How to change an Activity to make use
of Fragments

1.) Create a new Class that extends Fragment (The IDE can do that for you)

-
(]

Choose options for your new file

Creates a blank fragment that is compatible back to API level 4.

Fragment Mame: | ElankFragment

[V Create layout XML?

Fragment Layout Mame: | fragrment_blank

V) Include fragment factory methods?

E Include interface callbacks?

r
|
|
|
|
|
|

- s e

Fragment (Elank)

2.)Create a layout xml file for the new Fragment (if the IDE hasn’t already done
it)
3.)Copy your layout from your Activity to your Fragment layout xml file

4.)Replace the layout in your Activity with a Fragment tag that contains the
name of the Fragment. (This should only be done if this Fragment is permanent
as it can’t be removed at runtime)

<fragment android:name="com.example.raphael .pem?202 . CustonliztFragment"
android:id="g+id/custonlistFragment"
andreoid:layout width="match parent"
andreoid:layout height="match parent"
tools: 1_.':13,T out="Elayout/{ragment custom list" />



5.)In the OnCreateView(...) method of the Fragment inflate your layout (If you
chose to create a layout file when creating the Fragment earlier this code is
already there. (We need the View later so it needs to be saved)

View view = inflater.inflate (R.layout.fragment custom list, container, false):

6.)Move the code that is used to do things in your Activity to the Fragment.
In this example there is only code in the onCreate() method of the Activity.
Copy that Code to the onCreateView(...) method in the Fragment.

protected void onCreate (Bundle savedInstanceState) |
super.onCreate (savedInstanceState) ;
getlontentView (R.layout.activity list);

customlistAdapter=new Customlisthdapter (getipplicationContext())r
listView = (ListWView)findViewById(R.id.listViewFragment);
listView.sethdapter (custonlistAdapter) ;

i

B0verride

public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle sawvedInstanceitate) |

System. out.println{"onCreateView() ")
View view = inflater.inflate(R.layout.fragment custom list, container, false);

custonlistAdapter=new CustomlistAdapter {gethipplicationContext()) s
liztWiew = (ListView)f{indViewById{R.id. listViewFragment) ;
listView.setﬁdapter{custDmListAdapterJd

This will cause an error as some methods don’t work in a Fragment like they did
in an Activity.

First getApplicationContext() needs to be changed to
getActivity().getApplicationContext()

Then the reason we saved the View becomes clear as we need it to change
findViewByld() to:

listView = (LiatView)view.IfindViewById(R.1id.listViewFraoment);

This should now work like the Activity did before.



How to connect a Fragment with an
Activity via Callback

1.)Create an Interface in your Fragment. This interface should define Methods
that you need to achieve your goal. In our case we want to change the
ActionBar title in the Activity to the TextElement of a chosen ListElement.

public interface CustomlistInterface{
public woid changeTitle (String newlitle);

1

2.) Implement the interface in your Activity

public class ListRctivity extends Activity implements CustomlistFragment.CustomlistInterface]|

public woid changeTitle {String newlitle) |
getActionBar() .3etTitle (newlitle) ;

1

3.) Override the OnAttach() Method of the Fragment to make sure that the
Activity that attaches our Fragment implemented our Interface.
Otherwise our Callback will fail.

ginerriae

public volid cnAttach{Activity activity) |
super.cnhttach {activitcy)
if {activity instanceof CustomlListInterface) {
custonlistInterface = (CustomlistInterface) activity:
1 else |
throw new ClassCastException{activity.toString()
+ " must implement CustomlistInterface");



4.) Get the data you need to be passed to the Activity.
In our Case we need the Text of the TextElement of the chosen ListElement

A

P
<

A

A

For this we have to first add an OnClickListener() to our ListView. Then we need
to Override the OnltemClick Method. Here we get the text of our TextElement
via the getView() Method of our CustomList Adapter that returns a View from
which the Text can be accessed. Lastly we make use of a Callback and pass the
Text to the Activity.

listView.setOnItemClickListener (new RdapterView.OnlItemClickListener() {
@0verride
public wvold ocnltemClick (RdapterView<?> adaptervView, View wview, int position, long id) |
System.out.println{"position: "+position);
View nView = customlistidapter.getView(position,view,viewkroup):
TextView textView=(TextView) nView.findViewById(R.id.text):
String title = textView.getText().toString():

custonlistInterface.changeTitle (title);

s



