
LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Announcement: Informatik colloquium

7.November, 2pm
room will be announced
Title: Activities in Considerate
Systems

designing for social factors in audio
conference systems

1
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

interaction
techniques

in/output
technologies

Let’s recap
• short version of where our standard

desktop interface comes from
– not all tasks can be augmented using this human-

computer setup.
– as the interface moves into the physical world

other design factors become prominent, e.g.
social aspects.

• theory
– learn concepts that you can apply to particular

HCI problems.
• quantification: GOMS KLM
• Fitts’ law
• morphological approach

3
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

interaction
techniques

in/output
technologies

4

Literature: Card et al.,
“A Morphological
Analysis of the Design
Space of Input
Devices”. ACM
Transactions on
Information Systems,
Vol.9, No. 2, 1991

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

interaction
techniques

in/output
technologies

Composition Operators
• merge composition

– two devices can be composed so that their
common sets are merged

• layout composition
– several devices laid out together in a control

panel

• connect composition
– two devices connected that the output of one is

cascaded to the input of the other

5

Literature: Card et al., “A Morphological Analysis of the Design Space of Input Devices”. ACM
Transactions on Information Systems, Vol.9, No. 2, 1991

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

interaction
techniques

in/output
technologies

Visual Description

6
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

interaction
techniques

in/output
technologies

Importance for interaction
design?

• Morphological
Approach
– cope with

complexity, cope
with large number
of alternatives.

• Descriptive power
(how?)

• Generative power
(how?)

7
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

in/output
technologies

Take-away Message
• models are important

– research:
• communicate interdisciplinary field
• establish understanding of a phenomena
• work on systematic ways of exploring designs

– industry:
• can reduce costs of testing different designs
• generate ideas for the next product

• require models that enable
– description
– prediction
– generation of new ideas.

• reality vs. model

8
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

self-revealing
interfaces

interaction
techniques

in/output
technologies

Self-revealing interfaces
• the only way to see a behavior in your users

is to induce it (Widgor and Wixon, Brave NUI World: designing
natural UIs for touch and Gesture)

• affordance
– Gibson
– Norman

9

Literature: Widgor and Wixon, Chapter 20: self-revealing gestures, in Brave NUI World

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

self-revealing
interfaces

interaction
techniques

in/output
technologies

Affordance Theory
• behaviorism (perception drives action)

– world is perceived by recognizing object shapes and
spatial relationships among them, and object
possibilities of action (affordance)

• norman, perceived affordance:

• Gibson:
– perceived in a direct, immediate way with no higher-

level cognitive processing.

10

Norman, D. : Affordances and Design, jnd.org

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

self-revealing
interfaces

interaction
techniques

in/output
technologies

Self-revealing interfaces
• the only way to see a behavior in your users

is to induce it (Widgor and Wixon, Brave NUI World: designing
natural UIs for touch and Gesture)

• affordance
– Gibson
– Norman

• transition novice to expert
– revelation
– learning

11

Literature: Widgor and Wixon, Chapter 20: self-revealing gestures, in Brave NUI World

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

self-revealing
interfaces

interaction
techniques

in/output
technologies

• example on-screen menu navigation vs.
hot keys
– more efficient to use hot keys
– transition comes at a cost. gulf of competence

12

147Lessons from the Past: Control vs. Alt Hotkeys

 intuitive: CTRL ! P " print, CTRL ! S " save, and so on. Figure 20.1 shows some
hotkeys from the Notepad application.

 Relying on intuitiveness works well for a small number of keys , but it breaks
down quickly—if CTRL ! C means “copy,” then what is the hotkey for “center”?
This is roughly parallel to the naïve designer’s notion of gesture mappings: we
map the physical action to some property in its function (if we want “help,” draw
a question mark!). However, we quickly learn that this approach does not scale:
Frequently used functions may overlap (consider “copy” and “cut”). This gives rise
to shortcuts such as CTRL ! H for “fi nd next” (CTRL ! R is “center”, in case you
were racking your brain). We also note the use of function keys as CTRL short-
cuts—even though they don’t actually use the CTRL key, they are still notionally
CTRL shortcuts, as we shall see.

 Because intuitive mappings can take us only so far, the menu provides the sec-
ond mechanism for hotkey learning : the functions in the menu system are labeled
with their hotkey invocation. This approach is a reasonable one. We provide users
with an in-place help system labeling functions with a more effi cient means of exe-
cuting them. However, a sophisticated designer must ask themselves, “What does
the transition from novice to expert look like?”

 In the case of Control shortcuts, the novice-to-expert transition requires a leap
on the part of the user: we ask her to fi rst learn the application using the mouse,
pointing at menus and selecting functions spatially. To become a power user, she
must then make the conscious decision to stop using the menu system and begin
to use hotkeys. When the user makes this decision, it will at fi rst come at the cost
of a loss of effi ciency, as she moves from being an expert in one system, the mouse-
based menus, to being a novice in the hotkey system. We term this cost the gulf of
competence . The graph in Figure 20.3 demonstrates this idea—at the time that the
user tries to switch from mouse to keyboard, she slows down.

 FIGURE 20.1

 The Control hotkeys are shown in the File menu in Notepad. Note that the key choices are
selected to be intuitive (by matching the fi rst letter of the function name).

CH020.indd 147CH020.indd 147 2/1/2011 5:50:13 PM2/1/2011 5:50:13 PM

Self-revealing interfaces

Widgor and Wixon, Chapter 20: self-
revealing gestures, in Brave NUI World

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and task

theory

Quantification

Fitts’ law

Card’s design
space

self-revealing
interfaces

interaction
techniques

in/output
technologies

Gulf of competence

13

148 CHAPTER 20 Self-Revealing Gestures

 The gulf of competence is easily anticipated by the user: He may know that hot-
keys are more effi cient, but they will take time to learn. We are asking a busy user
to take the time to learn the interface. The gulf of competence is a chasm too far for
most users. Only a small set ever progress beyond the most basic control hotkeys,
forever doomed to the ineffi cient world of the WIMP. Thankfully, we have a hotkey
system that is far easier to learn: the Alt hotkeys.

 FIGURE 20.3

 The learning curve of Control hotkeys: The user fi rst learns to use the system with the mouse.
They he must consciously decide to stop using the mouse and begin to use shortcut keys. This
decision comes at a cost in effi ciency as he begins to learn an all-new system. This cost is the
“gulf of competence.”

 FIGURE 20.2

 The Control hotkeys are shown in the Edit menu in Notepad. The fi rst-letter mapping is lost in
favor of physical convenience (CTRL ! V for paste) or name collisions (F3 for fi nd next—yes, F3
 is a Control hotkey under our defi nition, which will be more clear soon).

CH020.indd 148CH020.indd 148 2/1/2011 5:50:14 PM2/1/2011 5:50:14 PM

Widgor and Wixon, Chapter 20: self-revealing gestures, in Brave NUI World

how do we get people to change their behavior and adapt
a new technique for the sake of efficiency?

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop Environments

14

context and task

theory

interaction
techniques

in/output
technologies

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Pointing - Fitts’ Law

• a, b vary according to nature of acquisition
task, the kind of motion performed or the
muscles used.

• visual/display space and motor/control space

15

pointing performance can have substantial impact on overall user productivity.
Thus, it is highly worthwhile for interface researchers and designers to attempt to
optimize pointing performance to the greatest extent possible.

In contrast to pointing to physical objects in the real world, pointing in the virtual
world is typically achieved via an input device that acts as an intermediary between
the human and the graphical objects being pointed to. Despite the presence of this
intermediary, however, Card et al. (1978) showed in their seminal paper that virtual
pointing can be accurately modelled using Fitts’ law (Fitts, 1954; MacKenzie, 1992),
which asserts that the movement time MT to acquire a target of width W which lies
at a distance D is governed by the relationship

MT ¼ aþ b log2
D

W
þ 1

! "

;

where a and b are empirically determined constants, the logarithmic term is called
the index of difficulty (ID) measured in ‘‘bits’’, and the reciprocal of b is the human
rate of information processing for the task at hand and is often referred to as the
index of performance (IP) or bandwidth. Note that the above Shannon formulation
of Fitts’ law is the widely preferred alternative amongst several from both theoretical
and practical perspectives (see MacKenzie, 1992, for a discussion on these alternative
formulations).

In addition to demonstrating the applicability of Fitts’ law to modelling
virtual pointing, Card et al. (1978) and other researchers (e.g. MacKenzie, 1992;
Douglas and Mithal, 1997) have also clearly shown that virtual pointing using
input devices like the mouse or stylus can result in performance very similar
to intermediary-free physical pointing. Based on this well replicated finding,
one might argue that pointing in the virtual world is ‘‘as good as it can
possibly get’’. However, in recent years HCI researchers have realized that
since virtual pointing does not have to be constrained by the laws of the
physical world, it may be possible to actually ‘‘beat’’ Fitts’ law and make virtual
pointing easier than its physical counterpart. Assuming that the input device used is
optimal in that it enables virtual pointing performance equivalent to physical
pointing, Fitts’ law indicates two possible approaches for further optimization:
reduce D or increase W. Directly changing these two parameters obviously does
nothing more than change the size and position of onscreen graphical elements,
which are presumably already laid out in a reasonably optimal fashion due in part to
the interface designer’s basic appreciation of Fitts’ law. The challenge is to indirectly
affect further changes in D and/or W in ways that do not substantially alter the
overall visual appearance of the graphical interface, but nonetheless result in shorter
pointing times.

In this paper, we survey the recent research on attempts at creating virtual
enhancements to improve pointing performance. We begin with some background
on the current understanding of the underlying human motor actions that are
believed to be modelled by Fitts’ law. In light of this foundational knowledge, we
then discuss the various pointing facilitation techniques that have been developed to

ARTICLE IN PRESS

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874858

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Pointing - Fitts’ Law

• D = distance to target
– Dm - motor space, Dv - virtual space

• W = width of target
– target width vs. effective target width

• control-display gain = unit free coefficient that maps the movement of
the pointing device to the movement of the display pointer
– gain = 1: display pointer moves exactly the same distance and speed

as the control device
– gain < 1: display pointer moves slower, covering less distance than the

control device
– gain > 1: display pointer moves proportionality farther and faster than

the control device cursor movement.

• goal: decrease MT!
• how?

16

pointing performance can have substantial impact on overall user productivity.
Thus, it is highly worthwhile for interface researchers and designers to attempt to
optimize pointing performance to the greatest extent possible.

In contrast to pointing to physical objects in the real world, pointing in the virtual
world is typically achieved via an input device that acts as an intermediary between
the human and the graphical objects being pointed to. Despite the presence of this
intermediary, however, Card et al. (1978) showed in their seminal paper that virtual
pointing can be accurately modelled using Fitts’ law (Fitts, 1954; MacKenzie, 1992),
which asserts that the movement time MT to acquire a target of width W which lies
at a distance D is governed by the relationship

MT ¼ aþ b log2
D

W
þ 1

! "

;

where a and b are empirically determined constants, the logarithmic term is called
the index of difficulty (ID) measured in ‘‘bits’’, and the reciprocal of b is the human
rate of information processing for the task at hand and is often referred to as the
index of performance (IP) or bandwidth. Note that the above Shannon formulation
of Fitts’ law is the widely preferred alternative amongst several from both theoretical
and practical perspectives (see MacKenzie, 1992, for a discussion on these alternative
formulations).

In addition to demonstrating the applicability of Fitts’ law to modelling
virtual pointing, Card et al. (1978) and other researchers (e.g. MacKenzie, 1992;
Douglas and Mithal, 1997) have also clearly shown that virtual pointing using
input devices like the mouse or stylus can result in performance very similar
to intermediary-free physical pointing. Based on this well replicated finding,
one might argue that pointing in the virtual world is ‘‘as good as it can
possibly get’’. However, in recent years HCI researchers have realized that
since virtual pointing does not have to be constrained by the laws of the
physical world, it may be possible to actually ‘‘beat’’ Fitts’ law and make virtual
pointing easier than its physical counterpart. Assuming that the input device used is
optimal in that it enables virtual pointing performance equivalent to physical
pointing, Fitts’ law indicates two possible approaches for further optimization:
reduce D or increase W. Directly changing these two parameters obviously does
nothing more than change the size and position of onscreen graphical elements,
which are presumably already laid out in a reasonably optimal fashion due in part to
the interface designer’s basic appreciation of Fitts’ law. The challenge is to indirectly
affect further changes in D and/or W in ways that do not substantially alter the
overall visual appearance of the graphical interface, but nonetheless result in shorter
pointing times.

In this paper, we survey the recent research on attempts at creating virtual
enhancements to improve pointing performance. We begin with some background
on the current understanding of the underlying human motor actions that are
believed to be modelled by Fitts’ law. In light of this foundational knowledge, we
then discuss the various pointing facilitation techniques that have been developed to

ARTICLE IN PRESS

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874858

Literature: Géry Casiez, “The impact of Control-Display Gain on User Performance in Pointing Tasks”. In
HCI, Vol.3 2008, pp. 215-250.

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

17

Drag-and-pop - ‘decrease D’

http://patrickbaudisch.com/projects/dragandpop/

Tuesday, October 14, 14

http://patrickbaudisch.com/projects/dragandpop/
http://patrickbaudisch.com/projects/dragandpop/

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Drag-and-pop - ‘decrease D’
• Idea: temporarily bringing virtual proxy of the

most likely potential set of targets towards the
cursor.

• originally designed for desktop icons
• challenges if applied to other elements?

– proxies overlay
– occlusion of valuable information
– selection of targets in distance or vicinity
– calm visual design to avoid annoyance

18

Literature: Baudisch et al. Drag-and-Pop and Drag-and-Pick: Techniques for Accessing Remote Screen
Content on Touch and Pen-operated Systems. In Proc Interact'03, pp. 57--64.

Drag-and-Pop and Drag-and-Pick: techniques for accessing
remote screen content on touch- and pen-operated systems
Patrick Baudisch1, Edward Cutrell1, Dan Robbins1, Mary Czerwinski1,

Peter Tandler2, Benjamin Bederson3, and Alex Zierlinger4
1Microsoft Research, Redmond, WA; 2Fraunhofer IPSI, Darmstadt, Germany;

3HCIL, University of Maryland, MD; 4Maila Push, Darmstadt, Germany
{baudisch, cutrell,czerwinski, dcr}@microsoft.com; tandler@ipsi.fhg.de;

bederson@cs.umd.edu; alex@zierlinger.de

Abstract: Drag-and-pop and drag-and-pick are interaction techniques designed for users of pen- and touch-
operated display systems. They provide users with access to screen content that would otherwise be impossible
or hard to reach, e.g., because it is located behind a bezel or far away from the user. Drag-and-pop is an exten-
sion of traditional drag-and-drop. As the user starts dragging an icon towards some target icon, drag-and-pop
responds by temporarily moving potential target icons towards the user’s current cursor location, thereby allow-
ing the user to interact with these icons using comparably small hand movements. Drag-and-Pick extends the
drag-and-pop interaction style such that it allows activating icons, e.g., to open folders or launch applications. In
this paper, we report the results of a user study comparing drag-and-pop with traditional drag-and-drop on a 15’
(4.50m) wide interactive display wall. Participants where able to file icons up to 3.7 times faster when using the
drag-and-pop interface.

Keywords: Drag-and-drop, drag-and-pick, interaction technique, pen input, touchscreen, heterogeneous display.

1 Introduction
With the emergence of pen- and touch-operated per-
sonal digital assistants (PDAs), tablet computers,
and wall-size displays (e.g., Liveboard, Elrod et al.,
1992; Smartboard, http://www.smarttech.com),
touch and pen input have gained popularity. Over
the past years, more complex display systems have
been created by combining multiple such display
units. Wall-size touch displays have been combined
into display walls, such as the DynaWall (Streitz
2001), or the iRoom Smartboard wall (Johanson,
2002b). Recent PDAs and tablet computers allow
connecting additional displays, such as another tab-
let or a monitor in order to extend the device’s inter-
nal display space.

Touch/pen-operated screens that consist of mul-
tiple display units bring up a new class of input chal-
lenges that cannot always be solved with existing
techniques, because many of the existing techniques
were designed for indirect input devices, such as
mice, track pads, or joysticks. Indirect input devices
can be used on arbitrary display configurations, be-
cause they can simply be mapped to the respective
topology (e.g., PointRight, Johanson 2002a). Touch/
pen input, however, is based on the immediate

b
c

dFigure 1: Drag-and-pop

a

correspondence between input space and display
space and thus requires users to adapt their input
behavior to the physicality of the display system.
Here are three examples where this can become
problematic.

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Drag-and-pop - ‘decrease D’
• Drag-and-pop’s candidate:

– icons of compatible type
– tip icons layout: snap icons to a grid,

remove empty rows and columns
– icons located within a certain angle from

the initial drag direction.
– if(no. of qualifying icons > limit)

• eliminate tip icon candidates until hard
limit is met starting from outside, going
inwards.

• Results:
– not significantly faster on desktop
– advantage for very large screens

19

Drag-and-Pop and Drag-and-Pick: techniques for accessing
remote screen content on touch- and pen-operated systems
Patrick Baudisch1, Edward Cutrell1, Dan Robbins1, Mary Czerwinski1,

Peter Tandler2, Benjamin Bederson3, and Alex Zierlinger4
1Microsoft Research, Redmond, WA; 2Fraunhofer IPSI, Darmstadt, Germany;

3HCIL, University of Maryland, MD; 4Maila Push, Darmstadt, Germany
{baudisch, cutrell,czerwinski, dcr}@microsoft.com; tandler@ipsi.fhg.de;

bederson@cs.umd.edu; alex@zierlinger.de

Abstract: Drag-and-pop and drag-and-pick are interaction techniques designed for users of pen- and touch-
operated display systems. They provide users with access to screen content that would otherwise be impossible
or hard to reach, e.g., because it is located behind a bezel or far away from the user. Drag-and-pop is an exten-
sion of traditional drag-and-drop. As the user starts dragging an icon towards some target icon, drag-and-pop
responds by temporarily moving potential target icons towards the user’s current cursor location, thereby allow-
ing the user to interact with these icons using comparably small hand movements. Drag-and-Pick extends the
drag-and-pop interaction style such that it allows activating icons, e.g., to open folders or launch applications. In
this paper, we report the results of a user study comparing drag-and-pop with traditional drag-and-drop on a 15’
(4.50m) wide interactive display wall. Participants where able to file icons up to 3.7 times faster when using the
drag-and-pop interface.

Keywords: Drag-and-drop, drag-and-pick, interaction technique, pen input, touchscreen, heterogeneous display.

1 Introduction
With the emergence of pen- and touch-operated per-
sonal digital assistants (PDAs), tablet computers,
and wall-size displays (e.g., Liveboard, Elrod et al.,
1992; Smartboard, http://www.smarttech.com),
touch and pen input have gained popularity. Over
the past years, more complex display systems have
been created by combining multiple such display
units. Wall-size touch displays have been combined
into display walls, such as the DynaWall (Streitz
2001), or the iRoom Smartboard wall (Johanson,
2002b). Recent PDAs and tablet computers allow
connecting additional displays, such as another tab-
let or a monitor in order to extend the device’s inter-
nal display space.

Touch/pen-operated screens that consist of mul-
tiple display units bring up a new class of input chal-
lenges that cannot always be solved with existing
techniques, because many of the existing techniques
were designed for indirect input devices, such as
mice, track pads, or joysticks. Indirect input devices
can be used on arbitrary display configurations, be-
cause they can simply be mapped to the respective
topology (e.g., PointRight, Johanson 2002a). Touch/
pen input, however, is based on the immediate

b
c

dFigure 1: Drag-and-pop

a

correspondence between input space and display
space and thus requires users to adapt their input
behavior to the physicality of the display system.
Here are three examples where this can become
problematic.

Literature: Baudisch et al. Drag-and-Pop and Drag-and-Pick: Techniques for Accessing Remote Screen
Content on Touch and Pen-operated Systems. In Proc Interact'03, pp. 57--64.

than a given threshold (default 15 pixels). During
preliminary testing on a Smartboard, we got good
results with first-time users when using sector sizes
of ±30 to ±45 degrees. The sector size could be re-
duced to sector sizes of ±20 degrees as users gained
more experience.

Forth, if the number of qualifying icons is above
some hard limit, drag-and-pop eliminates tip icon
candidates until the hard limit is met. Icons are re-
moved in an order starting at the outside of the target
sector moving inwards. This rule assures the scal-
ability of drag-and-pop to densely populated dis-
plays, but requires drag-and-pop users working with
densely populated screens to aim more precisely.
We typically use hard limits between 5 and 10.

4.2 Computing the tip icon layout
Once tip icon candidates have been selected, drag-
and-pop determines where on the screen to place the
tip icons. In order to avoid interference between tip
icons, the location of all tip icons is computed in a
centralized fashion.

Our drag-and-pop prototype uses the following
algorithm that is illustrated by Figure 5: (1) Snap
icons to a grid and store them in a two-dimensional
array, with each array element representing one cell
of the grid. If two or more icons fall into the same
cell, refine the grid. (2) Shrink the icon layout by
eliminating all array columns and rows that contain
no icons. (3) Translate icon positions back to 2D
space by mapping the array onto a regular grid. By
default, the output grid is chosen to be slightly
tighter than the input grid, which gives extra com-
pression.

a b

Figure 5: Drag-and-pop computes tip icon layouts

(a) by snapping icons to a grid and then (b) removing
empty rows and columns.

We chose this algorithm, because it preserves
alignment, proximity, and spatial arrangement be-
tween icons, which allows users to use their spatial
memory when identifying the desired target within
the tip icon cluster. This is especially useful when
tip icons look alike (e.g., a folder in a cluster of
folders). In order to help users distinguish local icon

clusters from surrounding icons more easily, the
algorithm may be adjusted to shrink empty rows and
columns during layout computation instead of re-
moving them entirely.

After the tip icon layout has been computed,
drag-and-pop positions it on the screen such that the
center of the layout’s bounding box is located at the
direct extension of the user’s current mouse motion.
The distance of the tip icon cluster to the user’s cur-
rent cursor position is configurable. For inexperi-
enced users, we got best results with distances of
around 100 pixels; shorter distances made these us-
ers likely to overshoot the cluster. For more experi-
enced users, we were able to reduce the distance to
values around 30 pixels, which allowed these users
to operate drag-and-pop with less effort, in a more
“menu-like” fashion. In order to reduce visual inter-
ference between tip icons and icons on the desktop,
drag-and-pop diminishes desktop icons while tip
icons are visible.
4.3 The rubber band
When the tip icon cluster is displayed, users need to
re-identify their targets within the tip icon cluster in
order to be able to successfully acquire them.

Our first implementation of drag-and-pop created
tip icons on top of their bases and used slow-in-
slow-out animation (Shneiderman 1998) to move tip
icons to their final location. While this approach
allowed users to locate the final position of the de-
sired tip icon by visually tracking it on its way from
basis to final position, it also required users to either
wait for the animation to complete or to acquire a
moving target. We therefore chose to abandon the
animation and immediately display tip icons at their
final destinations.

In lieu of the animation, we provided tip icons
with rubber bands. The design prototype of the rub-
ber band is shown in Figure 6. For performance rea-
sons, our prototype, which is shown in all other
screenshots, uses rubber bands of a lower level of
graphical detail, i.e., a tape and three lines in the
color scheme of the corresponding icon.

The purpose of the rubber band is to offer the
functionality of the animation, but without the prob-
lems alluded to above. The rubber band, decorated
with the respective icon’s texture, can be thought of
as having been created by taking a photograph of the
tip icon animation with a very long shutter speed
(so-called motion blur, e.g., Dachille and Kaufman,
2000). Like the animation, the rubber band allows
users to trace the path from base to tip icon. How-
ever, users can do this at their own pace and the cus-
tomized texturing of the rubber band allows users to
start tracing it anywhere, not only at the base.

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Object Pointing - ‘decrease D’
• Guiard et al. noted that in most real graphical

user interface are a significant number of
pixels serving no useful function other than
providing a pleasing interface layout.

• 50 selectable object, 400 px size, 1600x1200
px display
– how many pixels are “used”?
– from a total of how many pixels?

• skip the “empty space”

20

Literature: Guiard et al., “Object pointing: a complement to bitmap pointing in GUIs”. 2004

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Object Pointing - ‘decrease D’
• Idea: if cursor leaves a selectable object and

its velocity exceeds a threshold, it jumps to
the next available target.
– advantages: 74% faster than regular pointing for a

reciprocal pointing task.
– disadvantages:

• selection or manipulation of an individual pixel (text
character in word processor)

• tools are often tiled together
• jumping motion might be annoying (controlled

experiment vs. field study)

21

Literature: Guiard et al., “Object pointing: a complement to bitmap pointing in GUIs”. 2004

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

TorusDesktop - ‘decrease D’

22

http://insitu.lri.fr/TorusDesktop/TorusDesktop

Tuesday, October 14, 14

http://insitu.lri.fr/TorusDesktop/TorusDesktop
http://insitu.lri.fr/TorusDesktop/TorusDesktop

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

TorusDesktop - ‘decrease D’
• does not require target awareness

– easier to integrate into existing systems

• cursor wrapping: teleports mouse cursor to the
opposite side of the screen when it passes one of the
screen edges.

• immediate jump problem:
– trigger wrapping inadvertently
– difficult to find new cursor location
– harder to interact on targets at the border

• Pointing improvement cannot be determined strictly by
Fitts’ law. It depends on the users decision
– 5-10% of screen size as dead zone
– pointing faster for targets whose distance is greater than 80% the

width of a 2560-pixel wide display.

23

Literature: Huot et al., “TorusDesktop: pointing via the backdoor is sometimes shorter”. CHI 2011

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

‘Increase W’
• fish-eye-dock menu in MacOS X

– icons expand when cursor is over them.
• advantage: effective use of screen real estate
• disadvantage: occluding neighboring targets

24

http://maxcdn.webappers.com/img/2008/03/fish-eye-dock-menu.png

Tuesday, October 14, 14

http://maxcdn.webappers.com/img/2008/03/fish-eye-dock-menu.png
http://maxcdn.webappers.com/img/2008/03/fish-eye-dock-menu.png

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Area Cursor - ‘Increase W’

25

Literature: Kabbash et al., “The Prince Technique: Fitts’ Law and Selection Using Area Cursor”. CHI’95

4. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.

While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates
that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).

Given the demonstrated benefits of area cursors, it would be interesting to explore
further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point

ARTICLE IN PRESS

Point cursor: Area cursor:

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair
is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area
cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target
under the cross-hair is selected as in Worden et al. (1997).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 865

4. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.

While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates
that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).

Given the demonstrated benefits of area cursors, it would be interesting to explore
further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point

ARTICLE IN PRESS

Point cursor: Area cursor:

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair
is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area
cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target
under the cross-hair is selected as in Worden et al. (1997).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 865

4. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.

While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates
that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).

Given the demonstrated benefits of area cursors, it would be interesting to explore
further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point

ARTICLE IN PRESS

Point cursor: Area cursor:

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair
is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area
cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target
under the cross-hair is selected as in Worden et al. (1997).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 865

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Area Cursor - ‘Increase W’

26

“Why do people miss the Trash icon so often? Perhaps it’s because we’re
attending to the file we’re moving, rather than the location of the pointer”

Literature: Kabbash et al., “The Prince Technique: Fitts’ Law and Selection Using Area Cursor”. CHI’95

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Area Cursor - ‘Increase W’
• area around the cursor, the so called ‘hot

spot’, is larger than the single pixel of
standard cursors.
– advantage: easier to point to very small targets. ID of

pointing task with area cursor is smaller than with
point cursor.

– disadvantage: target ambiguity with dense target
groups.

27

Literature: Kabbash et al., “The Prince Technique: Fitts’ Law and Selection Using Area Cursor”. CHI’95

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Area Cursor - ‘Increase W’

28

4. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.

While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates
that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).

Given the demonstrated benefits of area cursors, it would be interesting to explore
further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point

ARTICLE IN PRESS

Point cursor: Area cursor:

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair
is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area
cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target
under the cross-hair is selected as in Worden et al. (1997).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 8654. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.

While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates
that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).

Given the demonstrated benefits of area cursors, it would be interesting to explore
further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point

ARTICLE IN PRESS

Point cursor: Area cursor:

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair
is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area
cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target
under the cross-hair is selected as in Worden et al. (1997).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 865

4. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.

While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates
that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).

Given the demonstrated benefits of area cursors, it would be interesting to explore
further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point

ARTICLE IN PRESS

Point cursor: Area cursor:

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair
is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area
cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target
under the cross-hair is selected as in Worden et al. (1997).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 865

• problem: ambiguity with dense target groups
• solution:cursor has two hot spots, (1) whole

cursor area and (2) cursor point
– if target far away, cursor behaves like area cursor,

if more targets within area, it behaves like standard
pointing.

4. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.

While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates
that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).

Given the demonstrated benefits of area cursors, it would be interesting to explore
further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point

ARTICLE IN PRESS

Point cursor: Area cursor:

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair
is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area
cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target
under the cross-hair is selected as in Worden et al. (1997).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 865

http://dl.acm.org/citation.cfm?id=1056159

Literature: Kabbash et al., “The Prince Technique: Fitts’ Law and Selection Using Area Cursor”. CHI’95

Tuesday, October 14, 14

http://dl.acm.org/citation.cfm?id=1056159
http://dl.acm.org/citation.cfm?id=1056159

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Semantic Pointing - ‘decreasing A’
AND ‘increasing W’
• dynamically vary the C-D gain, so called “mouse acceleration”

techniques.
– if user moves device fast, intents to cover large distance.

• adjust C-D gain based on knowledge about the targets (sticky targets).
– idea: increase if cursor outside of targets, decrease when inside of

target
• adventage:

– significantly decreases target acquisition time.
– in particular small targets and older people had more benefit with this

technique.
• disadventage:

– ‘getting’ stuck when crossing other targets.
– with small targets, movement to fast to trigger event for underlying

widget.

29

Rosenbaum, 1991) that the standard deviation (S) of the endpoint of any movement
increases with the distance (D) covered by that movement, and decreases with its
duration (T):

S ¼ k
D

T

! "

;

where k is a constant. Thus, a movement with a long distance and short duration
could be executed, but would result in a high standard deviation and therefore a low
probability of actually hitting the target. Conversely, a series of long duration and
short distance movements could be executed, hitting the target with certainty, but the
total movement time would be extremely long. The solution, therefore, is to find the
optimal balance of D’s and T’s that minimizes the total movement time
(Rosenbaum, 1991). In essence, this means that most aimed movements consist of
an initial large and fast movement that gets the subject reasonably close to the target,
followed by one or more shorter, and slower, corrective movements that are under
closed-loop feedback control.

Based on this explanation, we can hypothesize that virtual enhancements for
improving pointing performance that attempt to decrease D should concentrate on
the initial large and fast movement phase that covers the bulk of the distance
towards the target. Conversely, techniques that attempt to decrease W would likely
be able to reap almost all their benefit if they focused on the final corrective
movement phase, since although W may play a part in the planning and execution of
the initial large and fast movement, its effect is most apparent when the user is
homing in on the target under closed-loop feedback control.

In Fitts’ original work and the initial follow-up experiments in the motor control
literature, there was typically a one-to-one correspondence between the human’s

ARTICLE IN PRESS

Ve
lo

ci
ty

 (c)

(b)

(a)

Target Width

Distance

Fig. 1. Possible sequence(s) of submovements toward a target as described by the optimized initial impulse
model (Meyer et al., 1988). (a) Is the case where a single movement reaches the target. (b) and (c) are the
more likely cases where the initial movement under or over shoots the target, requiring subsequent
corrective movements.

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874860

Literature: Worden et al., “Making computers easier for older adults to use:
area cursors and sticky icons”. CHI’97
Keyson et al. “Dynamic cursor gain and tactual feedback in the capture of
cursor movements.”

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Semantic Pointing - ‘decreasing A’
AND ‘increasing W’

30

Semantic pointing resolves such conflicts by allowing two
sizes to be set independently: the size in visual space, con-
strained by the information to be displayed, and the size in
motor space, constrained by the importance of the object for
manipulation. These sizes are manipulated through a new
attribute, semantic importance (si), which amounts to the
scale of motor-space size relative to visual-space size. When
0 < si < 1, the object is smaller in motor space than it ap-
pears in visual space, which is appropriate for objects whose
manipulation is disabled, unlikely or dangerous; when si> 1,
the object is bigger in motor-space than in visual space, mak-
ing it easier to manipulate; si = 1 corresponds to traditional
GUIs.

Traditional GUI Widgets Redesign
In order to redesign traditional GUI widgets such as scroll-
bars, menus and buttons, we considered two aspects:

• How much information does it provide to the user?
• How important is it for the manipulation?
We show that semantic pointing can either reduce the screen
footprint of widgets without affecting the interaction, or fa-
cilitate the interaction without affecting the screen layout.

Scroll-bars
The information provided by a traditional scroll-bar is rather
poor: it specifies a position in the document and sometimes
the proportion of the document that is currently displayed
in the view. A typical scroll-bar uses a 15 pixel wide strip
along the whole window (Figure 12a). However the same
information can be conveyed by a much thinner strip, e.g.
3 pixel (Figure 12b). To make it possible for the user to
manipulate the thumb and the arrow buttons, these are given
a semantic importance of 5 so as to be as big in motor space
as they were in the original design (Figure 12c5).

(a)

(b)

(c)

Figure 12: Scroll-bar redesign
(a) original version. (b) new version: visual space

(what it looks like) and (c) motor space
(what it feels like when interacting with it).

Menus
The main real-estate constraint for menus is that labels must
be readable, so the visual size of menu items cannot be re-
duced significantly (Figure 13a). However, the importance
of menu items with respect to manipulation is variable. Dis-
abled items and separators cannot be selected, so they can
be given a small semantic importance, reducing the distance
in motor space from the top of the menu to the items below
them (Figure 13b).
5The motor space distortion caused by semantic pointing is not ac-
curately representable in euclidian geometry. Thus the representa-
tions in motor space cannot be exact and are given for illustration
purposes.

Undo ^Z
Redo

^XCut
^CCopy
^VPaste

Undo ^Z
Redo

^XCut
^CCopy
^VPaste

(a) (b)
Figure 13: Menu redesign

(a) unchanged visual version (b) motor space version

Buttons & Hyperlinks
As for menu items, the buttons and messages of a dialog box
must be readable (Figure 14a). However, for the manipula-
tion, only the buttons are relevant, so the rest of the box can
be shrunken. Furthermore, the importance of the various but-
tons need not be equal. The default button, assumed to be the
most likely choice, can be given a higher importance. More
generally, the importance can be proportional to the proba-
bility of being selected (Figure 14b). ‘Dangerous’ buttons
can also be given a smaller importance to make them harder
to select.

Don't Save Save

Alert Dialog

There are unsaved changes

What would you like to do?

Cancel

Don't Save
Save

Alert Dialog

There are unsaved changes

What would you like to do?

Cancel

(a)

(b)

Figure 14: Button redesign
(a) unchanged visual version (b) motor space version

Similarly, the visual layout of rich documents such as web
pages is often designed with aesthetics and visual communi-
cation in mind. But as far as interaction with such hyperdoc-
uments is concerned, only the hyperlinks matter. Therefore,
magnifying the hyperlinks in motor space should help users
acquire them and improve navigation.

Semantic Importance as a Dynamic Degree of Interest
So far we have mostly considered semantic importance as a
static attribute of interface objects. An exception is menu
items, the importance of which vary according to their state:
a disabled item has a low importance, which becomes high
when the item is enabled. The same applies to disabled but-
tons in a dialog box. Another example where semantic im-
portance can reflect the state of an object is the application
icons in current desktops. When an application requires user

Semantic pointing resolves such conflicts by allowing two
sizes to be set independently: the size in visual space, con-
strained by the information to be displayed, and the size in
motor space, constrained by the importance of the object for
manipulation. These sizes are manipulated through a new
attribute, semantic importance (si), which amounts to the
scale of motor-space size relative to visual-space size. When
0 < si < 1, the object is smaller in motor space than it ap-
pears in visual space, which is appropriate for objects whose
manipulation is disabled, unlikely or dangerous; when si> 1,
the object is bigger in motor-space than in visual space, mak-
ing it easier to manipulate; si = 1 corresponds to traditional
GUIs.

Traditional GUI Widgets Redesign
In order to redesign traditional GUI widgets such as scroll-
bars, menus and buttons, we considered two aspects:

• How much information does it provide to the user?
• How important is it for the manipulation?
We show that semantic pointing can either reduce the screen
footprint of widgets without affecting the interaction, or fa-
cilitate the interaction without affecting the screen layout.

Scroll-bars
The information provided by a traditional scroll-bar is rather
poor: it specifies a position in the document and sometimes
the proportion of the document that is currently displayed
in the view. A typical scroll-bar uses a 15 pixel wide strip
along the whole window (Figure 12a). However the same
information can be conveyed by a much thinner strip, e.g.
3 pixel (Figure 12b). To make it possible for the user to
manipulate the thumb and the arrow buttons, these are given
a semantic importance of 5 so as to be as big in motor space
as they were in the original design (Figure 12c5).

(a)

(b)

(c)

Figure 12: Scroll-bar redesign
(a) original version. (b) new version: visual space

(what it looks like) and (c) motor space
(what it feels like when interacting with it).

Menus
The main real-estate constraint for menus is that labels must
be readable, so the visual size of menu items cannot be re-
duced significantly (Figure 13a). However, the importance
of menu items with respect to manipulation is variable. Dis-
abled items and separators cannot be selected, so they can
be given a small semantic importance, reducing the distance
in motor space from the top of the menu to the items below
them (Figure 13b).
5The motor space distortion caused by semantic pointing is not ac-
curately representable in euclidian geometry. Thus the representa-
tions in motor space cannot be exact and are given for illustration
purposes.

Undo ^Z
Redo

^XCut
^CCopy
^VPaste

Undo ^Z
Redo

^XCut
^CCopy
^VPaste

(a) (b)
Figure 13: Menu redesign

(a) unchanged visual version (b) motor space version

Buttons & Hyperlinks
As for menu items, the buttons and messages of a dialog box
must be readable (Figure 14a). However, for the manipula-
tion, only the buttons are relevant, so the rest of the box can
be shrunken. Furthermore, the importance of the various but-
tons need not be equal. The default button, assumed to be the
most likely choice, can be given a higher importance. More
generally, the importance can be proportional to the proba-
bility of being selected (Figure 14b). ‘Dangerous’ buttons
can also be given a smaller importance to make them harder
to select.

Don't Save Save

Alert Dialog

There are unsaved changes

What would you like to do?

Cancel

Don't Save
Save

Alert Dialog

There are unsaved changes

What would you like to do?

Cancel

(a)

(b)

Figure 14: Button redesign
(a) unchanged visual version (b) motor space version

Similarly, the visual layout of rich documents such as web
pages is often designed with aesthetics and visual communi-
cation in mind. But as far as interaction with such hyperdoc-
uments is concerned, only the hyperlinks matter. Therefore,
magnifying the hyperlinks in motor space should help users
acquire them and improve navigation.

Semantic Importance as a Dynamic Degree of Interest
So far we have mostly considered semantic importance as a
static attribute of interface objects. An exception is menu
items, the importance of which vary according to their state:
a disabled item has a low importance, which becomes high
when the item is enabled. The same applies to disabled but-
tons in a dialog box. Another example where semantic im-
portance can reflect the state of an object is the application
icons in current desktops. When an application requires user

Semantic pointing resolves such conflicts by allowing two
sizes to be set independently: the size in visual space, con-
strained by the information to be displayed, and the size in
motor space, constrained by the importance of the object for
manipulation. These sizes are manipulated through a new
attribute, semantic importance (si), which amounts to the
scale of motor-space size relative to visual-space size. When
0 < si < 1, the object is smaller in motor space than it ap-
pears in visual space, which is appropriate for objects whose
manipulation is disabled, unlikely or dangerous; when si> 1,
the object is bigger in motor-space than in visual space, mak-
ing it easier to manipulate; si = 1 corresponds to traditional
GUIs.

Traditional GUI Widgets Redesign
In order to redesign traditional GUI widgets such as scroll-
bars, menus and buttons, we considered two aspects:

• How much information does it provide to the user?
• How important is it for the manipulation?
We show that semantic pointing can either reduce the screen
footprint of widgets without affecting the interaction, or fa-
cilitate the interaction without affecting the screen layout.

Scroll-bars
The information provided by a traditional scroll-bar is rather
poor: it specifies a position in the document and sometimes
the proportion of the document that is currently displayed
in the view. A typical scroll-bar uses a 15 pixel wide strip
along the whole window (Figure 12a). However the same
information can be conveyed by a much thinner strip, e.g.
3 pixel (Figure 12b). To make it possible for the user to
manipulate the thumb and the arrow buttons, these are given
a semantic importance of 5 so as to be as big in motor space
as they were in the original design (Figure 12c5).

(a)

(b)

(c)

Figure 12: Scroll-bar redesign
(a) original version. (b) new version: visual space

(what it looks like) and (c) motor space
(what it feels like when interacting with it).

Menus
The main real-estate constraint for menus is that labels must
be readable, so the visual size of menu items cannot be re-
duced significantly (Figure 13a). However, the importance
of menu items with respect to manipulation is variable. Dis-
abled items and separators cannot be selected, so they can
be given a small semantic importance, reducing the distance
in motor space from the top of the menu to the items below
them (Figure 13b).
5The motor space distortion caused by semantic pointing is not ac-
curately representable in euclidian geometry. Thus the representa-
tions in motor space cannot be exact and are given for illustration
purposes.

Undo ^Z
Redo

^XCut
^CCopy
^VPaste

Undo ^Z
Redo

^XCut
^CCopy
^VPaste

(a) (b)
Figure 13: Menu redesign

(a) unchanged visual version (b) motor space version

Buttons & Hyperlinks
As for menu items, the buttons and messages of a dialog box
must be readable (Figure 14a). However, for the manipula-
tion, only the buttons are relevant, so the rest of the box can
be shrunken. Furthermore, the importance of the various but-
tons need not be equal. The default button, assumed to be the
most likely choice, can be given a higher importance. More
generally, the importance can be proportional to the proba-
bility of being selected (Figure 14b). ‘Dangerous’ buttons
can also be given a smaller importance to make them harder
to select.

Don't Save Save

Alert Dialog

There are unsaved changes

What would you like to do?

Cancel

Don't Save
Save

Alert Dialog

There are unsaved changes

What would you like to do?

Cancel

(a)

(b)

Figure 14: Button redesign
(a) unchanged visual version (b) motor space version

Similarly, the visual layout of rich documents such as web
pages is often designed with aesthetics and visual communi-
cation in mind. But as far as interaction with such hyperdoc-
uments is concerned, only the hyperlinks matter. Therefore,
magnifying the hyperlinks in motor space should help users
acquire them and improve navigation.

Semantic Importance as a Dynamic Degree of Interest
So far we have mostly considered semantic importance as a
static attribute of interface objects. An exception is menu
items, the importance of which vary according to their state:
a disabled item has a low importance, which becomes high
when the item is enabled. The same applies to disabled but-
tons in a dialog box. Another example where semantic im-
portance can reflect the state of an object is the application
icons in current desktops. When an application requires user

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Pointing Techniques
• drag-and-pop

– temporarily bring items to cursor

• object pointing
– skip empty space between targets

• area cursor
– pointing hot spot is larger than a pixel

• semantic pointing
– dynamically vary C-D-gain

31
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Importance for Menu Techniques

32

visual and motor spaces in that physical targets were selected by direct indi-
cation using the human hand. Pointing in the virtual realm of computers, however,
typically involve an intermediary device (e.g. mouse, joystick, touchpad)
that converts human motor actions into movements of a virtual cursor. There
are thus three major factors that come into play and can affect performance
(Graham and MacKenzie, 1996) in virtual pointing: motor or control space, visual
or display space, and the control–display (C–D) transfer function that links the two
spaces. Changes in D and/or W could occur in either the motor or visual spaces, or
both. In the rest of this paper, we use the terms D and W to denote distance and
width in both spaces, Dv, Wv and Dm, Wm to denote distance and width in the visual
(v) and motor (m) spaces, respectively, when a distinction between the two is
necessary.

3. Facilitating pointing by primarily reducing D

3.1. Designing widgets that minimize D

A somewhat trivial optimization is to simply move the targets close to the cursor
where feasible. One instantiation of this idea are the contextual linear pop-up menus
seen in many applications where the menus items are displayed right by the cursor
when the menu is activated. Whereas the linear layout of these menus put some items
further away from the cursor than others, pie-menus (Callahan et al., 1988)
additionally improve the situation by arranging all items in a circle around the cursor
thus making all items equidistant with a very small and constant D (Fig. 2).
Although pop-up linear and pie menus are demonstrably effective (Callahan et al.,
1988), they are only one of the many types of targets that are typically selectable in

ARTICLE IN PRESS

One

Two

Three

Four

Five

Six

Seven

Eight

One

Two

Three

FourFive

Six

Seven

Eight

Fig. 2. Linear vs. pie menus. Distance of menu items from red starting point varies in linear menus (left),
but is constant in pie menus (right).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 861visual and motor spaces in that physical targets were selected by direct indi-
cation using the human hand. Pointing in the virtual realm of computers, however,
typically involve an intermediary device (e.g. mouse, joystick, touchpad)
that converts human motor actions into movements of a virtual cursor. There
are thus three major factors that come into play and can affect performance
(Graham and MacKenzie, 1996) in virtual pointing: motor or control space, visual
or display space, and the control–display (C–D) transfer function that links the two
spaces. Changes in D and/or W could occur in either the motor or visual spaces, or
both. In the rest of this paper, we use the terms D and W to denote distance and
width in both spaces, Dv, Wv and Dm, Wm to denote distance and width in the visual
(v) and motor (m) spaces, respectively, when a distinction between the two is
necessary.

3. Facilitating pointing by primarily reducing D

3.1. Designing widgets that minimize D

A somewhat trivial optimization is to simply move the targets close to the cursor
where feasible. One instantiation of this idea are the contextual linear pop-up menus
seen in many applications where the menus items are displayed right by the cursor
when the menu is activated. Whereas the linear layout of these menus put some items
further away from the cursor than others, pie-menus (Callahan et al., 1988)
additionally improve the situation by arranging all items in a circle around the cursor
thus making all items equidistant with a very small and constant D (Fig. 2).
Although pop-up linear and pie menus are demonstrably effective (Callahan et al.,
1988), they are only one of the many types of targets that are typically selectable in

ARTICLE IN PRESS

One

Two

Three

Four

Five

Six

Seven

Eight

One

Two

Three

FourFive

Six

Seven

Eight

Fig. 2. Linear vs. pie menus. Distance of menu items from red starting point varies in linear menus (left),
but is constant in pie menus (right).

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874 861

http://dl.acm.org/citation.cfm?id=1056159

Tuesday, October 14, 14

http://dl.acm.org/citation.cfm?id=1056159
http://dl.acm.org/citation.cfm?id=1056159

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Pie Menus
• invokes a circular menu with a click. cursor is

centered in small inactive region in the menu
center. Move cursor to item and select it.
– advantage:

• placement in opposite directions for complementary
items.

• spatially oriented items can be put in their appropriate
directions.

• taking advantage of muscle memory
– disadvantage:

• requires more screen real estate than linear menus.
• limited to 8 items

• Implemented in Sun Microsystem’s NeWS
window system and MIT’s X windows windows
management system.

33

Literature: Don Hopkins. “Pies:Implementation, Evaluation and Application of Circular Menus, Tech. Report, University of Maryland.”

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Don Hopkins’ Pie Menu examples

34

http://www.donhopkins.com/drupal/node/94

Literature: Don Hopkins. “Pies:Implementation, Evaluation and Application of Circular Menus, Tech. Report, University of Maryland.”

Tuesday, October 14, 14

http://www.donhopkins.com/drupal/node/94
http://www.donhopkins.com/drupal/node/94

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Marking Menus

35

http://www.youtube.com/watch?v=dtH9GdFSQaw

Tuesday, October 14, 14

http://www.youtube.com/watch?v=dtH9GdFSQaw
http://www.youtube.com/watch?v=dtH9GdFSQaw

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Marking Menus
• combination of pop-up radial menus and

gesture recognition
• advantages:

– scale independent of movements
– less visually taxing

• disadvantage:
– limited number of items (8 - 12 items)

36
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Marking Menu Variations
• compound-stroke menu (hierarchical MM)

– spatial composition of marks.
– gesture performed continuously without releasing the

mouse button.
– problem: requires large physical input space, limited

depth even for experts

• multi-stroke menu
– temporal composition of marks
– each elementary stroke completed with mouse release
– problem: delay needed to determine if stroke belongs

to previous sequence or starts new one.

37

Literature:
•Kurtenbach et al. “The limits of expert performance using hierarchical marking
menus.” CHI’93
•Zhao et al. “Simple vs. compound mark hierarchical marking menus.” UIST’04

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

38

http://www.youtube.com/watch?v=XtdOQWiVLXM

Tuesday, October 14, 14

http://www.youtube.com/watch?v=XtdOQWiVLXM
http://www.youtube.com/watch?v=XtdOQWiVLXM

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Marking Menu Variations
• zone and polygon menu

– consider relative position and orientation of elementary
strokes relative to origin the first mouse click.
• position within a zone
• position on a polygon

– extending the breadth to 32/16 items

39

Literature:
Zhao et al. “Zone and polygon menus: using relative position to increase the breadth
of multi-stroke marking menus.” CHI’06

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Menu techniques
• Pie Menus

– ID equal for all items

• Marking Menus
– limitations: max 12 items (acceptable error rate)

• Hierarchical marking menus: “zigzag” marks
– limited to breadth-8, depth of 2 levels

• Multi-Stroke marking menus
– temporal composition instead of spatial composition

• Zone and Polygon MM
– relative position + angle

40
Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

Keyboard Short-cuts
• communicating an alternative way to access

the command.
• what might be the problem with this type of

communication regarding the gulf of
competence?

41

147Lessons from the Past: Control vs. Alt Hotkeys

 intuitive: CTRL ! P " print, CTRL ! S " save, and so on. Figure 20.1 shows some
hotkeys from the Notepad application.

 Relying on intuitiveness works well for a small number of keys , but it breaks
down quickly—if CTRL ! C means “copy,” then what is the hotkey for “center”?
This is roughly parallel to the naïve designer’s notion of gesture mappings: we
map the physical action to some property in its function (if we want “help,” draw
a question mark!). However, we quickly learn that this approach does not scale:
Frequently used functions may overlap (consider “copy” and “cut”). This gives rise
to shortcuts such as CTRL ! H for “fi nd next” (CTRL ! R is “center”, in case you
were racking your brain). We also note the use of function keys as CTRL short-
cuts—even though they don’t actually use the CTRL key, they are still notionally
CTRL shortcuts, as we shall see.

 Because intuitive mappings can take us only so far, the menu provides the sec-
ond mechanism for hotkey learning : the functions in the menu system are labeled
with their hotkey invocation. This approach is a reasonable one. We provide users
with an in-place help system labeling functions with a more effi cient means of exe-
cuting them. However, a sophisticated designer must ask themselves, “What does
the transition from novice to expert look like?”

 In the case of Control shortcuts, the novice-to-expert transition requires a leap
on the part of the user: we ask her to fi rst learn the application using the mouse,
pointing at menus and selecting functions spatially. To become a power user, she
must then make the conscious decision to stop using the menu system and begin
to use hotkeys. When the user makes this decision, it will at fi rst come at the cost
of a loss of effi ciency, as she moves from being an expert in one system, the mouse-
based menus, to being a novice in the hotkey system. We term this cost the gulf of
competence . The graph in Figure 20.3 demonstrates this idea—at the time that the
user tries to switch from mouse to keyboard, she slows down.

 FIGURE 20.1

 The Control hotkeys are shown in the File menu in Notepad. Note that the key choices are
selected to be intuitive (by matching the fi rst letter of the function name).

CH020.indd 147CH020.indd 147 2/1/2011 5:50:13 PM2/1/2011 5:50:13 PM

Widgor and Wixon, Chapter 20: self-
revealing gestures, in Brave NUI World

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

ExposeHK

• idea: display hotkeys at the position of a
button when holding down command key

42

Literature:
Malacria et al. “Promoting Hotkey Use through Rehearsal with ExposeHK” CHI’13

Promoting Hotkey Use through Rehearsal with ExposeHK

Sylvain Malacria1 Gilles Bailly2 Joel Harrison1 Andy Cockburn1 Carl Gutwin3

1University of Canterbury, Christchurch, New-Zealand
2Quality and Usability Lab, Telekom Innovation Laboratories, TU Berlin, Berlin, Germany

3Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
sylvain@malacria.fr, andy@cosc.canterbury.ac.nz, gillesbailly1@gmail.com, gutwin@cs.usask.ca

δӂ2δίH

δW δM

δΝ δD δT

Figure 1. The user wants to open a new tab but is not sure of the hotkey. He visually locates the button in the toolbar (boxed on left), then presses the
Command key () to activate ExposeHK, which overlays toolbar items with available hotkeys (right). He completes the command by pressing T.

ABSTRACT
Keyboard shortcuts allow fast interaction, but they are known
to be infrequently used, with most users relying heavily on
traditional pointer-based selection for most commands. We
describe the goals, design, and evaluation of ExposeHK, a
new interface mechanism that aims to increase hotkey use. Ex-
poseHK’s four key design goals are: 1) enable users to browse
hotkeys; 2) allow non-expert users to issue hotkey commands
as a physical rehearsal of expert performance; 3) exploit spa-
tial memory to assist non-expert users in identifying hotkeys;
and 4) maximise expert performance by using consistent short-
cuts in a flat command hierarchy. ExposeHK supports these
objectives by displaying hotkeys overlaid on their associated
commands when a modifier key is pressed. We evaluated Ex-
poseHK in three empirical studies using toolbars, menus, and
a tabbed ‘ribbon’ toolbar. Results show that participants used
more hotkeys, and used them more often, with ExposeHK than
with other techniques; they were faster with ExposeHK than
with either pointing or other hotkey methods; and they strongly
preferred ExposeHK. Our research shows that ExposeHK can
substantially improve the user’s transition from a ‘beginner
mode’ of interaction to a higher level of expertise.

Author Keywords
Hotkeys; Keyboard Shortcuts; Rehearsal; Menus; Command
Selection; Novice Mode; Expert Mode.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces. – Graphical user interfaces (GUI).

INTRODUCTION
Hotkeys, also called keyboard shortcuts or accelerators, offer
a shortcut alternative to pointer-based selection of commands
from toolbars and menus. Their efficiency stems from three
mechanical advantages over pointing: first, in many tasks such
as word-processing, the hands rest on the keyboard, so hotkeys
eliminate the need to move the hand to a pointing device and
back; second, they eliminate the need for a pointing round-trip
from the workspace to the control widgets and back; and third,
they allow a wide range of commands to be selected with a
single key combination, thus removing the need to traverse
a menu or tab hierarchy. A variety of theoretical models
(e.g., KLM [7]) and empirical studies (e.g, Odell et al. [24])
demonstrate that hotkeys improve user performance.

Despite this potential, hotkeys are under-used: several studies
have demonstrated that few users employ any form of shortcut
interface [1, 5, 9, 19, 20]. Carroll’s ‘paradox of the active user’
[9] suggests that users are simply too engaged in their tasks
to consider learning alternative strategies or methods, even
if these methods may eventually improve performance. In
addition, keyboard shortcuts require that users learn hotkeys
beforehand, potentially resulting in errors due to incorrect
hotkey/command memory associations.

The poor adoption of hotkeys and other high-performance
interface techniques creates a substantial usability problem.
While the performance difference between hotkeys and pointer-
based commands may be small for some actions, it can be large
when command activation involves hierarchical navigation
(such as a menu-cascade) or when selecting widgets located
far from the workspace. These small performance differences
can compound into substantial effects when multiplied across

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

ExposeHK

• Enable hotkey browsing:
– use mouse pointing to get short-cut feedback to

commit it to memory creates a performance dip
– discourages hotkey use, traps user in pointer-based

‘beginner mode’
– browse without pointing action.

43

Literature:
Malacria et al. “Promoting Hotkey Use through Rehearsal with ExposeHK” CHI’13

Promoting Hotkey Use through Rehearsal with ExposeHK

Sylvain Malacria1 Gilles Bailly2 Joel Harrison1 Andy Cockburn1 Carl Gutwin3

1University of Canterbury, Christchurch, New-Zealand
2Quality and Usability Lab, Telekom Innovation Laboratories, TU Berlin, Berlin, Germany

3Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
sylvain@malacria.fr, andy@cosc.canterbury.ac.nz, gillesbailly1@gmail.com, gutwin@cs.usask.ca

δӂ2δίH

δW δM

δΝ δD δT

Figure 1. The user wants to open a new tab but is not sure of the hotkey. He visually locates the button in the toolbar (boxed on left), then presses the
Command key () to activate ExposeHK, which overlays toolbar items with available hotkeys (right). He completes the command by pressing T.

ABSTRACT
Keyboard shortcuts allow fast interaction, but they are known
to be infrequently used, with most users relying heavily on
traditional pointer-based selection for most commands. We
describe the goals, design, and evaluation of ExposeHK, a
new interface mechanism that aims to increase hotkey use. Ex-
poseHK’s four key design goals are: 1) enable users to browse
hotkeys; 2) allow non-expert users to issue hotkey commands
as a physical rehearsal of expert performance; 3) exploit spa-
tial memory to assist non-expert users in identifying hotkeys;
and 4) maximise expert performance by using consistent short-
cuts in a flat command hierarchy. ExposeHK supports these
objectives by displaying hotkeys overlaid on their associated
commands when a modifier key is pressed. We evaluated Ex-
poseHK in three empirical studies using toolbars, menus, and
a tabbed ‘ribbon’ toolbar. Results show that participants used
more hotkeys, and used them more often, with ExposeHK than
with other techniques; they were faster with ExposeHK than
with either pointing or other hotkey methods; and they strongly
preferred ExposeHK. Our research shows that ExposeHK can
substantially improve the user’s transition from a ‘beginner
mode’ of interaction to a higher level of expertise.

Author Keywords
Hotkeys; Keyboard Shortcuts; Rehearsal; Menus; Command
Selection; Novice Mode; Expert Mode.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces. – Graphical user interfaces (GUI).

INTRODUCTION
Hotkeys, also called keyboard shortcuts or accelerators, offer
a shortcut alternative to pointer-based selection of commands
from toolbars and menus. Their efficiency stems from three
mechanical advantages over pointing: first, in many tasks such
as word-processing, the hands rest on the keyboard, so hotkeys
eliminate the need to move the hand to a pointing device and
back; second, they eliminate the need for a pointing round-trip
from the workspace to the control widgets and back; and third,
they allow a wide range of commands to be selected with a
single key combination, thus removing the need to traverse
a menu or tab hierarchy. A variety of theoretical models
(e.g., KLM [7]) and empirical studies (e.g, Odell et al. [24])
demonstrate that hotkeys improve user performance.

Despite this potential, hotkeys are under-used: several studies
have demonstrated that few users employ any form of shortcut
interface [1, 5, 9, 19, 20]. Carroll’s ‘paradox of the active user’
[9] suggests that users are simply too engaged in their tasks
to consider learning alternative strategies or methods, even
if these methods may eventually improve performance. In
addition, keyboard shortcuts require that users learn hotkeys
beforehand, potentially resulting in errors due to incorrect
hotkey/command memory associations.

The poor adoption of hotkeys and other high-performance
interface techniques creates a substantial usability problem.
While the performance difference between hotkeys and pointer-
based commands may be small for some actions, it can be large
when command activation involves hierarchical navigation
(such as a menu-cascade) or when selecting widgets located
far from the workspace. These small performance differences
can compound into substantial effects when multiplied across

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

ExposeHK

• Enable physical rehearsal:
– “guidance should be a physical rehearsal of the way

an expert would issue a command” (Kurtenbach)
– use the same modality for browsing and rehearsing

hotkeys.

44

Literature:
Malacria et al. “Promoting Hotkey Use through Rehearsal with ExposeHK” CHI’13

Promoting Hotkey Use through Rehearsal with ExposeHK

Sylvain Malacria1 Gilles Bailly2 Joel Harrison1 Andy Cockburn1 Carl Gutwin3

1University of Canterbury, Christchurch, New-Zealand
2Quality and Usability Lab, Telekom Innovation Laboratories, TU Berlin, Berlin, Germany

3Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
sylvain@malacria.fr, andy@cosc.canterbury.ac.nz, gillesbailly1@gmail.com, gutwin@cs.usask.ca

δӂ2δίH

δW δM

δΝ δD δT

Figure 1. The user wants to open a new tab but is not sure of the hotkey. He visually locates the button in the toolbar (boxed on left), then presses the
Command key () to activate ExposeHK, which overlays toolbar items with available hotkeys (right). He completes the command by pressing T.

ABSTRACT
Keyboard shortcuts allow fast interaction, but they are known
to be infrequently used, with most users relying heavily on
traditional pointer-based selection for most commands. We
describe the goals, design, and evaluation of ExposeHK, a
new interface mechanism that aims to increase hotkey use. Ex-
poseHK’s four key design goals are: 1) enable users to browse
hotkeys; 2) allow non-expert users to issue hotkey commands
as a physical rehearsal of expert performance; 3) exploit spa-
tial memory to assist non-expert users in identifying hotkeys;
and 4) maximise expert performance by using consistent short-
cuts in a flat command hierarchy. ExposeHK supports these
objectives by displaying hotkeys overlaid on their associated
commands when a modifier key is pressed. We evaluated Ex-
poseHK in three empirical studies using toolbars, menus, and
a tabbed ‘ribbon’ toolbar. Results show that participants used
more hotkeys, and used them more often, with ExposeHK than
with other techniques; they were faster with ExposeHK than
with either pointing or other hotkey methods; and they strongly
preferred ExposeHK. Our research shows that ExposeHK can
substantially improve the user’s transition from a ‘beginner
mode’ of interaction to a higher level of expertise.

Author Keywords
Hotkeys; Keyboard Shortcuts; Rehearsal; Menus; Command
Selection; Novice Mode; Expert Mode.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces. – Graphical user interfaces (GUI).

INTRODUCTION
Hotkeys, also called keyboard shortcuts or accelerators, offer
a shortcut alternative to pointer-based selection of commands
from toolbars and menus. Their efficiency stems from three
mechanical advantages over pointing: first, in many tasks such
as word-processing, the hands rest on the keyboard, so hotkeys
eliminate the need to move the hand to a pointing device and
back; second, they eliminate the need for a pointing round-trip
from the workspace to the control widgets and back; and third,
they allow a wide range of commands to be selected with a
single key combination, thus removing the need to traverse
a menu or tab hierarchy. A variety of theoretical models
(e.g., KLM [7]) and empirical studies (e.g, Odell et al. [24])
demonstrate that hotkeys improve user performance.

Despite this potential, hotkeys are under-used: several studies
have demonstrated that few users employ any form of shortcut
interface [1, 5, 9, 19, 20]. Carroll’s ‘paradox of the active user’
[9] suggests that users are simply too engaged in their tasks
to consider learning alternative strategies or methods, even
if these methods may eventually improve performance. In
addition, keyboard shortcuts require that users learn hotkeys
beforehand, potentially resulting in errors due to incorrect
hotkey/command memory associations.

The poor adoption of hotkeys and other high-performance
interface techniques creates a substantial usability problem.
While the performance difference between hotkeys and pointer-
based commands may be small for some actions, it can be large
when command activation involves hierarchical navigation
(such as a menu-cascade) or when selecting widgets located
far from the workspace. These small performance differences
can compound into substantial effects when multiplied across

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

ExposeHK

• Rapid hotkey identification for intermediate
user:
– exploit the expert behavior people already have (e.g.

spatial memory and knowledge about virtual
environment)

45

Literature:
Malacria et al. “Promoting Hotkey Use through Rehearsal with ExposeHK” CHI’13

Promoting Hotkey Use through Rehearsal with ExposeHK

Sylvain Malacria1 Gilles Bailly2 Joel Harrison1 Andy Cockburn1 Carl Gutwin3

1University of Canterbury, Christchurch, New-Zealand
2Quality and Usability Lab, Telekom Innovation Laboratories, TU Berlin, Berlin, Germany

3Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
sylvain@malacria.fr, andy@cosc.canterbury.ac.nz, gillesbailly1@gmail.com, gutwin@cs.usask.ca

δӂ2δίH

δW δM

δΝ δD δT

Figure 1. The user wants to open a new tab but is not sure of the hotkey. He visually locates the button in the toolbar (boxed on left), then presses the
Command key () to activate ExposeHK, which overlays toolbar items with available hotkeys (right). He completes the command by pressing T.

ABSTRACT
Keyboard shortcuts allow fast interaction, but they are known
to be infrequently used, with most users relying heavily on
traditional pointer-based selection for most commands. We
describe the goals, design, and evaluation of ExposeHK, a
new interface mechanism that aims to increase hotkey use. Ex-
poseHK’s four key design goals are: 1) enable users to browse
hotkeys; 2) allow non-expert users to issue hotkey commands
as a physical rehearsal of expert performance; 3) exploit spa-
tial memory to assist non-expert users in identifying hotkeys;
and 4) maximise expert performance by using consistent short-
cuts in a flat command hierarchy. ExposeHK supports these
objectives by displaying hotkeys overlaid on their associated
commands when a modifier key is pressed. We evaluated Ex-
poseHK in three empirical studies using toolbars, menus, and
a tabbed ‘ribbon’ toolbar. Results show that participants used
more hotkeys, and used them more often, with ExposeHK than
with other techniques; they were faster with ExposeHK than
with either pointing or other hotkey methods; and they strongly
preferred ExposeHK. Our research shows that ExposeHK can
substantially improve the user’s transition from a ‘beginner
mode’ of interaction to a higher level of expertise.

Author Keywords
Hotkeys; Keyboard Shortcuts; Rehearsal; Menus; Command
Selection; Novice Mode; Expert Mode.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces. – Graphical user interfaces (GUI).

INTRODUCTION
Hotkeys, also called keyboard shortcuts or accelerators, offer
a shortcut alternative to pointer-based selection of commands
from toolbars and menus. Their efficiency stems from three
mechanical advantages over pointing: first, in many tasks such
as word-processing, the hands rest on the keyboard, so hotkeys
eliminate the need to move the hand to a pointing device and
back; second, they eliminate the need for a pointing round-trip
from the workspace to the control widgets and back; and third,
they allow a wide range of commands to be selected with a
single key combination, thus removing the need to traverse
a menu or tab hierarchy. A variety of theoretical models
(e.g., KLM [7]) and empirical studies (e.g, Odell et al. [24])
demonstrate that hotkeys improve user performance.

Despite this potential, hotkeys are under-used: several studies
have demonstrated that few users employ any form of shortcut
interface [1, 5, 9, 19, 20]. Carroll’s ‘paradox of the active user’
[9] suggests that users are simply too engaged in their tasks
to consider learning alternative strategies or methods, even
if these methods may eventually improve performance. In
addition, keyboard shortcuts require that users learn hotkeys
beforehand, potentially resulting in errors due to incorrect
hotkey/command memory associations.

The poor adoption of hotkeys and other high-performance
interface techniques creates a substantial usability problem.
While the performance difference between hotkeys and pointer-
based commands may be small for some actions, it can be large
when command activation involves hierarchical navigation
(such as a menu-cascade) or when selecting widgets located
far from the workspace. These small performance differences
can compound into substantial effects when multiplied across

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

pointing

menu

revelation
techniques

in/output
technologies

ExposeHK

46

Literature:
Malacria et al. “Promoting Hotkey Use through Rehearsal with ExposeHK” CHI’13

thousands of daily repetitions. It is therefore important to find
ways of helping users transition from the pointer to hotkeys.

Two recent studies show the state of the art in encouraging
hotkey use. Grossman et al. [12] and Krisler and Alterman
[17] investigated the use of feedback (emphasising the hotkey
after pointer selection) and cost (imposing additional steps to
complete pointer selections) as mechanisms for encouraging
adoption and use of hotkeys, with positive results.

However, these approaches have three substantial limitations.
First, they use pointer-based selection as the starting point
for hotkey presentation (i.e., the hotkey is only shown after
mouse-based selection). Consequently, users reinforce point-
ing even while trying to learn a faster non-pointer method.
Second, cost-based techniques work by penalising pointer se-
lections, rather than by making hotkeys more attractive. For
example, one of Grossman’s successful techniques imposed
a delay after pointer-based selection: the hotkey ‘incentive’
was turning users away from the old technique, rather than
actually improving performance. Third, users are unable to
exploit the spatial-location knowledge developed through prior
pointer-based selection. Users must switch entirely to the new
approach, which usually implies a temporary but substantial
reduction in performance (a ‘performance dip’ [31]) that is
likely to deter hotkey use.

We have developed and evaluated a new method for encour-
aging and improving hotkey use – called ExposeHK (EHK) –
that addresses these issues. When activated with a modifier
key (e.g., the Control key), EHK displays the hotkeys in the
application’s toolbar (see Fig.1), menu, or ribbon. Importantly,
EHK is compatible with existing toolbar and ribbon designs,
and it can be readily adapted to menus.

This work makes three main contributions. First, it describes
design principles for promoting hotkey use. Second, it presents
ExposeHK (EHK) – a system instantiating the principles with
toolbar, menu and ribbon designs. Third, it presents empirical
results showing that EHK promotes earlier and higher levels
of hotkey use, that participants are faster with it, and that they
strongly prefer EHK.

EXPOSEHK: DESIGN GOALS AND RELATED WORK
EHK uses a simple interaction mechanism to promote hotkey
use. While a modifier key is held down, all hotkeys are concur-
rently displayed on top of their graphical controls. Selections
are completed using the hotkey or by pointing.

We implemented and evaluated three forms of the technique
for toolbars (ExposeHKT, see Fig.1), menus (ExposeHKM,
see Fig.6), and ribbons (ExposeHKR, see Fig.9), with details
presented later. This section describes the design goals for
EHK, as well as key associated prior work.

Design Goals
The ultimate objective of EHK is to improve the rate at which
users attain expertise with interfaces, by promoting hotkey use.
Figure 2, adapted from [31], illustrates this idealised objective.
It shows that switching to traditional shortcuts involves a tem-
porary ‘performance dip’ that discourages their use. The dip
occurs because users who are competent with pointer-based










 



























Figure 2. Intended learning curve for ExposeHK, compared with modal-
ity switching (adapted from [31]).

selection must pause, display the hotkey, learn it, and rehearse
the key sequence. With EHK we aim instead to support a
smooth and continual transition to expert performance. We
have four goals to help EHK achieve this objective, as follows.

Goal 1: Enable hotkey browsing

In most contemporary interfaces hotkeys are not displayed
until the user posts a menu item or dwells on a toolbar item
(exceptions, such as Alt keys, are discussed with goal 4 below).
Consequently, learning hotkeys involves moving the cursor to
the point where a simple click would complete the selection
– but then pausing, awaiting the shortcut feedback, and com-
mitting it to memory before proceeding (possibly by clicking
rather than by using the shortcut). These actions can induce a
performance dip (Fig. 2) that discourages hotkey use and traps
the user in pointer-based ‘beginner mode’ [31]. Any memory
errors while learning hotkeys will further inhibit performance.

To avoid this trap, systems should allow users to browse
hotkeys without requiring a pointing action. ExposeHK meets
this goal by showing the hotkeys when a modifier key is
pressed, as shown in Figures 1 and 6. Users can therefore
initiate their command actions using the same modality that
they will ultimately use as experts. Novice users will still need
to visually search for the target interface control, but once
identified, they can press the EHK modifier key to display the
hotkeys underlying the control, avoiding the need to move
the hand to the mouse and point to the target. Furthermore,
EHK does not require that users learn hotkeys beforehand,
avoiding errors due to incorrect hotkey/command memory
associations. By providing a single modality that removes
the need to pre-learn the hotkeys we aim to minimise the
magnitude and deterrent effect of the performance dip (Fig. 2).

Goal 2: Support physical rehearsal

In analysing factors influencing the development of expertise,
Kurtenbach [19] proposed the principle of rehearsal: ‘guid-
ance should be a physical rehearsal of the way an expert
would issue a command’. He deployed this principle in mark-
ing menus, which allow novices to select items by moving the
cursor into one segment of a visually displayed ‘pie menu’ [6]

Tuesday, October 14, 14

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Desktop

context and
task

theory

interaction
techniques

in/output
technologies

take-away message
• Models

– inspire a whole set of novel techniques
– opens a new perspective

• e.g. the separation of motor vs. display space
– apply knowledge to all other pointing devices similar

to a mouse or understand the difference to other
input devices to spark new techniques to enhance
input.

• Concepts enable you to have new
perspectives on interaction design.
– reapply concepts in different interfaces!

47
Tuesday, October 14, 14

