 http://www.opensource.org/licenses/bsd-license.php
120 http://www.opensource.org/licenses/lgpl-2.1.php
121 http://www.opensource.org/licenses/lgpl-3.0.html
122 http://www.opensource.org/licenses/gpl-2.0.php
123 http://www.opensource.org/licenses/gpl-3.0.html

107

http://www.opensource.org/licenses/gpl-3.0.html
http://www.opensource.org/licenses/gpl-2.0.php
http://www.opensource.org/licenses/lgpl-3.0.html
http://www.opensource.org/licenses/lgpl-2.1.php
http://www.opensource.org/licenses/bsd-license.php

Survey and Review of Input Platforms and Recommendations for Squidy

unknown 0

Linux yes 20 supports the Linux platform
no 0
unknown 0

Mac OS X yes 20 supports the Apple Mac OS X platform
no 0
unknown 0

API yes 40 provides an API for developers who want to use the project
no 0
unknown 0

Declarative Programming yes 10 data processing can be configured by one or more editable configuration files or comparable descriptive files
no 0
unknown 0

Visual Programming yes 40 provides a user interface for visual programming
no 0
unknown 0

Scripting yes 20 provides an interface to a scripting language for configuration and control, this is always true for implementations on the Java
or .NET platform because compatible scripting languages are available

no 0
unknown 0

Architectural Type library 0 it is a framework
framework 20 it is a library
toolkit 25 it is a toolkit
unknown 0

Architectural Model layers 0 it has a layer architecture
pipes & filters 0 it has a pipes and filters architecture
model-view-controller 0 it has a model-view-controller architecture
unknown 0

Extensible yes 40 provides interfaces and infrastructure which can be used to extend major aspects of the project without modifying its existing
implementation

no 0
unknown 0

Modular yes 30 has a recognizable modular structure
no 0
unknown 0

Reusable Components yes 30 contains mainly components or modules with universal interfaces which can be used in different contexts or projects without
modifying the components

no 0
unknown 0

Overall Complexity simple 20 [subjective impression] small project which is easy to understand entirely
complex 10 [subjective impression] larger project which requires some time to understand entirely
very complex 0 [subjective impression] large or very large project which is hard to oversee and understand entirely
unknown 0

Consistent Conventions yes 15 [subjective impression] source code follows consistent rules for formatting, structure, naming, comments etc.
no 0
n/a 0
unknown 0

Overall Code Quality good 30 [subjective impression] well structured project, self-explaining code, use of proven design patterns
acceptable 15 [subjective impression] partial inconsistent design or conventions, sometimes hard to read
bad 0 [subjective impression] little structured, few or no comments and conventions, no use of design patterns
n/a 0
unknown 0

Number of Files unknown 0 number of lines of source code files, counted using CLOC124

Lines of Code (SLOC) unknown 0 number of lines of source code excluding blank and comment lines, and third-party contributions, counted using CLOC

Lines of Comment unknown 0 number of comment lines of source code, counted using CLOC

Documentation Level high 40 detailed documentation of architecture and functionality, comparable with commercial products such as documentation of Java
API or Windows API

medium 20 some documentation of architecture and functionality

124 http://cloc.sourceforge.net/

108

http://cloc.sourceforge.net/

Appendix

low 0 few or no documentation
unknown 0

Parallel Processing yes 30 processing steps (at least some) can be processed in parallel on platforms capable of multiprocessing
no 0
n/a 0
unknown 0

Distributed Processing yes 15 processing steps (at least some) can be divided to multiple platforms in a distributed environment
no 0
n/a 0
unknown 0

Rearrangeable Steps yes 25 processing steps (at least some) can be rearranged and processed in different order or combinations
no 0
n/a 0
unknown 0

Access Raw Data of each Step yes 10 raw input and output data of each processing step can be accessed through the standard application interface of the project
no 0
n/a 0
unknown 0

Interface to Devices yes 100 includes a direct interface to at least one input device
no 0
unknown 0

Multiple Types of Devices yes 50 supports multiple types of input devices such as camera, Wiimote, mouse, etc.
no 0
n/a 0
unknown 0

Multiple Devices yes 50 supports simultaneous use of more than one input device, independently from useful correlation between these devices
no 0
n/a 0
unknown 0

Data Synchronization yes 25 provides functionality to synchronize input data from multiple input devices which provide input data simultaneously
no 0
n/a 0
unknown 0

Multi-Touch Workflow yes 30 integrates processing workflow by means of multi-touch specific processing of input data, tracking and/or interpretation
no 0
unknown 0

Heterogeneous Input Data yes 25 supports input data of devices from different multi-touch environments or setups, such as camera-based or DiamondTouch,
includes at least flexible data type support for this purpose

no 0
unknown 0

Multiple Camera Models yes 15 includes device driver implementations for different cameras such as webcams and industrial cameras, or cameras from
multiple manufacturers

no 0
n/a 0
unknown 0

Image Filters >10 20 number of included or used image filters as an indicator for capabilities of image processing
6..10 15
1..5 10
no 0
unknown 0

Input Interpretation comprehensive 30 comprehensive interpretation mechanisms for detected input data such as reconstruction of hand and complex gesture
recognition

basic 15 basic interpretation mechanisms for detected input data such as tracking or identification of fingers
no 0
unknown 0

OSC included yes 10 includes classes or a library which make it easy to implement a custom OSC protocol
no 0
unknown 0

TUIO implemented yes 20 provides an implementation to transfer input data using the TUIO protocol
no 0
unknown 0

109

Survey and Review of Input Platforms and Recommendations for Squidy

Augmented and Vitual Reality
Name Unit ViSTA (Core Libs only) ViSTA (DataLaViSTA)
Former Names
URL www.csc.kth.se/~alx www.rz.rwth-aachen.de/ca/c/piz www.rz.rwth-aachen.de/ca/c/piz
URL (secondary) www.sourceforge.org/projects/vistavrtoolkit www.sourceforge.org/projects/vistavrtoolkit
Year of Invention 2002 1997 1997
Latest Version unknown r4818 r4818
Authors Alex Olwal VR Group VR Group
Organisations The Royal Institute of Technology (KTH) RWTH Aachen University RWTH Aachen University
Scope distributed multi-device input data transport and processing data transport and processing
Special Features interaction technique abstraction, Java3D UI multi-threading multi-threading
Input Devices any various (mouse/keyboard, spacemouse, tracking

devices, MIDI, RAW USB (HID), Wiimote)
any (data transport only)

Programming Languages Java C++ C++
Number of Contributors unknown >10 >10
Origin research research research
License unknown LGPLv3 LGPLv3
Status
Project Status unknown beta beta
Maintenance Status active active active
Implementation
Implemented yes yes yes
Binaries available no no no
Source Code available limited yes yes
Platform
Windows yes yes yes
Linux unknown yes yes
Mac OS X unknown yes yes
Development
API yes yes yes
Declarative Programming unknown yes no
Visual Programming yes no no
Scripting unknown no no
Architecture
Architectural Type framework toolkit library
Architectural Model pipes & filters unknown pipes & filters
Extensible yes yes yes
Modular yes yes yes
Reusable Components yes yes yes
Overall Complexity unknown very complex complex
Source Code
Consistent Conventions unknown yes yes
Overall Code Quality unknown good good
Number of Files unknown 1006 76
Lines of Code (SLOC) unknown 144255 4626
Lines of Comment unknown 74675 5073
Documentation
Documentation Level unknown low low
Processing
Parallel Processing unknown yes n/a
Distributed Processing yes yes n/a
Rearrangeable Steps yes n/a n/a
Access Raw Data of each Step yes n/a n/a
Input Devices
Interface to Devices yes yes no
Multiple Types of Devices yes yes n/a
Multiple Devices yes yes n/a
Data Synchronization unknown yes n/a
Multi-Touch
Multi-Touch Workflow unknown no no
Heterogeneous Input Data yes yes yes
Multiple Camera Models unknown n/a n/a
Image Filters unknown no no
Input Interpretation comprehensive no no
Protocols
OSC included unknown no no
TUIO implemented unknown no no
Overall Score 640 790 495

110

http://www.sourceforge.org/projects/vistavrtoolkit
http://www.sourceforge.org/projects/vistavrtoolkit
http://www.rz.rwth-aachen.de/ca/c/piz/
http://www.rz.rwth-aachen.de/ca/c/piz/
http://www.csc.kth.se/~alx/

Appendix

Multi-Modal
Name OpenInterface Squidy Interaction Library vvvv
Former Names
URL www.openinterface.org/platform www.squidy-lib.de vvvv.org
URL (secondary) www.oi-project.org
Year of Invention 2007 2007 1998
Latest Version 0.3.6 1.0.0 4.0 beta 21
Authors Jean-Yves Lionel Lawson Werner König, Roman Rädle, Toni Schmidt
Organisations Université catholique de Louvain (UCL) University of Konstanz vvvv group
Scope mutli-modal input, multi-modal design space multi-modal input input, graphics, audio, visual effects, device control
Special Features multi-language support (C/C++, Java, Matlab, C#),

Eclipse integration
multi-threading, GPU image processing, interactive
configuration, dataflow visualization, reusability

many effects, requires runtime environment

Input Devices any any any
Programming Languages C/C++ Java, C++ unknown
Number of Contributors 1..2 6..10 unknown
Origin research research commercial
License BSD LGPLv3 commercial/free
Status
Project Status beta stable beta
Maintenance Status active active active
Implementation
Implemented yes yes yes
Binaries available yes yes yes
Source Code available limited yes no
Platform
Windows yes yes yes
Linux yes yes no
Mac OS X no yes no
Development
API yes yes no
Declarative Programming yes yes yes
Visual Programming yes yes yes
Scripting no yes no
Architecture
Architectural Type framework framework toolkit
Architectural Model pipes & filters pipes & filters pipes & filters
Extensible yes yes yes
Modular yes yes yes
Reusable Components yes yes yes
Overall Complexity very complex complex complex
Source Code
Consistent Conventions unknown yes n/a
Overall Code Quality unknown good n/a
Number of Files 287 409 unknown
Lines of Code (SLOC) 25092 35861 unknown
Lines of Comment 11717 27633 unknown
Documentation
Documentation Level unknown low medium
Processing
Parallel Processing yes yes yes
Distributed Processing yes yes yes
Rearrangeable Steps yes yes yes
Access Raw Data of each
Step yes yes yes

Input Devices
Interface to Devices yes yes yes
Multiple Types of Devices yes yes yes
Multiple Devices yes yes yes
Data Synchronization yes no no
Multi-Touch
Multi-Touch Workflow no yes yes
Heterogeneous Input Data yes yes yes
Multiple Camera Models yes no yes
Image Filters >10 6..10 1..5
Input Interpretation unknown basic no
Protocols
OSC included yes yes no
TUIO implemented yes yes no
Overall Score 830 970 725

111

http://www.oi-project.org/
http://vvvv.org/
http://www.squidy-lib.de/
http://www.openinterface.org/platform

Survey and Review of Input Platforms and Recommendations for Squidy

Multi-Touch
Name Bespoke Multi-Touch Community Core Vision EquisFTIR
Former Names tbeta OpenFTIR
URL www.bespokesoftware.org/multi-touch ccv.nuigroup.com research.cs.queensu.ca/~wolfe/equisftir
URL (secondary) bespokemultitouch.codeplex.com nuicode.com/projects/tbeta
Year of Invention 2008 2008 2007
Latest Version 4.2.0.0 1.2 1.0
Authors Paul Varcholik Christopher Wolfe
Organisations Bespoke Software NUI Group Queen's University Kingston
Scope multi-touch input multi-touch input multi-touch input
Special Features XNA integration uses OpenFrameworks, GUI, GPU image filters optimized image filters
Input Devices camera camera camera
Programming Languages C# C++ C++
Number of Contributors 1..2 3..5 1..2
Origin community community research
License BSD GPLv3 LGPLv3
Status
Project Status stable stable alpha
Maintenance Status active active active
Implementation
Implemented yes yes yes
Binaries available yes yes yes
Source Code available yes yes yes
Platform
Windows yes yes yes
Linux no yes no
Mac OS X no yes no
Development
API yes yes yes
Declarative Programming yes yes no
Visual Programming no no no
Scripting yes no no
Architecture
Architectural Type framework framework library
Architectural Model layers layers layers
Extensible yes yes no
Modular yes yes yes
Reusable Components yes yes no
Overall Complexity simple simple simple
Source Code
Consistent Conventions yes no yes
Overall Code Quality good acceptable acceptable
Number of Files 163 146 74
Lines of Code (SLOC) 20998 15265 4802
Lines of Comment 8802 5974 600
Documentation
Documentation Level medium low low
Processing
Parallel Processing no no no
Distributed Processing no no no
Rearrangeable Steps no yes no
Access Raw Data of each Step no no no
Input Devices
Interface to Devices yes yes yes
Multiple Types of Devices no no no
Multiple Devices yes yes yes
Data Synchronization no no no
Multi-Touch
Multi-Touch Workflow yes yes yes
Heterogeneous Input Data no no no
Multiple Camera Models yes yes yes
Image Filters >10 6..10 1..5
Input Interpretation no no no
Protocols
OSC included yes yes no
TUIO implemented no yes no
Overall Score 735 740 535

112

http://nuicode.com/projects/tbeta
http://bespokemultitouch.codeplex.com/
http://research.cs.queensu.ca/~wolfe/equisftir/
http://ccv.nuigroup.com/
http://www.bespokesoftware.org/multi-touch

Appendix

Multi-Touch
Name libavg libtisch mu3
Former Names
URL www.libavg.de tisch.sourceforge.net code.google.com/p/mu3
URL (secondary)
Year of Invention 2003 2008 2009
Latest Version 0.90 r1169 1.0
Authors Ulrich von Zadow Florian Echtler, Gudrun Klinker Michiel Hakvoort
Organisations Archimedes Solutions GmbH Technische Universität München University of Twente
Scope multi-media processing multi-touch and tangible input multi-touch input abstraction
Special Features audio and graphics support, Python scripting distributed architecture, lightweight mutli-user and object identification and tracking
Input Devices camera any any
Programming Languages C++, Python C++ Java
Number of Contributors >10 1..2 1..2
Origin community research research
License LGPLv2 LGPLv3 BSD
Status
Project Status stable beta alpha
Maintenance Status active active active
Implementation
Implemented yes yes yes
Binaries available yes yes no
Source Code available yes yes yes
Platform
Windows yes yes yes
Linux yes yes yes
Mac OS X yes yes yes
Development
API yes yes yes
Declarative Programming yes no no
Visual Programming no no no
Scripting yes no no
Architecture
Architectural Type library framework framework
Architectural Model layers layers layers
Extensible yes no yes
Modular yes yes yes
Reusable Components yes yes no
Overall Complexity complex simple simple
Source Code
Consistent Conventions yes yes yes
Overall Code Quality good acceptable good
Number of Files 428 123 71
Lines of Code (SLOC) 52114 8135 4290
Lines of Comment 11094 1775 994
Documentation
Documentation Level medium medium low
Processing
Parallel Processing n/a no yes
Distributed Processing n/a yes no
Rearrangeable Steps n/a no no
Access Raw Data of each Step n/a no no
Input Devices
Interface to Devices yes yes yes
Multiple Types of Devices no yes yes
Multiple Devices yes yes yes
Data Synchronization no no no
Multi-Touch
Multi-Touch Workflow no yes yes
Heterogeneous Input Data no yes yes
Multiple Camera Models yes yes no
Image Filters >10 1..5 no
Input Interpretation no basic comprehensive
Protocols
OSC included no no no
TUIO implemented no no yes
Overall Score 730 765 765

113

http://code.google.com/p/mu3/
http://tisch.sourceforge.net/
http://www.libavg.de/

Survey and Review of Input Platforms and Recommendations for Squidy

Multi-Touch
Name Multi-Touch Vista multitouch MultiTouch.framework SDK
Former Names PocketTable
URL www.codeplex.com/MultiTouchVista code.google.com/p/multitouch hci.rwth-aachen.de/multitouch
URL (secondary)
Year of Invention 2008 2007 2008
Latest Version second release refresh 2 r224 unknown
Authors Daniels Danilins Stefan Hafeneger
Organisations TU Berlin, Deutsche Telekom AG Laboratories RWTH Aachen
Scope multi-touch input translation, GUI multi-touch input multi-touch input
Special Features WPF controls, Windows 7 driver support for mobile devices
Input Devices any camera camera, iPhone, iPod
Programming Languages C#, VB.NET Java ObjC
Number of Contributors 1..2 3..5 1..2
Origin community research research
License GPLv2 GPLv2 unknown
Status
Project Status beta alpha beta
Maintenance Status active active active
Implementation
Implemented yes yes yes
Binaries available yes no no
Source Code available yes yes no
Platform
Windows yes yes no
Linux no yes no
Mac OS X no yes yes
Development
API yes yes yes
Declarative Programming yes no unknown
Visual Programming no no unknown
Scripting yes no unknown
Architecture
Architectural Type framework framework framework
Architectural Model layers layers unknown
Extensible yes no yes
Modular yes no yes
Reusable Components no no unknown
Overall Complexity complex simple unknown
Source Code
Consistent Conventions yes yes unknown
Overall Code Quality good bad unknown
Number of Files 215 50 unknown
Lines of Code (SLOC) 13347 5834 unknown
Lines of Comment 2339 2249 unknown
Documentation
Documentation Level low low unknown
Processing
Parallel Processing no no unknown
Distributed Processing yes no unknown
Rearrangeable Steps no no unknown
Access Raw Data of each Step no no unknown
Input Devices
Interface to Devices yes yes yes
Multiple Types of Devices yes no yes
Multiple Devices yes no unknown
Data Synchronization no n/a unknown
Multi-Touch
Multi-Touch Workflow no yes yes
Heterogeneous Input Data yes no yes
Multiple Camera Models yes yes unknown
Image Filters no no unknown
Input Interpretation no no unknown
Protocols
OSC included no yes no
TUIO implemented yes yes no
Overall Score 705 500 455

114

http://hci.rwth-aachen.de/multitouch
http://code.google.com/p/multitouch/
http://www.codeplex.com/MultiTouchVista

Appendix

Multi-Touch
Name multitouchframework OpenTouch PyMT
Former Names
URL code.google.com/p/multitouchframework code.google.com/p/opentouch pymt.txzone.net
URL (secondary)
Year of Invention 2008 2007 2009
Latest Version 1.0 r158 0.3
Authors Arnoud de Jong Pawel Solyga
Organisations Wroclaw University of Technology community
Scope multi-touch GUI multi-touch input multi-touch GUI
Special Features WPF controls many widgets, OpenGL output
Input Devices none camera none
Programming Languages C# C++, Java Python
Number of Contributors 1..2 1..2 >10
Origin community community community
License GPLv3 LGPLv3 GPLv2
Status
Project Status beta alpha stable
Maintenance Status inactive inactive active
Implementation
Implemented yes yes yes
Binaries available yes no no
Source Code available no yes yes
Platform
Windows yes no yes
Linux no no yes
Mac OS X no yes yes
Development
API yes yes yes
Declarative Programming yes no no
Visual Programming no no no
Scripting yes no yes
Architecture
Architectural Type framework framework framework
Architectural Model unknown layers layers
Extensible unknown unknown yes
Modular unknown unknown yes
Reusable Components unknown unknown yes
Overall Complexity unknown simple simple
Source Code
Consistent Conventions unknown yes yes
Overall Code Quality unknown acceptable good
Number of Files unknown 48 93
Lines of Code (SLOC) unknown 3417 10737
Lines of Comment unknown 989 651
Documentation
Documentation Level low low high
Processing
Parallel Processing unknown no no
Distributed Processing unknown no no
Rearrangeable Steps n/a unknown n/a
Access Raw Data of each Step n/a unknown n/a
Input Devices
Interface to Devices no yes no
Multiple Types of Devices n/a yes n/a
Multiple Devices n/a no n/a
Data Synchronization n/a n/a n/a
Multi-Touch
Multi-Touch Workflow yes yes yes
Heterogeneous Input Data yes no yes
Multiple Camera Models n/a yes n/a
Image Filters no >10 no
Input Interpretation comprehensive no comprehensive
Protocols
OSC included no no yes
TUIO implemented yes yes yes
Overall Score 325 495 670

115

http://pymt.txzone.net/
http://code.google.com/p/opentouch/
http://code.google.com/p/multitouchframework/

Survey and Review of Input Platforms and Recommendations for Squidy

Multi-Touch
Name Sparsh-UI TouchKit touchlib
Former Names
URL code.google.com/p/sparsh-ui labs.nortd.com/touchkit www.touchlib.com
URL (secondary) www.vrac.iastate.edu/uav/touchtable www.whitenoiseaudio.com/touchlib
Year of Invention 2008 2008 2006
Latest Version r715 v005 2.0
Authors Stephen Gilbert David Wallin, NUI Group
Organisations Iowa State University NOR_/D NUI Group, White Noise Audio
Scope mutli-touch input and gestures mutli-touch input multi-touch input
Special Features lightweight
Input Devices multi-touch devices camera camera
Programming Languages C++, Java C++ C++
Number of Contributors >10 unknown 6..10
Origin research commercial community
License LGPLv3 LGPLv3 BSD
Status
Project Status stable stable beta
Maintenance Status active active active
Implementation
Implemented yes yes yes
Binaries available yes no yes
Source Code available yes yes yes
Platform
Windows yes yes yes
Linux yes no no
Mac OS X yes yes no
Development
API yes yes yes
Declarative Programming no no yes
Visual Programming no no no
Scripting no no no
Architecture
Architectural Type framework framework framework
Architectural Model layers layers pipes & filters
Extensible yes no yes
Modular yes yes yes
Reusable Components no no yes
Overall Complexity simple simple simple
Source Code
Consistent Conventions no yes no
Overall Code Quality acceptable acceptable acceptable
Number of Files 220 17 90
Lines of Code (SLOC) 11643 1614 7965
Lines of Comment 3492 454 1315
Documentation
Documentation Level low low low
Processing
Parallel Processing no no no
Distributed Processing yes no no
Rearrangeable Steps no no yes
Access Raw Data of each Step no no no
Input Devices
Interface to Devices yes yes yes
Multiple Types of Devices no no no
Multiple Devices no no yes
Data Synchronization n/a n/a no
Multi-Touch
Multi-Touch Workflow yes yes yes
Heterogeneous Input Data yes no no
Multiple Camera Models no yes yes
Image Filters no >10 >10
Input Interpretation comprehensive no no
Protocols
OSC included no yes yes
TUIO implemented no no yes
Overall Score 665 545 725

116

http://www.whitenoiseaudio.com/touchlib/
http://www.vrac.iastate.edu/uav/touchtable/
http://www.touchlib.com/
http://labs.nortd.com/touchkit/
http://code.google.com/p/sparsh-ui/

Appendix

Multi-Touch
Name touchpy Touché xTouch
Former Names BBTouch
URL code.google.com/p/touchpy gkaindl.com/software/touche code.google.com/p/opentouch
URL (secondary) code.google.com/p/touche benbritten.com/category/multitouch
Year of Invention 2008 2008 2007
Latest Version r78 1.0b3 not released
Authors Goran Medakovic Georg Kaindl Ben Britten Smith
Organisations Vienna University of Technology
Scope multi-touch GUI multi-touch input multi-touch input
Special Features Compiz plugin comfortable GUI, image filtering with OpenGL

shaders
Input Devices none camera, Wiimote camera
Programming Languages Python, C ObjC ObjC
Number of Contributors 1..2 1..2 1..2
Origin community research community
License GPLv3 LGPLv3 LGPLv3
Status
Project Status alpha beta beta
Maintenance Status inactive active active
Implementation
Implemented yes yes yes
Binaries available no yes no
Source Code available yes yes yes
Platform
Windows no no no
Linux yes no no
Mac OS X no yes yes
Development
API yes yes yes
Declarative Programming no no no
Visual Programming no no no
Scripting yes no no
Architecture
Architectural Type framework framework framework
Architectural Model layers pipes & filters model-view-controller
Extensible no yes yes
Modular no yes yes
Reusable Components no yes no
Overall Complexity simple complex simple
Source Code
Consistent Conventions yes yes yes
Overall Code Quality acceptable good acceptable
Number of Files 8 285 105
Lines of Code (SLOC) 2116 23108 5710
Lines of Comment 180 7028 3560
Documentation
Documentation Level low low low
Processing
Parallel Processing no yes no
Distributed Processing no no no
Rearrangeable Steps no no no
Access Raw Data of each Step no no no
Input Devices
Interface to Devices no yes yes
Multiple Types of Devices n/a yes no
Multiple Devices n/a yes no
Data Synchronization n/a no n/a
Multi-Touch
Multi-Touch Workflow yes yes yes
Heterogeneous Input Data yes yes no
Multiple Camera Models n/a yes yes
Image Filters no >10 >10
Input Interpretation basic basic no
Protocols
OSC included yes yes yes
TUIO implemented yes yes yes
Overall Score 370 800 575

117

http://benbritten.com/category/multitouch/
http://code.google.com/p/touche/
http://code.google.com/p/opentouch/
http://gkaindl.com/software/touche
http://code.google.com/p/touchpy/

Survey and Review of Input Platforms and Recommendations for Squidy

Multi-Touch Commercial
Name Microsoft Surface SDK Microsoft Windows Touch SDK
Former Names
URL www.surface.com msdn.microsoft.com/en-us/library/dd562197%28VS.85%29.aspx
URL (secondary) msdn.microsoft.com/en-us/library/ee332414.aspx
Year of Invention 2008 2009
Latest Version 1.0 SP1 6.1 build 7600
Authors
Organisations Microsoft Corporation Microsoft Corporation
Scope multi-touch input, GUI multi-touch input
Special Features supports Surface table and WPF included in Windows 7
Input Devices Microsoft Surface Table any
Programming Languages unknown unknown
Number of Contributors unknown unknown
Origin commercial commercial
License commercial commercial
Status
Project Status stable stable
Maintenance Status active active
Implementation
Implemented yes yes
Binaries available yes yes
Source Code available no no
Platform
Windows yes yes
Linux no no
Mac OS X no no
Development
API yes yes
Declarative Programming yes no
Visual Programming no no
Scripting yes no
Architecture
Architectural Type framework framework
Architectural Model unknown unknown
Extensible yes yes
Modular unknown unknown
Reusable Components unknown unknown
Overall Complexity unknown unknown
Source Code
Consistent Conventions unknown unknown
Overall Code Quality unknown unknown
Number of Files unknown unknown
Lines of Code (SLOC) unknown unknown
Lines of Comment unknown unknown
Documentation
Documentation Level high high
Processing
Parallel Processing yes yes
Distributed Processing no no
Rearrangeable Steps no no
Access Raw Data of each Step no no
Input Devices
Interface to Devices yes yes
Multiple Types of Devices no yes
Multiple Devices no yes
Data Synchronization no no
Multi-Touch
Multi-Touch Workflow yes yes
Heterogeneous Input Data no yes
Multiple Camera Models no n/a
Image Filters unknown no
Input Interpretation comprehensive comprehensive
Protocols
OSC included no no
TUIO implemented no no
Overall Score 510 605

118

http://msdn.microsoft.com/en-us/library/ee332414.aspx
http://msdn.microsoft.com/en-us/library/dd562197(VS.85).aspx
http://www.surface.com/

Appendix

Tangible Input
Name Papier-Mâché reacTIVision TWING (Xenakis)
Former Names
URL hci.stanford.edu/research/papier-mache reactivision.sourceforge.net xenakis.origo.ethz.ch
URL (secondary) www.reactable.com xenakis.3-n.de
Year of Invention 2003 2005 2008
Latest Version r1068 1.4 r109
Authors Scott R. Klemmer Ross Bencina, Martin Kaltenbrunner Markus Bischof, Bettina Conradi,

Peter Lachenmaier, Kai Linde, Max Meier,
Philipp Pötzl

Organisations UC Berkeley, Stanford University Universitat Pompeu Fabra, Barcelona, Spain University of Augsburg
Scope pyhsical input fiducial input tangible and multi-touch input
Special Features input abstraction and association fiducial tracking input interpretation, command generation
Input Devices any camera none
Programming Languages Java C++ C#
Number of Contributors 6..10 1..2 3..5
Origin research research research
License BSD GPLv2 LGPLv3
Status
Project Status stable stable stable
Maintenance Status inactive active inactive
Implementation
Implemented yes yes yes
Binaries available yes yes no
Source Code available yes yes yes
Platform
Windows yes yes yes
Linux yes yes no
Mac OS X yes yes no
Development
API yes yes yes
Declarative Programming no no no
Visual Programming no no no
Scripting yes no yes
Architecture
Architectural Type toolkit framework framework
Architectural Model layers layers model-view-controller
Extensible yes no yes
Modular yes yes yes
Reusable Components yes yes yes
Overall Complexity complex complex simple
Source Code
Consistent Conventions no yes yes
Overall Code Quality acceptable acceptable good
Number of Files 162 202 353
Lines of Code (SLOC) 20914 25767 28973
Lines of Comment 6846 9941 19467
Documentation
Documentation Level low low high
Processing
Parallel Processing no no yes
Distributed Processing no no no
Rearrangeable Steps no no no
Access Raw Data of each Step no no no
Input Devices
Interface to Devices yes yes no
Multiple Types of Devices yes no n/a
Multiple Devices yes no n/a
Data Synchronization no n/a n/a
Multi-Touch
Multi-Touch Workflow no yes yes
Heterogeneous Input Data yes yes yes
Multiple Camera Models yes yes n/a
Image Filters >10 1..5 no
Input Interpretation no comprehensive comprehensive
Protocols
OSC included no yes no
TUIO implemented no yes no
Overall Score 730 660 585

119

http://xenakis.3-n.de/
http://www.reactable.com/
http://xenakis.origo.ethz.ch/
http://reactivision.sourceforge.net/
http://hci.stanford.edu/research/papier-mache/

	1 Introduction
	1.1 Motivation of the Curve Project
	1.2 Status of the Curve Project
	1.3 Objective of this Work
	1.4 Outline of this Work
	1.5 Related Work

	2 Software Engineering Basics
	2.1 Software Design Principles
	2.2 Programming Paradigms
	2.2.1 Object-Oriented Programming
	2.2.2 Aspect-Oriented Programming

	2.3 Patterns
	2.3.1 Design Patterns
	2.3.2 Architectural Patterns
	Layers
	Pipes and Filters
	Model-View-Controller

	2.3.3 Anti-Patterns

	2.4 Concurrency, Multi-Threading, and Parallel Processing
	2.5 Libraries, Frameworks, and Toolkits

	3 Requirements for an Input Framework
	3.1 Software Developer's Perspective
	3.2 Application Developer's Perspective
	3.3 End-User's Perspective
	3.4 Scientist's Perspective
	3.5 Curve's Perspective
	3.6 Technical Specifications
	3.6.1 Supported Communication Protocols
	3.6.2 Supported Interaction Devices and Interfaces
	3.6.3 Supported Types of Data

	4 Survey of Input Frameworks, Libraries, and Toolkits
	4.1 Augmented and Virtual Reality
	4.1.1 Unit
	4.1.2 ViSTA (DataLaViSTA)

	4.2 Multi-Modal Interaction
	4.2.1 OpenInterface
	4.2.2 Squidy Interaction Library
	4.2.3 vvvv

	4.3 Multi-Touch Interaction
	4.3.1 Bespoke Multi-Touch
	4.3.2 Community Core Vision
	4.3.3 EquisFTIR
	4.3.4 libavg
	4.3.5 libtisch
	4.3.6 mu3
	4.3.7 Multi-Touch Vista
	4.3.8 multitouch
	4.3.9 MultiTouch.framework SDK
	4.3.10 multitouchframework
	4.3.11 OpenTouch
	4.3.12 pyMT
	4.3.13 Sparsh UI
	4.3.14 TouchKit
	4.3.15 Touchlib
	4.3.16 touchpy
	4.3.17 Touché
	4.3.18 xTouch

	4.4 Multi-Touch Interaction (Commercial)
	4.4.1 Microsoft Surface SDK
	4.4.2 Microsoft Windows Touch SDK

	4.5 Tangible Interaction
	4.5.1 Papier-Mâché
	4.5.2 reacTIVision
	4.5.3 TWING

	5 Compact Comparison of Frameworks, Libraries, and Toolkits
	5.1 Tabular Survey
	5.2 Pleading for the Squidy Interaction Library

	6 The Squidy Interaction Library
	6.1 Squidy Core
	6.1.1 Squidy Manager
	6.1.2 Squidy Designer

	6.2 Concepts in Squidy Core
	6.2.1 Processable
	6.2.2 Pipeline
	6.2.3 Nodes
	6.2.4 Pipes
	6.2.5 Piping
	6.2.6 Data Representation
	6.2.7 Data Processing
	6.2.8 Persistence
	6.2.9 Dynamic Reconnection
	6.2.10 Dynamic Compilation
	6.2.11 Squidy Remote
	6.2.12 Data Recorder

	6.3 Squidy Bridges
	6.4 Squidy Client Implementations
	6.5 Performance Considerations
	6.6 Planned Features
	6.7 Comparison of Squidy with DirectShow
	6.7.1 Elements of DirectShow
	6.7.2 Connection Process
	Advantages of Squidy
	Disadvantages of Squidy

	6.7.3 Filter Types
	6.7.4 Data Processing
	6.7.5 Allocators

	6.8 Parallel Processing in Squidy
	6.8.1 Stages
	6.8.2 Benefit of Parallel Processing
	6.8.3 Limitations of Parallel Processing

	7 Proposed Improvements to Squidy
	7.1 Node Types
	7.1.1 New Categorization
	7.1.2 Bridge Nodes
	7.1.3 Transformer Nodes

	7.2 Data Synchronization
	7.2.1 Start Time Stamp and Stop Time Stamp
	7.2.2 Reference Time
	7.2.3 Distributed Environment

	7.3 Data Allocator
	7.3.1 Data Object Creation on Demand
	7.3.2 Implementation Details
	7.3.3 Transfer of unique Attributes
	7.3.4 Dynamic Data Allocator Capacity

	7.4 Direct Invocation and Blocked Execution
	7.4.1 Parallel Processing
	7.4.2 Implementation Details

	7.5 Multi-Touch Input Node
	7.5.1 Advantages of the current Implementation
	7.5.2 Disadvantages and Proposals for Improvements
	7.5.3 Proposal for an overall Architectural Redesign
	7.5.4 Benefits of the proposed Redesigned Architecture

	7.6 Multi-Touch Calibration
	7.6.1 Surface Calibration
	7.6.2 Camera Calibration
	Camera Parameters
	3D and 2D Reconstruction
	Further Aspects

	7.6.3 Implementation Details

	7.7 Image Stitching
	7.7.1 Stitching Process
	7.7.2 Available Implementations
	7.7.3 Implementation Details

	7.8 Management Interface
	7.8.1 Requirements
	7.8.2 Remote Access using the Java Language
	Java RMI (Remote Method Invocation)
	Cajo
	JMX (Java Management Extensions)
	JMS (Java Message Service)
	Spring Remoting
	Conclusion

	7.8.3 Remote Access by a non-Java Client Application
	OSC (Open Sound Control)
	SOAP
	CORBA (Common Object Request Broker Architecture)
	Jace

	7.8.4 Use of Scripting Languages
	7.8.5 Remote Access by Scripting Languages

	7.9 Monitoring
	7.9.1 Inspection of Data Objects
	7.9.2 Logging

	7.10 Circular Pipelines
	7.10.1 Prevent Construction
	7.10.2 Eliminate Negative Consequences

	7.11 Dynamic Reconnection
	7.12 Further Improvements
	Data Type Hints
	Abstract Caching Class
	Index for Data Type Lookup
	Injection of Processing and Properties
	AOP for Persistence
	Partial Image Filtering
	Improved Configuration Management
	Bridge to libtisch
	Tools for Bridge Implementations

	8 Remarkable Features of Competitors to Squidy
	8.1 Input Interpretation
	8.2 Gesture Recognition
	8.3 Input Abstraction
	8.4 Image Filtering
	8.5 Fiducial Markers
	8.6 Data Processing and Synchronization

	9 Implementation of Data Object Monitoring using Visitors
	10 Conclusion
	Bibliography
	Appendix
	Source Code of Data Object Monitoring using Visitors
	Source Code of Synchronization Latency Test
	Comparison of Libraries, Frameworks, and Toolkits

