
LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide 1

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Correction: CD-gain
• control-display gain = unit free coefficient that maps the

movement of the pointing device to the movement of the
display pointer
– gain = 1: display pointer moves exactly the same distance

and speed as the control device
– gain < 1: display pointer moves slower, covering less

distance than the control device
– gain > 1: display pointer moves proportionality farther and

faster than the control device cursor movement.

2

Literature: Géry Casiez et al., “The impact of Control-Display Gain on User Performance in Pointing Tasks”.
In HCI, Vol.3 2008, pp. 215-250.

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile Technologies

3

context and task

challenges

input technologies

challenges in interaction
design

output technologies

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

Theories and Models
• Device Support

– how HCI research started to consider the kinematic chain
– spatial relationship to the device affects interaction

performance and perceived comfort
• BiTouch Design Space, extension of Guiard’s theory

• Gestural Input
– what we loose when moving from keyboard and mouse

and direct touch interaction
– missing standards, how to describe gestures?

• gesture documentation
• physical approach to gestures

• Hand Occlusion
– how a controlled experiment can help you to come up with

an approximate model of you hand occlusion
– how that inspires design of interaction techniques
– how to describe the imprecision by extending Fitt‘s law

4

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

input
technologies

challenges in
interaction
design

output
technologies

Complex Multi-limb Coordination
• Bimanual interaction

– is not the sum of two uni-manual actions
– remember sketchpad!

• Whole body interaction

5

http://www.lecker.de/media/redaktionell/leckerde/backen_1/
weihnachten_10/plaetzchenbacken/hbv_1382/muerbeteig-
ausrollen_img_308x0.jpg

symmetric
bimanual

action

asymmetric
bimanual

action

http://www.lecker.de/media/redaktionell/leckerde/backen_1/
weihnachten_10/plaetzchenbacken/hbv_1382/muerbeteig-
ausrollen_img_308x0.jpg

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

bimanual interaction

• symmetric bimanual action: the two hands
have the same role

• asymmetric bimanual action: the two hands
have different roles

6

symmetric
bimanual

action

asymmetric
bimanual

action

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

Guiard’s Kinematic Chain

7

“Under standard conditions, the spontaneous
writing speed of adults is reduced by some 20%
when instructions prevent the non-preferred
hand from manipulating the page”

Literature: Yves Guirad (1987). Asymmetric Division of Labor in Human Skilled Bimanual Action:
The Kinematic Chain as a Model

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

8

http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg

http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg
http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg

http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg
LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

• Guiard’s principles
– Right-to-left spatial reference

• The non-dominant hand sets the frame
of reference for the dominant hand

– Left-right contrast in the spatial-
temporal scale of motion

• Non-dominant hand operates at a
coarse temporal and spatial scale

– Left hand precedence in action

• Kinematic chain
– each limb a motor if it contributes to the

overall input motion.

• Kinematic chain theory
– although separated, the two hands

behave like being linked within the
kinematic chain.

9

Dominant arm

input motor
assembly

http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg
http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg
http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

input
technologies

challenges in
interaction
design

output
technologies

10

How do people naturally hold tablets?

Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

The Role of Support

11

Thumb Bottom
(TBottom)

Thumb Corner
(TCorner)

Thumb Side
(TSide)

Fingers Top
(FTop)

Fingers Side
(FSide)

Figure 2. Five spontaneous holds (portrait orientation).

positions included the four screen borders and horizontally
and vertically in the screen center.

Participants were asked to hold the iPad comfortably and
perform each task as quickly as possible. They were allowed
to adopt a new hold only when beginning a new block.
Sessions lasted approximately 45 minutes. At the end, we
debriefed each participant as to the true goal of the study to
learn how they chose to hold the tablets. We first asked them
to reproduce the holds they had used and then to adapt them
so that the fingers or thumb of the support hand could reach
the touch screen. We asked them to rate comfort and ease
of interaction when using the support hand to interact and
whether they had suggestions for other holding positions.

Data collection. We videotaped each trial and coded how
participants supported the tablet with the non-dominant hand,
wrist or forearm. We collected touch events, including those
that occurred outside experiment trials and while reading
instructions. We also measured completion time per trial.

Results
We did not find a single, optimal hold and found significant
differences according to experience. All four novices used the
same uncomfortable position: the fingers, thumb and palm of
their non-dominant hand supported the center of the tablet,
like a waiter holding a tray. Novices found this tiring but
worried that the tablet would slip if they held it by the border.
None found other holds. In contrast, the four experts easily
found a variety of secure, comfortable holds. We identified
ten unique holds, five per orientation, all of which involved
grasping the border of the tablet with the thumb and fingers.
Fig. 2 shows these five holds in portrait mode, with the thumb
on the bottom, corner or side, or the fingers on the top or side.

Table 1 shows how these holds were distributed across the six
conditions: most common was F-side (41%), least common
was T-side (9%). The latter was deemed least comfortable,
especially in landscape mode, but participants felt that they
could use it for a short time. Experts tried nine of ten possible
holds in the sitting and walking conditions, but only six
when standing, omitting F-top or T-side in both orientations.
Individuals varied as to how many unique holds they tried,
from three to eight of ten possible. All switched holds at least

Table 1. Total holds per condition (expert users)

F
side

T
bottom

F
top

T
corner

T
side

La
nd

sc
ap

e 3 4 4 4 1
8 4 0 4 0
4 4 7 0 1

Po
rtr

ai
t 8 3 1 0 4

8 4 0 4 0
8 1 3 1 3

41% 21% 16% 14% 9%

once and two switched positions often (50% and 66%) across
different blocks of the same condition.

We were also interested in whether accidental touches, de-
fined as touches located more than 80 pixels from the target
or slider, during or outside of experiment trials, interfered
with intentional touches by the dominant hand. Experts who
carried the tablet by the border made very few accidental
touches (3%). All were with the dominant hand, far from the
screen border, suggesting that they unconsciously prevented
the support hand from touching the screen.

Design Implications
First, tablets can feel heavy and users are more comfortable
when they can change orientation or swap the thumb and
fingers. We should thus seek a small set of roughly equivalent
bimanual interactive holds that are easy to shift between,
rather than designing a single, ‘optimal’ hold. Second, users
can use the thumb and fingers of the support hand for interac-
tion. We can thus create interactive zones on the edges of the
tablet, corresponding to the holds in Fig. 2, which were not
vulnerable to accidental touches. Fig. 3 shows these zones in
portrait and landscape mode. Although changes in the form
factor of a tablet, such as its size, shape or weight, may affect
these holds, users are still likely to shift between holds for
comfort reasons, just as when reading a book or holding a
notebook.

Fingers

Thumbs

Fingers

Thumbs

Portrait Landscape

Figure 3. Five support-hand interaction zones.

The next section describes BiTouch, a design space for ex-
ploring how to incorporate bimanual interaction on hand-held
multitouch tablets.

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

FrameFra
me

Fra
me

Intera
ct

Dominant arm Non-dominant arm

Frame Fram
e

Fram
e

Support

Inter
act

Inte
ractInteract

SupportSupport

Interac
t

Interact

Support

One-hand Palm
Support

One-hand Forearm
Support

Two-hand Palm
Support

(a)

(b)

(c)

Figure 4. The user creates a spatial frame, supports the device, and
interacts with it. Different holds offer different trade-offs with respect
to interactive power and comfort.

BiTouch DESIGN SPACE
Unlike desktop PCs or multi-touch tables, bimanual interac-
tion on hand-held tablets must account for the dual role of
the non-dominant hand as it simultaneously carries the tablet
and interacts with it. Although we designed the BiTouch
design space to explore bimanual interaction on hand-held
tablets, the reasoning applies to a wider range of human-body
interaction with objects [19] and devices ranging from small,
mobile devices to large, fixed interactive tables or walls.

Kinematic Chain: Frame, Support, Interact
The first step is to understand the complementary roles of
support and interaction. Guiard’s [9] analysis of bimanual in-
teraction emphasizes the asymmetric relationship commonly
observed between the two hands. He proposes the kinematic
chain as a general model, in which the shoulder, elbow, wrist
and fingers work together as a series of abstract motors. Each
consists of a proximal element, e.g. the elbow, and a distal
element, e.g. the wrist, which together make up a specific
link, e.g. the forearm. In this case, the distal wrist must
organize its movement relative to the output of the proximal
elbow, since the two are physically attached.

Guiard argues that the relationships between the non-dominant
and dominant hands are similar to those between proximal
and distal elements: the former provides the spatial frame of
reference for the detailed action of the latter. In addition, the
movements of the proximal element or non-dominant hand
are generally less frequent and less precise and usually pre-
cede the movements of the higher frequency, more detailed
actions of the distal element or dominant hand.

We see the kinematic chain in action when users interact with
hand-held tablets: the non-dominant hand usually supports
the tablet, leaving the fingers and thumb of the dominant hand
free to interact. Fig. 4 shows three bimanual alternatives,

Table 2. Trading off framing, support and interaction functions of the
kinematic chain with respect to the body and the device.

Framing
Location: proximal link in the kinematic chain
Distribution: 1 – n body parts

Support
Location: none or middle link in the kinematic chain
Distribution: 0 – n body parts
Independence: 0% – 100% body support

Interaction
Location: distal link in the kinematic chain
Distribution: 1 – n body parts
Degrees of freedom: 0% – 100% body movement
Technique: touch, deformation,...

based on the location of tablet support within the kinematic
chain: the palm or forearm of the non-dominant arm (Fig. 4a,
4b); shared equally between the palms of both hands (Fig.
4c). In each case, the most proximal links control the spatial
frame of reference; support links are always intermediate be-
tween framing and interaction links; and the most distal links
use whatever remains of the thumb and fingers to interact.

The preliminary study highlighted ten user-generated support
holds that permit the thumb or fingers to reach the interactive
area. Each poses trade-offs between comfort and degrees of
freedom available for interaction. For example, supporting
the tablet with the forearm (Fig. 4b) provides a secure, stable
hold but forces the fingers to curl around the tablet, leaving
little room for movement. In contrast, holding the tablet in the
palm (Fig. 4a) gives the thumb its full range of movement, but
is tiring and less stable.

Note that comfort is subjective, influenced not only by the
physical details of the device, such as its weight, thickness
and size of the bezels, but also by how the tablet is held. For
example, shifting between landscape and portrait orientations
changes the relative distance between the tablet’s central
balance point and the most distal part of the support link. The
tablet acts as a lever: users perceive it as heavier as support
moves further from the fulcrum. The next step is to formalize
these observations into a design space that describes existing
and new bimanual holds and interaction techniques.

BiTouch Design Space
Table 2 summarizes the key dimensions of the BiTouch de-
sign space, according to framing, support and interaction
functions of the kinematic chain. Each is affected by the
relationship between specific characteristics of the human
body, the physical device and the interaction between them.

Framing is handled at the most proximal locations within the
kinematic chain and may be distributed over multiple parts of
the body. Support always occurs in locations within the kine-
matic chain, distal to the frame. Support may be completely
distributed over one or more body parts, symmetrically or
not; shared with an independent support, e.g. a table or lap;
or omitted, e.g. interacting on a freestanding interactive table.

Interaction is always handled at the most distal location in
the kinematic chain, immediately after the support link. Inter-

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

Taps

Hold down
"Stroke"

+
-

Stroke Stroke

size +

size -

Chords

-

Stroke

+

-

Gestures

Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

12

Dominant arm

input motor
assembly

frame interaction

Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

13

Dominant arm

input motor
assembly

frame interactionsupport
Non-dominant arm

input motor
assembly

Support
-affected

Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

Frame, Support, Interaction

14

FrameFra
me

Fra
me

Intera
ct

Dominant arm Non-dominant arm

Frame Fram
e

Fram
e

Support

Inter
act

Inte
ractInteract

SupportSupport

Interac
t

Interact

Support

One-hand Palm
Support

One-hand Forearm
Support

Two-hand Palm
Support

(a)

(b)

(c)

Figure 4. The user creates a spatial frame, supports the device, and
interacts with it. Different holds offer different trade-offs with respect
to interactive power and comfort.

BiTouch DESIGN SPACE
Unlike desktop PCs or multi-touch tables, bimanual interac-
tion on hand-held tablets must account for the dual role of
the non-dominant hand as it simultaneously carries the tablet
and interacts with it. Although we designed the BiTouch
design space to explore bimanual interaction on hand-held
tablets, the reasoning applies to a wider range of human-body
interaction with objects [19] and devices ranging from small,
mobile devices to large, fixed interactive tables or walls.

Kinematic Chain: Frame, Support, Interact
The first step is to understand the complementary roles of
support and interaction. Guiard’s [9] analysis of bimanual in-
teraction emphasizes the asymmetric relationship commonly
observed between the two hands. He proposes the kinematic
chain as a general model, in which the shoulder, elbow, wrist
and fingers work together as a series of abstract motors. Each
consists of a proximal element, e.g. the elbow, and a distal
element, e.g. the wrist, which together make up a specific
link, e.g. the forearm. In this case, the distal wrist must
organize its movement relative to the output of the proximal
elbow, since the two are physically attached.

Guiard argues that the relationships between the non-dominant
and dominant hands are similar to those between proximal
and distal elements: the former provides the spatial frame of
reference for the detailed action of the latter. In addition, the
movements of the proximal element or non-dominant hand
are generally less frequent and less precise and usually pre-
cede the movements of the higher frequency, more detailed
actions of the distal element or dominant hand.

We see the kinematic chain in action when users interact with
hand-held tablets: the non-dominant hand usually supports
the tablet, leaving the fingers and thumb of the dominant hand
free to interact. Fig. 4 shows three bimanual alternatives,

Table 2. Trading off framing, support and interaction functions of the
kinematic chain with respect to the body and the device.

Framing
Location: proximal link in the kinematic chain
Distribution: 1 – n body parts

Support
Location: none or middle link in the kinematic chain
Distribution: 0 – n body parts
Independence: 0% – 100% body support

Interaction
Location: distal link in the kinematic chain
Distribution: 1 – n body parts
Degrees of freedom: 0% – 100% body movement
Technique: touch, deformation,...

based on the location of tablet support within the kinematic
chain: the palm or forearm of the non-dominant arm (Fig. 4a,
4b); shared equally between the palms of both hands (Fig.
4c). In each case, the most proximal links control the spatial
frame of reference; support links are always intermediate be-
tween framing and interaction links; and the most distal links
use whatever remains of the thumb and fingers to interact.

The preliminary study highlighted ten user-generated support
holds that permit the thumb or fingers to reach the interactive
area. Each poses trade-offs between comfort and degrees of
freedom available for interaction. For example, supporting
the tablet with the forearm (Fig. 4b) provides a secure, stable
hold but forces the fingers to curl around the tablet, leaving
little room for movement. In contrast, holding the tablet in the
palm (Fig. 4a) gives the thumb its full range of movement, but
is tiring and less stable.

Note that comfort is subjective, influenced not only by the
physical details of the device, such as its weight, thickness
and size of the bezels, but also by how the tablet is held. For
example, shifting between landscape and portrait orientations
changes the relative distance between the tablet’s central
balance point and the most distal part of the support link. The
tablet acts as a lever: users perceive it as heavier as support
moves further from the fulcrum. The next step is to formalize
these observations into a design space that describes existing
and new bimanual holds and interaction techniques.

BiTouch Design Space
Table 2 summarizes the key dimensions of the BiTouch de-
sign space, according to framing, support and interaction
functions of the kinematic chain. Each is affected by the
relationship between specific characteristics of the human
body, the physical device and the interaction between them.

Framing is handled at the most proximal locations within the
kinematic chain and may be distributed over multiple parts of
the body. Support always occurs in locations within the kine-
matic chain, distal to the frame. Support may be completely
distributed over one or more body parts, symmetrically or
not; shared with an independent support, e.g. a table or lap;
or omitted, e.g. interacting on a freestanding interactive table.

Interaction is always handled at the most distal location in
the kinematic chain, immediately after the support link. Inter-

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

Inverse correlation: performance & comfort

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

15

>
Performance

<

Comfort

Support Support
Distribution

Degree of Freedom

Frame

Interact

Fr
am

e

Support

high low

Create further hypotheses

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Gestural Input vs. Keyboard+Mouse
• loosing the hover state
• gesture design

– ‘natural’ gestures
• dependent on culture

– multi-finger chords (what does that
remind you of?)

• memorability
– short-term vs. long-term retention

• gesture discoverability
• missing standards
• difficult to write, keep track and

maintain gesture recognition code
– detect/resolve conflicts

between gestures
• and how to communicate and

document a gesture?

16

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Proton++

• touch event:
– touch action (down, move, up)
– touch ID (1st, 2nd, etc.)
– series of touch attribute values

• direction = NW, hit-target = circle

17

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Proton++

• stream generator
– converts each touch event into a touch symbol of the

form

18

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

move-with-first-touch-on-star-object-in-
west-direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

19

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

consider attributes:
hit-target shape,
direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

20

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

consider attributes:
hit-target shape,
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

1 Minute Micro Task:
Create the regular expression for this gesture

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

21

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

consider attributes:
hit-target shape,
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches

move towards the centroid, an ‘S’ when the touches move
away from the centroid and an ‘N’when they stay stationary

22
Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

1 Minute Micro Task:
Create the regular expression for this gesture

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches

move towards the centroid, an ‘S’ when the touches move
away from the centroid and an ‘N’when they stay stationary

23
Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

input
technologies

challenges in
interaction
design

output
technologies

• Direction Attribute
• Touch Area Attribute
• Finger Orientation Attribute
• Screen Location Attribute

24

Further Attributes

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

→ Let’s practice that in the exercise

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

But: how can we represent this?

25

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Shape-based interaction

26

• Interaction in the real world uses
not just contact points

• We use whole hands, arms, tools
• Cannot be adequately expressed

using just contact points
• How can we deal with this?

• Remember the lava lamp in Jeff
Han‘s TED talk? (http://www.youtube.com/watch?v=QKh1Rv0PlOQ)

• Seriously: How can we do useful
stuff with this?

http://www.youtube.com/watch?v=QKh1Rv0PlOQ
http://www.youtube.com/watch?v=QKh1Rv0PlOQ

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Idea: Interaction using a physics simulation
• Take a ready-made physics engine for games
• Represent every interface object as a 3d physical

object
• Assign proper weight and friction
• Entire interface behaves like real physics

• How do we deal with shape input?
• Idea: proxy objects

• Material on the following slides by Otmar Hilliges

27

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Approach: Proxy Objects

• [Otmar Hilliges, UIST2008 best paper]

• Special objects introduced into the
simulation per contact point

• Incarnation of fingertips in the virtual
world

• Collide with other objects and push
them aside.

28

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Leveraging Collision Forces

29

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Leveraging Friction Forces

30

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Particle Proxies
• Idea: model contact shape with many

proxy objects (particles)
• Collisions obey shape of the contact

(e.g., flat or side of the hand)
• Distribution of forces is modeled more

accurately (e.g., conforms to 3D shape)

31

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

From Tracking to Flow

35

36

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Occlusion

• problem: system generated messages may be
positioned under the user’s hand.

• one approach: experimental study using a
novel combination of video capture,
augmented reality marker tracking, and image
processing techniques to capture occlusion
silhouettes.

• result: five parameter geometric model which
matches the silhouette with larger precision
than the simple bounding box approach

• useful for occlusion aware interfaces

37

Hand Occlusion with Tablet-sized Direct Pen Input

Daniel Vogel1,2, Matthew Cudmore2, Géry Casiez3, Ravin Balakrishnan1, and Liam Keliher2
1 Dept. of Computer Science

University of Toronto, CANADA
{dvogel|ravin}@dgp.toronto.edu

2 Dept. of Math & Computer Science
Mount Allison University, CANADA

{dvogel|mcudmore|lkeliher}@mta.ca

3 LIFL & INRIA Lille
University of Lille, FRANCE

gery.casiez@lifl.fr

ABSTRACT
We present results from an experiment examining the area
occluded by the hand when using a tablet-sized direct pen
input device. Our results show that the pen, hand, and fore-
arm can occlude up to 47% of a 12 inch display. The shape of
the occluded area varies between participants due to differ-
ences in pen grip rather than simply anatomical differences.
For the most part, individuals adopt a consistent posture for
long and short selection tasks. Overall, many occluded pixels
are located higher relative to the pen than previously thought.
From the experimental data, a five-parameter scalable circle
and pivoting rectangle geometric model is presented which
captures the general shape of the occluded area relative to the
pen position. This model fits the experimental data much
better than the simple bounding box model often used implic-
itly by designers. The space of fitted parameters also serves
to quantify the shape of occlusion. Finally, an initial design
for a predictive version of the model is discussed.
Author Keywords: Hand occlusion, pen input, Tablet PC.

ACM Classification: H5.2. Information interfaces and pres-
entation: User Interfaces - Input devices and strategies.

INTRODUCTION
Given our familiarity with using pens and pencils, one would
expect that operating a tablet computer by drawing directly
on the display would be more natural and efficient. However,
issues specific to direct pen input, such as the user’s hand
covering portions of the display during interaction – a phe-
nomena we term occlusion (Figure 1a) – create new problems
not experienced with conventional mouse input [12].
Compared to using pen on paper, occlusion with pen comput-
ing is more problematic. Unlike paper, the results of pen in-
put, or system generated messages, may be revealed in oc-
cluded areas of the display. Researchers have suggested that
occlusion impedes performance [7,10] and have used it as
motivation for interaction techniques [1,14,24], but as of yet
there has been no systematic study or model to quantify the
amount or shape of occlusion.

Certainly, any designer can simply look down at their own
hand while they operate a Tablet PC and take the perceived
occlusion into account, but this type of ad hoc observation is
unlikely to yield sound scientific findings or universal design
guidelines. To study occlusion properly, we need to employ
controlled experimental methods.
In this paper we describe an experimental study using a novel
combination of video capture, augmented reality marker
tracking, and image processing techniques to capture images
of hand and arm occlusion from the point-of-view of a user.
We call these images occlusion silhouettes (Figure 1b).
Analyses of these silhouettes found that the hand and arm can
occlude up to 47% of a 12 inch display and that the shape of
the occluded area varies across participants according to their
style of pen grip, rather than basic anatomical differences.
Based on our findings, we create a five parameter geometric
model, comprised of a scalable circle and pivoting rectangle,
to describe the general shape of the occluded area (Figure
1c). Using non-linear optimization algorithms, we fit this
geometric model to the silhouette images captured in the ex-
periment. We found that this geometric model matches the
silhouettes with an F1 score [18] of 0.81 compared to 0.40 for
the simple bounding box which designers often use implicitly
to account for occlusion. The space of fitted parameters also
serves as to quantify the shape of occlusion, capture different
grip styles, and provide approximate empirical guidelines.
Finally, we introduce an initial scheme for a predictive ver-
sion of the geometric model which could enable new types of
occlusion-aware interaction techniques.

Figure 1: (a) Occlusion caused by the hand with direct
pen input; (b) an occlusion silhouette image taken
from the point-of-view of a user and rectified; (c) a
simplified circle and rectangle geometric model cap-
turing the general shape of the occluded area.

(a)

(b) (c)

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

557

Literature: Vogel, D. et al. (2009). Hand Occlusion with Tablet-sized Direct Pen Input, CHI’09

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Vogel’s Controlled Experiment

• goal: measure size and shape of occluded
area of a tablet-sized display.

• home target: on the far right side
• measurement target: positioned somewhere

on an invisible grid (7 x 11 = 77 different
locations)

38

FORMAL EXPERIMENT
Our goal is to measure the size and shape of the occluded
area of a tablet-sized display. To accomplish this, we record
the participant’s view of their hand with a head-mounted
video camera as they select targets at different locations on
the display. We then extract key frames from the video and
isolate occlusion silhouettes of the participant’s hand as they
appear from their vantage point.
Participants
22 people (8 female, 14 male) with a mean age of 26.1 (SD
8.3) participated. All participants were right-handed and pre-
screened for color blindness. Participants had little or no ex-
perience with direct pen input, but this is acceptable since we
are observing a lower level physical behaviour.
At the beginning of each session, we measured the partici-
pant’s hand and forearm since anatomical dimensions likely
influence the amount of occlusion (Figure 2). We considered
controlling for these dimensions, but recruiting participants to
conform to anatomical sizes proved to be difficult, and the
ranges for each control dimension were difficult to define.

Figure 2. Anthropomorphic measurements (diagram
adapted from Pheasant and Hastlegrave [13]).

x EL - elbow to fingertip length
x SL - shoulder to elbow length
x UL - upper limb length including hand
x FL - upper limb length, elbow to crease of wrist, EL - HL
x HL - hand length, crease of the wrist to the tip of finger
x HB - hand breadth, maximum width of palm

Apparatus
The experiment was conducted using a Wacom Cintiq 12UX
direct input pen tablet. It has a 307 mm (12.1 inch) diagonal
display, a resolution of 1280 by 800 pixels (261 by 163 mm),
and a pixel density of 4.9 px/mm (125 DPI). We chose the
Cintiq because it provides pen tilt information which is un-
available on current Tablet PCs.
We positioned the tablet in portrait-orientation and supported
it such that it was at an angle of 12 degrees off the desk, ori-
ented towards the participant. Participants were seated in an
adjustable office chair with the height adjusted so that the
elbow formed a 90 degree angle when the forearm was on the
desk. This body posture is the most ergonomically sound
according to Pheasant and Hastlegrave [13].
To capture the participant’s point-of-view, we use a small
head-mounted video camera to record the entire experiment
at 640 × 480 px resolution and 15 frames-per-second (Figure
3a). The camera is attached to a head harness using hook-
and-loop strips making it easy to move up or down so that it
can be positioned as close as possible to the center of the
eyes, without interfering with the participants’ line of sight.

In pilot experiments, we found that we could position the
camera approximately 40 mm above and forward of the line
of sight, and the resulting image was very similar to what the
participant saw.
Printed fiducial markers were attached around the bezel of
the tablet to enable us to transform the point-of-view frames
to a standard, registered image perspective for analysis. De-
tails of the image analysis steps are in the next section.

Figure 3. Experiment apparatus: (a) head mounted
camera to capture point-of-view; (b) fiducial markers
attached to tablet bezel (image is taken from head
mounted camera video frame).

Figure 4. (a) 7 x 11 grid for placement; (b) square; (c)
circle target (targets are printed actual size).

Task and Stimuli
Participants were presented with individual trials consisting
of an initial selection of a home target, followed by selection
of a measurement target.
The 128 px tall and 64 px wide home target was consistently
located at the extreme right edge of the tablet display, 52 mm
from the display bottom. This controlled the initial position
of the hand and forearm at the beginning of each trial. We
observed participants instinctively returning to a similar rest
position in our initial observational study.
The location of the measurement target was varied across
trials at positions inscribed by a 7 × 11 unit invisible grid
(Figure 4a). This created 77 different locations with target
centers spaced 122 px horizontally and 123 px vertically.
We observed two primary styles of pen manipulation in our
initial observational study: long, localized interactions where
the participant rested their palm on the display (such as ad-
justing a slider), and short, singular interactions performed
without resting the hand (such as pushing a button). Based on
this, our task had two types of target selection: tap – selection
of a 64 px square target with a single tap (Figure 4b); and
circle – selection of a circular target by circling within a
28 px tolerance between a 4 px inner and 32 px outer radius
(Figure 4c). The circle selection is designed to encourage
participants to rest their palm, while the tap selection can be
quickly performed with the palm in the air. The different
shapes for the two selection tasks were intended to serve as a
mnemonic to the user as to what action was required.

HLHB

EL

FL

UL

SL

(a) (b)

(a)

(b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

559

Literature: Vogel, D. et al. (2009). Hand Occlusion with Tablet-sized Direct Pen Input, CHI’09

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Image Processing

• Frame extraction: video frames taken between
successful down and up pen event.
– synchronize video and data log similar to a movie clapperboard:

blend in a large red square containing a unique number.

• Rectification: track fiducial and determine screen
corners

• Isolation: blur filter (noise reduction) + extract blue
color channel + applied threshold to create an inverted
binary image.

39

FORMAL EXPERIMENT
Our goal is to measure the size and shape of the occluded
area of a tablet-sized display. To accomplish this, we record
the participant’s view of their hand with a head-mounted
video camera as they select targets at different locations on
the display. We then extract key frames from the video and
isolate occlusion silhouettes of the participant’s hand as they
appear from their vantage point.
Participants
22 people (8 female, 14 male) with a mean age of 26.1 (SD
8.3) participated. All participants were right-handed and pre-
screened for color blindness. Participants had little or no ex-
perience with direct pen input, but this is acceptable since we
are observing a lower level physical behaviour.
At the beginning of each session, we measured the partici-
pant’s hand and forearm since anatomical dimensions likely
influence the amount of occlusion (Figure 2). We considered
controlling for these dimensions, but recruiting participants to
conform to anatomical sizes proved to be difficult, and the
ranges for each control dimension were difficult to define.

Figure 2. Anthropomorphic measurements (diagram
adapted from Pheasant and Hastlegrave [13]).

x EL - elbow to fingertip length
x SL - shoulder to elbow length
x UL - upper limb length including hand
x FL - upper limb length, elbow to crease of wrist, EL - HL
x HL - hand length, crease of the wrist to the tip of finger
x HB - hand breadth, maximum width of palm

Apparatus
The experiment was conducted using a Wacom Cintiq 12UX
direct input pen tablet. It has a 307 mm (12.1 inch) diagonal
display, a resolution of 1280 by 800 pixels (261 by 163 mm),
and a pixel density of 4.9 px/mm (125 DPI). We chose the
Cintiq because it provides pen tilt information which is un-
available on current Tablet PCs.
We positioned the tablet in portrait-orientation and supported
it such that it was at an angle of 12 degrees off the desk, ori-
ented towards the participant. Participants were seated in an
adjustable office chair with the height adjusted so that the
elbow formed a 90 degree angle when the forearm was on the
desk. This body posture is the most ergonomically sound
according to Pheasant and Hastlegrave [13].
To capture the participant’s point-of-view, we use a small
head-mounted video camera to record the entire experiment
at 640 × 480 px resolution and 15 frames-per-second (Figure
3a). The camera is attached to a head harness using hook-
and-loop strips making it easy to move up or down so that it
can be positioned as close as possible to the center of the
eyes, without interfering with the participants’ line of sight.

In pilot experiments, we found that we could position the
camera approximately 40 mm above and forward of the line
of sight, and the resulting image was very similar to what the
participant saw.
Printed fiducial markers were attached around the bezel of
the tablet to enable us to transform the point-of-view frames
to a standard, registered image perspective for analysis. De-
tails of the image analysis steps are in the next section.

Figure 3. Experiment apparatus: (a) head mounted
camera to capture point-of-view; (b) fiducial markers
attached to tablet bezel (image is taken from head
mounted camera video frame).

Figure 4. (a) 7 x 11 grid for placement; (b) square; (c)
circle target (targets are printed actual size).

Task and Stimuli
Participants were presented with individual trials consisting
of an initial selection of a home target, followed by selection
of a measurement target.
The 128 px tall and 64 px wide home target was consistently
located at the extreme right edge of the tablet display, 52 mm
from the display bottom. This controlled the initial position
of the hand and forearm at the beginning of each trial. We
observed participants instinctively returning to a similar rest
position in our initial observational study.
The location of the measurement target was varied across
trials at positions inscribed by a 7 × 11 unit invisible grid
(Figure 4a). This created 77 different locations with target
centers spaced 122 px horizontally and 123 px vertically.
We observed two primary styles of pen manipulation in our
initial observational study: long, localized interactions where
the participant rested their palm on the display (such as ad-
justing a slider), and short, singular interactions performed
without resting the hand (such as pushing a button). Based on
this, our task had two types of target selection: tap – selection
of a 64 px square target with a single tap (Figure 4b); and
circle – selection of a circular target by circling within a
28 px tolerance between a 4 px inner and 32 px outer radius
(Figure 4c). The circle selection is designed to encourage
participants to rest their palm, while the tap selection can be
quickly performed with the palm in the air. The different
shapes for the two selection tasks were intended to serve as a
mnemonic to the user as to what action was required.

HLHB

EL

FL

UL

SL

(a) (b)

(a)

(b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

559

Literature: Vogel, D. et al. (2009). Hand Occlusion with Tablet-sized Direct Pen Input, CHI’09

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Image Processing

• Frame extraction: video frames taken between
successful down and up pen event.
– synchronize video and data log similar to a movie clapperboard:

blend in a large red square containing a unique number.

• Rectification: track fiducial and determine screen
corners

• Isolation: blur filter (noise reduction) + extract blue
color channel + applied threshold to create an inverted
binary image.

40

The circle selection used an ink trail visualization to indicate
progress. Errors occurred when the pen tip moved beyond the
inner or outer diameter. We wanted this to be difficult enough
to require a palm plant, but not tedious. In practice, partici-
pants took at least half-a-second to circle the target, which
seemed to be enough to plant the palm.
At the beginning of each trial, a red home target and a gray
measurement target were displayed. After successfully select-
ing the home target, the measurement target turned red and
the participant selected it to complete the trial. We logged all
aspects of pen input, including pressure and tilt.
Design
We presented 3 blocks of trials for each of the two tasks. A
block consisted of 77 trials covering each target position in
the grid, making 3 repetitions for each grid position and task
type. Trials were presented in randomized order within a
block and the presentation order of tasks was balanced across
participants. Before beginning the first block of a task, the
participant completed 40 practice trials. In summary:

2 Tasks (Tap, Circle) × 3 Blocks × 77 Target Positions
= 462 data points per participant

IMAGE PROCESSING
To transform the point-of-view video into a series of occlu-
sion silhouettes, we performed the following steps with cus-
tom built software (Figure 5):
Frame Extraction. We extracted video frames taken between
successful down and up pen events for the tap target, or just
before the circular target was completely circled. To do this,
we had to synchronize the video with the data log. We used a
visual time marker which functions similar to a movie clap-
perboard. The time marker is a large red square containing a
unique number. When this square is tapped, it disappears and
a timestamp is saved to our data log. After the experiment,
we scrubbed through the video and found the video time
where the time marker disappeared. Then, using linear inter-
polation between bounding time marks, we located the corre-
sponding video frame for a given log time. In most cases, the
frame captured the pen at the intended target location, but
occasional lags during video capture produced a frame with
the pen separated from the target location.
Rectification. We used the ARToolkitPlus augmented reality
library [21] to track the fiducial markers in each frame and
determine the location of the four corners of the display. In
practice, this sometimes required hand tuning when the
markers were occluded by the hand or were out of frame due
to head position. Using the four corner positions, we un-
warped the perspective using the Java Advanced Image [17]
functions PerspectiveTransform and WarpPerspec-
tive with bilinear interpolation, and cropped it to a final
267 × 427 px image. Note that due to our single camera set-
up, the unwarping will shift the image of the hand down
slightly relative to the actual eye view. As an example, if the
eye position is at the end of a vector 500 mm and 50q from
the centre of the tablet, and the camera is located 40 mm
above and forward of the eye, the unwarped image of a point
on the hand 40 mm above the tablet will be shifted down by
6.2 mm (about 4 px in our unwarped image). The exact error

will vary according to participant size and grip style, but the
values above are typical. Rather than try to compensate for
this slight shift and possibly introduce additional errors, we
accepted this as a reasonable limitation of our technique.
Isolation. We used simple image processing techniques to
isolate the silhouette of the hand. First, we applied a light blur
filter to reduce noise. Then we extracted the blue color chan-
nel and applied a threshold to create an inverted binary im-
age. We were able to use the blue channel to isolate the hand
because the camera’s color balance caused the display back-
ground to appear blue (it was actually white). Since the color
space of skin is closer to red, this made isolating the hand
relatively easy. To remove any edge pixels from the display
bezel, we applied standard dilation and erosion morphologi-
cal operations [3]. Finally, we filled holes based on the con-
nectivity of pixels to produce the final silhouette.

Figure 5. Image processing steps: (a) frame extrac-
tion; (b) rectification; (c) silhouette isolation.

RESULTS
Unfortunately, lighting and video problems corrupted large
portions of data for participants 7, 14, 21, and 22 making
isolation of their occlusion silhouettes unreliable. Capture
problems with participant 8 corrupted the first block, but we
kept this participant and their remaining blocks. In the end,
our analysis included 18 out of the original 22 participants (6
female, 12 male) with a mean age of 26.3 (SD 8.4). In addi-
tion, we removed data trials when capture lag produced sil-
houettes more than 20 mm from the target location (7.8% of
trials). These types of problems are typical when using video
capture to generate empirical data: it is difficult to produce
the same kind of “clean” data generated by experiments re-
cording straightforward variables such as performance time
and errors. Researchers attempting similar work should re-
cruit extra participants and run multiple trials as we did, to
ensure a reasonable amount of clean trials can be obtained.
Participants occasionally produced errors (mean 4.4%), but
we included the silhouette regardless. Since each target must
be successfully tapped or circled before continuing, the final
video frame for an error trial would not differ. Also, the
logged pen tilt values were very noisy, in spite of silhouette
images suggesting tilt should be more uniform. Our attempts
to filter them were unsuccessful, and we were forced to leave
them out of our analysis.
Occlusion Ratio
We define the occlusion ratio as the percentage of occluded
pixels within all possible display pixels. We used a ratio,
rather than actual area, for unit independence. The actual area
can be computed using the display area of 42,543 mm2.

(a) (b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

560

Literature: Vogel, D. et al. (2009). Hand Occlusion with Tablet-sized Direct Pen Input, CHI’09

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Results
• largest occlusion when

tapping the top left corner
(occlusion rate: 38.8%)

• identified 3 grips
• large within-subject

consistency in occlusion
shape.

• “can we find a simple
geometric model that could
describe the general shape
and position of the
occlusion silhouettes?”

41

Since occlusion ratio varies according to pen location, we
calculate the occlusion area for each X-Y target location in
the 7 x 11 grid. Not surprisingly, we found the highest occlu-
sion ratios when the pen was near the top left of the display.
However, the highest value did not occur at the extreme top,
but rather a short distance below (Figure 7). The highest val-
ues did not differ greatly by task with 38.6% for circle (SD
6.2) and 38.8% for tap (SD 14.2). Participant 1 had the high-
est occlusion ratio with 47.4% for tap and 46.3% for circle.

Figure 7. Occlusion ratio, plotted by X-Y display loca-
tion for: (a) tap task; (b) circle task.

These mean ratios may reflect a sampling bias among our
participants since controlling for aspects such as anatomical
size and pen grip style is difficult to do a-priori. To help ad-
dress this, we compare occlusion ratios given participant size.
Influence of Participant Size
We established a simple size metric S to capture the relative
size of each participant’s arm and hand compared to the gen-
eral population. S is the mean of three ratios between a par-
ticipant measurement and 50th percentile values from a table
of anthropomorphic statistics1. We use measurements for
shoulder length (SL), hand length (HL), and hand breadth
(HB). Since tables of anthropomorphic statistics are divided
by gender, we compute S for men and women using different
50th percentile values. We found mean S values of 0.99 (SD
0.04) and 1.01 (SD 0.06) for men and women respectively,
indicating that the size of our participants was representative.

We expected to see a relationship between S and the maxi-
mum occlusion ratio since, larger hands and forearms should
cover more of the display. However, a plot of S vs. maximum
occlusion ratio does not suggest a relationship (Figure 8).

1 Anthropomorphic statistics for U.S Adults 19 to 65 years old [13].

0

25

50

0

25

50

800, 1280 800, 1280X (pixels)

Y (pixels)

X (pixels)

Y (pixels) %%

(b) circle(a) tap

38.6%
38.8%

Figure 6. Occlusion shape silhouettes for each participant for: (a) tapping task and (b) circling task. 9 samples from 3
pen positions at middle-left portion of display; see text for discussion of participant and task comparison highlights.

1000 mm2

 (a) tap task

female

(b) circle task

1 2 3 4 5 6 8 9 10

11 12 13 15 16 17 18 19 20

forearm angle

overall size

grip heightdifferent grips

different grips fist height

1 2 3 4 5 6 8 9 10

11 12 13 15 16 17 18 19 20

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

561

ticipants, we found that grip style varied predominately
across three dimensions: size of fist, angle of pen, and height
of grip location on pen. We believe it is these characteristics
of grip style that interact with anatomical measurements and
ultimately govern occlusion area.

Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip
height; (c) loose fist, straight angle, low grip height.

Left-handed Users
We conducted a small follow-up study with two left-handed
users. Similar to Hancock and Booth’s finding with
performance [7], we found that the left-handed data mirrored
the right-handed individuals.
Influence of Clothing
We gathered our data for sleeveless participants to maintain a
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider
using a tablet while wearing a loose fitting sweater or jacket).
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm
for women to account for thickness of clothing.
GEOMETRIC MODEL OF OCCLUSION SHAPE
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of
the occlusion silhouettes. If so, by fitting this model to the
actual silhouettes, the resulting model parameters could serve
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate
sensors. For example, imagine an interface that knows when
a status message is occluded, and re-displays it as a bubble in
a nearby non-occluded area instead.
There are many ways to approach modeling the shape of the
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s
position are occluded, an approach which some designers and
researchers seem to use implicitly. We refer to this as a
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input,
but the accuracy is poor. At the other end of the spectrum, we
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this
would certainly yield a very accurate representation of the
occluded area, the huge number of parameters would make
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet
still produce a reasonable degree of accuracy.
Scalable Circle and Pivoting Rectangle Model
We noticed that the occlusion silhouettes produced by the
experimental data often resembled a lopsided circle for the
fist, a thick narrowing rectangle sticking out the bottom for
the arm, and, with some participants, there was also a thinner
rectangle puncturing the top of the ball for the pen. This
meant that a single oriented bounding box would be unlikely
to capture all grip styles accurately. Our first approach then,
was to create a geometric model using an ellipse for the fist,
an isosceles trapezoid for the arm, and a rectangle for the pen.
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b):
x q is the offset from the pen position p to the circle edge,
x r is the radius of the circle over the fist area,
x) is the rotation angle of the circle around p (expressed in

degrees where) = 0q when the centre is due East,
) = -45q for North-East, and) = 45q for South-East),

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as)),

x w is the width of the rectangle representing the forearm.
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.

Figure 12. Three occlusion shape models: (a) Bézier
spline; (b) circle and rectangle; (b) bounding rectan-
gle. p is the position of the pen.

Fitting the Geometric Model to Captured Silhouettes
For each silhouette image from our experiment, we use non-
linear optimization techniques to set the five parameters of
the geometric model so that it “fits” over the silhouette as
accurately as possible. Note that other optimization algo-

(a) (b) (c)

w

p

q r

pp

(a) (b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

563

Literature: Vogel, D. et al. (2009). Hand Occlusion with Tablet-sized Direct Pen Input, CHI’09

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Scalable Circle and Pivoting Rectangle Model

42

ticipants, we found that grip style varied predominately
across three dimensions: size of fist, angle of pen, and height
of grip location on pen. We believe it is these characteristics
of grip style that interact with anatomical measurements and
ultimately govern occlusion area.

Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip
height; (c) loose fist, straight angle, low grip height.

Left-handed Users
We conducted a small follow-up study with two left-handed
users. Similar to Hancock and Booth’s finding with
performance [7], we found that the left-handed data mirrored
the right-handed individuals.
Influence of Clothing
We gathered our data for sleeveless participants to maintain a
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider
using a tablet while wearing a loose fitting sweater or jacket).
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm
for women to account for thickness of clothing.
GEOMETRIC MODEL OF OCCLUSION SHAPE
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of
the occlusion silhouettes. If so, by fitting this model to the
actual silhouettes, the resulting model parameters could serve
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate
sensors. For example, imagine an interface that knows when
a status message is occluded, and re-displays it as a bubble in
a nearby non-occluded area instead.
There are many ways to approach modeling the shape of the
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s
position are occluded, an approach which some designers and
researchers seem to use implicitly. We refer to this as a
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input,
but the accuracy is poor. At the other end of the spectrum, we
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this
would certainly yield a very accurate representation of the
occluded area, the huge number of parameters would make
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet
still produce a reasonable degree of accuracy.
Scalable Circle and Pivoting Rectangle Model
We noticed that the occlusion silhouettes produced by the
experimental data often resembled a lopsided circle for the
fist, a thick narrowing rectangle sticking out the bottom for
the arm, and, with some participants, there was also a thinner
rectangle puncturing the top of the ball for the pen. This
meant that a single oriented bounding box would be unlikely
to capture all grip styles accurately. Our first approach then,
was to create a geometric model using an ellipse for the fist,
an isosceles trapezoid for the arm, and a rectangle for the pen.
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b):
x q is the offset from the pen position p to the circle edge,
x r is the radius of the circle over the fist area,
x) is the rotation angle of the circle around p (expressed in

degrees where) = 0q when the centre is due East,
) = -45q for North-East, and) = 45q for South-East),

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as)),

x w is the width of the rectangle representing the forearm.
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.

Figure 12. Three occlusion shape models: (a) Bézier
spline; (b) circle and rectangle; (b) bounding rectan-
gle. p is the position of the pen.

Fitting the Geometric Model to Captured Silhouettes
For each silhouette image from our experiment, we use non-
linear optimization techniques to set the five parameters of
the geometric model so that it “fits” over the silhouette as
accurately as possible. Note that other optimization algo-

(a) (b) (c)

w

p

q r

pp

(a) (b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

563

Bézier spline

ticipants, we found that grip style varied predominately
across three dimensions: size of fist, angle of pen, and height
of grip location on pen. We believe it is these characteristics
of grip style that interact with anatomical measurements and
ultimately govern occlusion area.

Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip
height; (c) loose fist, straight angle, low grip height.

Left-handed Users
We conducted a small follow-up study with two left-handed
users. Similar to Hancock and Booth’s finding with
performance [7], we found that the left-handed data mirrored
the right-handed individuals.
Influence of Clothing
We gathered our data for sleeveless participants to maintain a
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider
using a tablet while wearing a loose fitting sweater or jacket).
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm
for women to account for thickness of clothing.
GEOMETRIC MODEL OF OCCLUSION SHAPE
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of
the occlusion silhouettes. If so, by fitting this model to the
actual silhouettes, the resulting model parameters could serve
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate
sensors. For example, imagine an interface that knows when
a status message is occluded, and re-displays it as a bubble in
a nearby non-occluded area instead.
There are many ways to approach modeling the shape of the
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s
position are occluded, an approach which some designers and
researchers seem to use implicitly. We refer to this as a
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input,
but the accuracy is poor. At the other end of the spectrum, we
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this
would certainly yield a very accurate representation of the
occluded area, the huge number of parameters would make
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet
still produce a reasonable degree of accuracy.
Scalable Circle and Pivoting Rectangle Model
We noticed that the occlusion silhouettes produced by the
experimental data often resembled a lopsided circle for the
fist, a thick narrowing rectangle sticking out the bottom for
the arm, and, with some participants, there was also a thinner
rectangle puncturing the top of the ball for the pen. This
meant that a single oriented bounding box would be unlikely
to capture all grip styles accurately. Our first approach then,
was to create a geometric model using an ellipse for the fist,
an isosceles trapezoid for the arm, and a rectangle for the pen.
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b):
x q is the offset from the pen position p to the circle edge,
x r is the radius of the circle over the fist area,
x) is the rotation angle of the circle around p (expressed in

degrees where) = 0q when the centre is due East,
) = -45q for North-East, and) = 45q for South-East),

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as)),

x w is the width of the rectangle representing the forearm.
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.

Figure 12. Three occlusion shape models: (a) Bézier
spline; (b) circle and rectangle; (b) bounding rectan-
gle. p is the position of the pen.

Fitting the Geometric Model to Captured Silhouettes
For each silhouette image from our experiment, we use non-
linear optimization techniques to set the five parameters of
the geometric model so that it “fits” over the silhouette as
accurately as possible. Note that other optimization algo-

(a) (b) (c)

w

p

q r

pp

(a) (b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

563

bounding rectangle
model

ticipants, we found that grip style varied predominately
across three dimensions: size of fist, angle of pen, and height
of grip location on pen. We believe it is these characteristics
of grip style that interact with anatomical measurements and
ultimately govern occlusion area.

Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip
height; (c) loose fist, straight angle, low grip height.

Left-handed Users
We conducted a small follow-up study with two left-handed
users. Similar to Hancock and Booth’s finding with
performance [7], we found that the left-handed data mirrored
the right-handed individuals.
Influence of Clothing
We gathered our data for sleeveless participants to maintain a
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider
using a tablet while wearing a loose fitting sweater or jacket).
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm
for women to account for thickness of clothing.
GEOMETRIC MODEL OF OCCLUSION SHAPE
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of
the occlusion silhouettes. If so, by fitting this model to the
actual silhouettes, the resulting model parameters could serve
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate
sensors. For example, imagine an interface that knows when
a status message is occluded, and re-displays it as a bubble in
a nearby non-occluded area instead.
There are many ways to approach modeling the shape of the
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s
position are occluded, an approach which some designers and
researchers seem to use implicitly. We refer to this as a
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input,
but the accuracy is poor. At the other end of the spectrum, we
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this
would certainly yield a very accurate representation of the
occluded area, the huge number of parameters would make
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet
still produce a reasonable degree of accuracy.
Scalable Circle and Pivoting Rectangle Model
We noticed that the occlusion silhouettes produced by the
experimental data often resembled a lopsided circle for the
fist, a thick narrowing rectangle sticking out the bottom for
the arm, and, with some participants, there was also a thinner
rectangle puncturing the top of the ball for the pen. This
meant that a single oriented bounding box would be unlikely
to capture all grip styles accurately. Our first approach then,
was to create a geometric model using an ellipse for the fist,
an isosceles trapezoid for the arm, and a rectangle for the pen.
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b):
x q is the offset from the pen position p to the circle edge,
x r is the radius of the circle over the fist area,
x) is the rotation angle of the circle around p (expressed in

degrees where) = 0q when the centre is due East,
) = -45q for North-East, and) = 45q for South-East),

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as)),

x w is the width of the rectangle representing the forearm.
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.

Figure 12. Three occlusion shape models: (a) Bézier
spline; (b) circle and rectangle; (b) bounding rectan-
gle. p is the position of the pen.

Fitting the Geometric Model to Captured Silhouettes
For each silhouette image from our experiment, we use non-
linear optimization techniques to set the five parameters of
the geometric model so that it “fits” over the silhouette as
accurately as possible. Note that other optimization algo-

(a) (b) (c)

w

p

q r

pp

(a) (b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

563

Literature: Vogel, D. et al. (2009). Hand Occlusion with Tablet-sized Direct Pen Input, CHI’09

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Scalable Circle and Pivoting Rectangle Model

• 5 parameters:
– q offset from pen position to circle

edge
– r radius of the circle
–ɸ rotation angle of circle around p
–Θ rotation angle of rectangle

around the center of the circle
– w width of rectangular

representation of forearm.

43

ticipants, we found that grip style varied predominately
across three dimensions: size of fist, angle of pen, and height
of grip location on pen. We believe it is these characteristics
of grip style that interact with anatomical measurements and
ultimately govern occlusion area.

Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip
height; (c) loose fist, straight angle, low grip height.

Left-handed Users
We conducted a small follow-up study with two left-handed
users. Similar to Hancock and Booth’s finding with
performance [7], we found that the left-handed data mirrored
the right-handed individuals.
Influence of Clothing
We gathered our data for sleeveless participants to maintain a
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider
using a tablet while wearing a loose fitting sweater or jacket).
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm
for women to account for thickness of clothing.
GEOMETRIC MODEL OF OCCLUSION SHAPE
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of
the occlusion silhouettes. If so, by fitting this model to the
actual silhouettes, the resulting model parameters could serve
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate
sensors. For example, imagine an interface that knows when
a status message is occluded, and re-displays it as a bubble in
a nearby non-occluded area instead.
There are many ways to approach modeling the shape of the
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s
position are occluded, an approach which some designers and
researchers seem to use implicitly. We refer to this as a
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input,
but the accuracy is poor. At the other end of the spectrum, we
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this
would certainly yield a very accurate representation of the
occluded area, the huge number of parameters would make
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet
still produce a reasonable degree of accuracy.
Scalable Circle and Pivoting Rectangle Model
We noticed that the occlusion silhouettes produced by the
experimental data often resembled a lopsided circle for the
fist, a thick narrowing rectangle sticking out the bottom for
the arm, and, with some participants, there was also a thinner
rectangle puncturing the top of the ball for the pen. This
meant that a single oriented bounding box would be unlikely
to capture all grip styles accurately. Our first approach then,
was to create a geometric model using an ellipse for the fist,
an isosceles trapezoid for the arm, and a rectangle for the pen.
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b):
x q is the offset from the pen position p to the circle edge,
x r is the radius of the circle over the fist area,
x) is the rotation angle of the circle around p (expressed in

degrees where) = 0q when the centre is due East,
) = -45q for North-East, and) = 45q for South-East),

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as)),

x w is the width of the rectangle representing the forearm.
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.

Figure 12. Three occlusion shape models: (a) Bézier
spline; (b) circle and rectangle; (b) bounding rectan-
gle. p is the position of the pen.

Fitting the Geometric Model to Captured Silhouettes
For each silhouette image from our experiment, we use non-
linear optimization techniques to set the five parameters of
the geometric model so that it “fits” over the silhouette as
accurately as possible. Note that other optimization algo-

(a) (b) (c)

w

p

q r

pp

(a) (b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

563

ticipants, we found that grip style varied predominately
across three dimensions: size of fist, angle of pen, and height
of grip location on pen. We believe it is these characteristics
of grip style that interact with anatomical measurements and
ultimately govern occlusion area.

Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip
height; (c) loose fist, straight angle, low grip height.

Left-handed Users
We conducted a small follow-up study with two left-handed
users. Similar to Hancock and Booth’s finding with
performance [7], we found that the left-handed data mirrored
the right-handed individuals.
Influence of Clothing
We gathered our data for sleeveless participants to maintain a
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider
using a tablet while wearing a loose fitting sweater or jacket).
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm
for women to account for thickness of clothing.
GEOMETRIC MODEL OF OCCLUSION SHAPE
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of
the occlusion silhouettes. If so, by fitting this model to the
actual silhouettes, the resulting model parameters could serve
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate
sensors. For example, imagine an interface that knows when
a status message is occluded, and re-displays it as a bubble in
a nearby non-occluded area instead.
There are many ways to approach modeling the shape of the
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s
position are occluded, an approach which some designers and
researchers seem to use implicitly. We refer to this as a
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input,
but the accuracy is poor. At the other end of the spectrum, we
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this
would certainly yield a very accurate representation of the
occluded area, the huge number of parameters would make
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet
still produce a reasonable degree of accuracy.
Scalable Circle and Pivoting Rectangle Model
We noticed that the occlusion silhouettes produced by the
experimental data often resembled a lopsided circle for the
fist, a thick narrowing rectangle sticking out the bottom for
the arm, and, with some participants, there was also a thinner
rectangle puncturing the top of the ball for the pen. This
meant that a single oriented bounding box would be unlikely
to capture all grip styles accurately. Our first approach then,
was to create a geometric model using an ellipse for the fist,
an isosceles trapezoid for the arm, and a rectangle for the pen.
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b):
x q is the offset from the pen position p to the circle edge,
x r is the radius of the circle over the fist area,
x) is the rotation angle of the circle around p (expressed in

degrees where) = 0q when the centre is due East,
) = -45q for North-East, and) = 45q for South-East),

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as)),

x w is the width of the rectangle representing the forearm.
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.

Figure 12. Three occlusion shape models: (a) Bézier
spline; (b) circle and rectangle; (b) bounding rectan-
gle. p is the position of the pen.

Fitting the Geometric Model to Captured Silhouettes
For each silhouette image from our experiment, we use non-
linear optimization techniques to set the five parameters of
the geometric model so that it “fits” over the silhouette as
accurately as possible. Note that other optimization algo-

(a) (b) (c)

w

p

q r

pp

(a) (b) (c)

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

563

Literature: Vogel, D. et al. (2009). Hand Occlusion with Tablet-sized Direct Pen Input, CHI’09

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Occlusion-aware techniques
• occlu

44

http://www.youtube.com/watch?v=4sOmlhEJ2ac

http://www.youtube.com/watch?v=4sOmlhEJ2ac
http://www.youtube.com/watch?v=4sOmlhEJ2ac

Try to read this
text when it is
partly occluded!
Tough, isn‘t it?

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Occlusions and the Fat Finger Problem
• Fingers and hands can occlude screen objects

– minimize by adapting the screen layout!

• Fingers may hit several small objects
– just use large objects ;-)

• Exact hit point is occluded, precision limited!

45

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

Device
Support

Gestural
Input

Occlusion

input
technologies

challenges in
interaction
design

output
technologies

Fat Fingers and FFitts law
• For small targets and fat fingers, there is a limit

to pointing precision!
– Fitt‘s law fails to predict performance in this situation

• Modify Fitt‘s law formula to account for precision
– think of it like of Newtonian and relativistic physics:

• at small speeds, both are the same
• towards the speed of light, they differ

46

which the Digraph-Fitts model [16] was used to predict text
entry speed.

The contributions of this paper are two-fold:

1) We propose the dual-distribution hypothesis to interpret
the distribution of endpoints for finger input.

2) We derive the FFitts law (Eq. 2) model based on the
dual-distribution hypothesis:

 ܶ = ܽ + ܾ logଶ ቌ
ටଶగ(ఙమିఙమೌ)

+ 1ቍ (2)

where ߪis the standard deviation of the touch points, and ߪ
reflects the absolute precision of the input finger, which is
independent of the task.

To our knowledge this is the first time Fitts’ law has been
systematically and successfully extended to finger input on
phone-sized touchscreens. In three experiments we show
that this model is able to better predict finger touch
performance than the conventional forms of Fitts’ law.

RELATED WORK

Effective Width Adjustment Method
Fitts’ law in its original form predicts human (performer)
movement time from the nominal task parameters of target
distance (A) and target width (W). The logarithm of the
ratio A/W, measured in bits, was viewed as the task’s index
of difficulty. It was realized that the performer may over- or
under-utilize the target size W. In other words the
performer’s actual pointing precision could be different
from the nominal task specification [9, 18, 21]. The most
common way of compensating for this discrepancy is to
replace the nominal target width W with the so-called

effective width, ܹ = ξ2ߪ݁ߨ , hence:

ܶ = ܽ + ܾ logଶ ቀ
ξଶగߪ + 1ቁ (3)

The justification for the use of ܹ is commonly traced to
Welford [21], which in turns attributes it to Crossman [9].
Crossman’s reasoning of ܹ relies on an information-
theoretic metaphor. logଶ ܹ was viewed as the entropy of
the endpoint distribution. Since endpoints are observed to
be normally distributed about the center of the target, the
theoretically correct expression for endpoint entropy ()ܪ,

is ()ܪ = logଶ ξ2[21 ,9,18] ߪ݁ߨ.

Although this information-theoretic foundation is only
metaphorical without stronger or more rigorous basis,

adjusting effective width based on ξ2ߪ݁ߨ has been
advocated by many researchers of Fitts’ Law. For example,
MacKenzie [18] suggested that “this adjustment lies at the
very heart of the information-theoretic metaphor that
movement amplitude area analogous to ‘signals’ and end-
point variability (via target width) is analogous to ‘noise’.”
(section 3.4 Effective Target Width, paragraph 2, p 106).

Recently, Zhai et al. [25] empirically investigated the effect
of using effective width vs. nominal width. Their work
showed (although not completely) that ܦܫ partially
compensated for subjective accuracy choice and reduced
the discrepancy of a and b estimates between different
experimental conditions. The R2

 value of T vs. ܦܫ
regression across different operating biases was higher than
the R2

 value of T vs. ܦܫ regression.

Given the justification from information-theoretic metaphor

and empirical foundation, adjusting W based on ξ2ߪ݁ߨ has
been widely adopted if the observed error rates deviate
from 4%. In this paper, we are particularly interested in
whether ܦܫ would also compensate for a finger’s
imprecision and compare the ܦܫ model with the proposed

FFitts index of difficulty ܦܫ .

Fitts’ Law and Finger Input
There has been an increasing interest in understanding the
“Fat Finger” problem, and examining Fitts’ Law for finger
input.

As a key input modality for touchscreens, touch input has
been extensively studied by many researchers. Holz and
Baudisch’s research [13] showed that the offsets of touch
point locations from the intended point were affected by the
angles between the finger and the touch surface (i.e., pitch,
roll and yaw). In the following studies [14], they discovered
that users relied on the visual features of fingers such as
finger outlines and nail outlines for placing the touch
points. As touchscreen hardware usually reported the
centroid of the contact area between the finger and the
touchscreen as the touch point, the registered position could
be very different from the perceived touch point.

Cockburn et al. [8] recently compared finger input, stylus
and mouse in tap, drag and radial pointing tasks. The
results showed that the completion time of finger tap and
drag strongly conformed to the ܦܫ model, though the error
rate was high (around 12%) when W = 5 mm. W values in
their study varied in a wide range (W = 5, 12.5, and 20
mm). They did not particularly investigate small target
acquisition tasks.

Sasangohar et al. [20] conducted a Fitts’ Reciprocal
Tapping task to evaluate mouse and touch input on a
tabletop display. Their study also showed very high error
rates when targets were small: the error rates were above
20% with targets in which W = 5mm. They did not report
the regression results for Fitts’ law.

Lee and Zhai [15] studied soft button finger tapping
performance on smartphones. It is interesting to note that
Fitts’ law in its traditional form clearly did not work well
for their tasks. When the target was smaller, finger touch
performance degraded much faster than Fitts’ law would
have predicted.

FFitts Law: Modeling Finger Touch with Fitts’ Law
Xiaojun Bi Yang Li Shumin Zhai

Google Inc.

Mountain View, CA, USA

{bxj, liyang, zhai}@google.com

ABSTRACT
Fitts’ law has proven to be a strong predictor of pointing

performance under a wide range of conditions. However, it

has been insufficient in modeling small-target acquisition

with finger-touch based input on screens. We propose a

dual-distribution hypothesis to interpret the distribution of

the endpoints in finger touch input. We hypothesize the

movement endpoint distribution as a sum of two

independent normal distributions. One distribution reflects

the relative precision governed by the speed-accuracy

tradeoff rule in the human motor system, and the other

captures the absolute precision of finger touch independent

of the speed-accuracy tradeoff effect. Based on this

hypothesis, we derived the FFitts model—an expansion of

Fitts’ law for finger touch input. We present three

experiments in 1D target acquisition, 2D target acquisition

and touchscreen keyboard typing tasks respectively. The

results showed that FFitts law is more accurate than Fitts’

law in modeling finger input on touchscreens. At 0.91 or a

greater R2 value, FFitts’ index of difficulty is able to

account for significantly more variance than conventional

Fitts’ index of difficulty based on either a nominal target

width or an effective target width in all the three

experiments.

Author Keywords
Fitts’ law; Touchscreen; Finger input

ACM Classification Keywords
H.1.2 [User/Machine System]: Human factors; H.5.2 [User

Interface]: Theory and Methods.

General Terms
Human Factors; Theory.

INTRODUCTION
Since originally published in 1954, Fitts’ law (Eq. 1) [11]

has proven to be one of the most robust and successful

models of human motor behavior. In HCI, Fitts’ Law is

typically defined as:

 ܶ = ܽ + ܾ logଶ ቀௐ + 1ቁ, (1)

where ܶ is the average time taken to complete the

movement, ܣ is the distance from the starting point to the

center of the target, ܹ is the width of the target, ܽ and ܾ are

constants reflecting the efficiency of the pointing system.

Because of its strong predictive power, Fitts’ law has served

as one of the quantitative foundations for human-computer

interaction research and design. It has been used as a

theoretical framework for computer input device evaluation

[6, 18], a tool for optimizing new interfaces [5, 16], a

predictive element in complex gesture recognition

algorithms [26], as well as a logical basis for modeling

more complex HCI tasks [1].

Dating back from Fitts’ original studies [11], target

acquisition tasks were typically carried out with a stylus or

a cursor that is much smaller than the targets. As finger

touch on the popular smart phones and tablets emerges as

one of the main input modalities today—the post-PC

computing era—examining Fitts’ law for finger touch has

been attracting attention from HCI researchers [8, 20]. A

critical challenge in applying Fitts’ law to finger input is

that finger input is imprecise, especially relative to smaller-

sized targets [8, 20, 14, 13], due to the obvious and well-

known “Fat Finger” problem. Previous research showed

that Fitts’ law’s predictive power dropped when targets

were small [7, 22]. Our experiments presented later in this

paper confirmed such degradation of the conventional

forms of Fitts’ law for small target acquisition using finger

input as well.

To accurately model finger input, we propose a dual-
distribution hypothesis to interpret the distribution of

endpoints of finger input. We hypothesize that the endpoint

distribution is a sum of two independent normal

distributions. One reflects the relative touch precision

governed by the speed-accuracy tradeoff in the human

motor system, and the other reflects the absolute precision

of finger touch independent of the speed-accuracy tradeoff

effect.

Based on this hypothesis, we derive the FFitts model—an

expansion and also a refinement of Fitts’ law for finger

touch input (Eq 2). Our study results show that the FFitts

model is strong in predicting finger touch input

performance, and it outperforms conventional Fitts’ law

with either a nominal target width (Eq. 1, hereafter referred

to as ܦܫ model) or an “effective target” width (Eq. 3,

hereafter referred to as ܦܫ model) in both 1D and 2D Fitts’

aimed movement tasks, as well as in a text entry task in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI 2013, April 27–May 2, 2013, Paris, France.

Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

which the Digraph-Fitts model [16] was used to predict text
entry speed.

The contributions of this paper are two-fold:

1) We propose the dual-distribution hypothesis to interpret
the distribution of endpoints for finger input.

2) We derive the FFitts law (Eq. 2) model based on the
dual-distribution hypothesis:

 ܶ = ܽ + ܾ logଶ ቌ
ටଶగ(ఙమିఙమೌ)

+ 1ቍ (2)

where ߪis the standard deviation of the touch points, and ߪ
reflects the absolute precision of the input finger, which is
independent of the task.

To our knowledge this is the first time Fitts’ law has been
systematically and successfully extended to finger input on
phone-sized touchscreens. In three experiments we show
that this model is able to better predict finger touch
performance than the conventional forms of Fitts’ law.

RELATED WORK

Effective Width Adjustment Method
Fitts’ law in its original form predicts human (performer)
movement time from the nominal task parameters of target
distance (A) and target width (W). The logarithm of the
ratio A/W, measured in bits, was viewed as the task’s index
of difficulty. It was realized that the performer may over- or
under-utilize the target size W. In other words the
performer’s actual pointing precision could be different
from the nominal task specification [9, 18, 21]. The most
common way of compensating for this discrepancy is to
replace the nominal target width W with the so-called

effective width, ܹ = ξ2ߪ݁ߨ , hence:

ܶ = ܽ + ܾ logଶ ቀ
ξଶగߪ + 1ቁ (3)

The justification for the use of ܹ is commonly traced to
Welford [21], which in turns attributes it to Crossman [9].
Crossman’s reasoning of ܹ relies on an information-
theoretic metaphor. logଶ ܹ was viewed as the entropy of
the endpoint distribution. Since endpoints are observed to
be normally distributed about the center of the target, the
theoretically correct expression for endpoint entropy ()ܪ,

is ()ܪ = logଶ ξ2[21 ,9,18] ߪ݁ߨ.

Although this information-theoretic foundation is only
metaphorical without stronger or more rigorous basis,

adjusting effective width based on ξ2ߪ݁ߨ has been
advocated by many researchers of Fitts’ Law. For example,
MacKenzie [18] suggested that “this adjustment lies at the
very heart of the information-theoretic metaphor that
movement amplitude area analogous to ‘signals’ and end-
point variability (via target width) is analogous to ‘noise’.”
(section 3.4 Effective Target Width, paragraph 2, p 106).

Recently, Zhai et al. [25] empirically investigated the effect
of using effective width vs. nominal width. Their work
showed (although not completely) that ܦܫ partially
compensated for subjective accuracy choice and reduced
the discrepancy of a and b estimates between different
experimental conditions. The R2

 value of T vs. ܦܫ
regression across different operating biases was higher than
the R2

 value of T vs. ܦܫ regression.

Given the justification from information-theoretic metaphor

and empirical foundation, adjusting W based on ξ2ߪ݁ߨ has
been widely adopted if the observed error rates deviate
from 4%. In this paper, we are particularly interested in
whether ܦܫ would also compensate for a finger’s
imprecision and compare the ܦܫ model with the proposed

FFitts index of difficulty ܦܫ .

Fitts’ Law and Finger Input
There has been an increasing interest in understanding the
“Fat Finger” problem, and examining Fitts’ Law for finger
input.

As a key input modality for touchscreens, touch input has
been extensively studied by many researchers. Holz and
Baudisch’s research [13] showed that the offsets of touch
point locations from the intended point were affected by the
angles between the finger and the touch surface (i.e., pitch,
roll and yaw). In the following studies [14], they discovered
that users relied on the visual features of fingers such as
finger outlines and nail outlines for placing the touch
points. As touchscreen hardware usually reported the
centroid of the contact area between the finger and the
touchscreen as the touch point, the registered position could
be very different from the perceived touch point.

Cockburn et al. [8] recently compared finger input, stylus
and mouse in tap, drag and radial pointing tasks. The
results showed that the completion time of finger tap and
drag strongly conformed to the ܦܫ model, though the error
rate was high (around 12%) when W = 5 mm. W values in
their study varied in a wide range (W = 5, 12.5, and 20
mm). They did not particularly investigate small target
acquisition tasks.

Sasangohar et al. [20] conducted a Fitts’ Reciprocal
Tapping task to evaluate mouse and touch input on a
tabletop display. Their study also showed very high error
rates when targets were small: the error rates were above
20% with targets in which W = 5mm. They did not report
the regression results for Fitts’ law.

Lee and Zhai [15] studied soft button finger tapping
performance on smartphones. It is interesting to note that
Fitts’ law in its traditional form clearly did not work well
for their tasks. When the target was smaller, finger touch
performance degraded much faster than Fitts’ law would
have predicted.

Xiaojun Bi, Yang Li, Shumin Zhai: FFitts Law: Modeling Finger Touch with
Fitts’ Law, ACM CHI 2013, http://yangl.org/pdf/ffits.pdf

Precision

http://yangl.org/pdf/ffits.pdf
http://yangl.org/pdf/ffits.pdf

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide

Mobile

context and
task

challenges

input
technologies

challenges in
interaction
design

output
technologies

Take-away message
• Three on-going research challenges with

touch and pen input
– device support
– gestural input
– occlusion & fat fingers

• Approaches:
– analyzing interaction using the kinematic chain
– apply, extend and test existing theories from other

fields (psychology, mathematics, linguistics, physics)

• In particular: the body’s spatial relationship
affects interaction performance and perceived
comfort (was that the case in desktop env.?)

47

LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II — WS2013/14 Slide 48

