Multimedia im Netz

Wintersemester 2010/2011

Part IV

Conversational Multimedia Services

12 Multimedia Conferencing

- 12.1 Multimedia Conferencing: Service Definition and Equipment
- 12.2 Application Examples
- 12.3 Typology of Multi-Point Conferences
- 12.4 Standards for Multimedia Conferencing

Literature:

James R. Wilcox: Videoconferencing, the whole picture, 3rd ed, CMP Media 2000

John Rhodes: Videoconferencing for the Real World, Focal Press 2001

Scott Firestone et al.: Voice and Video Conferencing Fundamentals, Cisco Press 2007

Videoconferencing: Definition

- Multimedia conferencing:
 - The synchronous exchange of digitized multimedia information (e.g. video, audio, images) between conference participants at two or more separate sites
 - Transferred images:
 - » Pictures of the participants
 - » Video clips, still pictures and other accompanying material in digitized form
 - » Screen or window content
 - Transferred sound:
 - » Discussions between meeting participants
 - » Sound from accompanying material (sound or video clips)
- Group-system videoconferencing: Joins two groups of people meeting in physically separate rooms
- Personal videoconferencing: Joins individual users (desktops, phones)
- Two sites (point-to-point) or more (multi-point)

An Old Dream: Video Conferencing in Movies

Metropolis, 1927

Star Trek, 1970s

2001: A Space Odyssey, 1968

History of Videoconferencing

- Bell Labs, 1920s: First videoconference between Washington and New York
- Bell Labs, 1940s: Videoconference research resumed
- Bell Labs, 1964: Picturephone.
 - Other pioneers, 1970s: NEC, British Telecom (1979)
- 1983: Compression of video signal to phone line bandwidth: Widcom project (DARPA)
- 1984: PictureTel, first software-based videoconferencing system (224 Kbps)
- 1994: Intel ProShare system (two ISDN B-channels)
- 1996: Standards H.323 and H.324, including H.263 compression
- 1996 until today: Trend to use IP data network technology instead of ISDN

vintageadbrowser.com Bell picturephone (1964 ad) Bell System introduces PICTUREPHONE service

Picture phone Mod 1

http://www.uni-due.de/kowi/gal_picturephone.shtml

System Type I: Picturephones

- Telephone sets enhanced by video display and small camera
- Available on the market already for significant time
 - E.g. for ISDN

Pictures: Aethra

System Type II: Desktop Systems

- Desktop videoconferencing systems
 - PC with small camera mounted above the monitor
 - "Picture phone" on PC basis
 - Optimal for application sharing
- Disadvantages:
 - Usable only by a person a time
 - Limited picture and sound quality
- Cost 2001: 500 2000 € plus PC
- Cost now: Very low (often built in)
- Pure software solutions:
 - Simple standard systems like Netmeeting, GnomeMeeting, Skype
 - Sophisticated specialized software with dedicated servers

Pictures: VCON, Polycom

System Type III: Set-Top Systems

- Small box containing camera, microphone, speakers, codec, network interface, ...
 - To be put on top of TV set or monitor
- Simple, easy to use, targeted also to computer-illiterate users
- Disadvantage:
 - "Vendor lock-in": Upgrades are often difficult
- Cost: 3000 9000 €

Picture: Aethra

System Type IV: Rollabout Systems

- Movable, medium-sized unit, often a rolling cabinet, containing
 - High-quality audio, video and telecommunication systems
 - One or two large monitors
 - Remotely controllable camera
- Optimal for small groups (three to six people)
- Cost: 3000 10.000 €

System Type V: Room Systems

- Room custom-equipped for conferencing requirements
- Possibly many cameras and monitors
- Furniture well integrated with conferencing equipment (cameras, monitors)
- High-quality sound system
- Cost: 30.000 1.000.000 €

HP Halo System (www.telepresenceoptions.com)

Video Conference Room Design

Figure 4-9 Two distant VTC rooms separated only by a virtual window.

Source: Rhodes p. 79

Camera Control

- Far-end camera control:
 - Participant or operator in room A allowed to control camera in room B
 - Useful when untrained people in room B
 - Mainly for point-to-point conferences
- Camera presets:
 - Angles to view individual participants and other perspectives are preprogrammed before conference start
 - Camera can be moved with a single key press, e.g. to show a specific participant
- Follow-me function:
 - Camera movement automatically synchronized with room or speaker microphones
 - Camera snaps into position for current speaker

Copy-Stand Camera

 Typical accessory of videoconference

Electronic Whiteboard

- Touch-sensitive whiteboard
 - To transmit life drawings over the network
- Technologies:
 - Front projection, rear projection, LCD display
 - Optical (infrared) tracking
- Collaborative software solutions with or without video conference

Picture: MGL World

Echo and Feedback

- Hands-free conference:
 - Feedback of own and foreign sound signals through loudspeaker into microphone
 - Various sources for delays
- Solutions: Cancellation in software, special microphones, headsets

12 Multimedia Conferencing

- 12.1 Multimedia Conferencing:
 Service Definition and Equipment
- 12.2 Application Examples
- 12.3 Typology of Multi-Point Conferences
- 12.4 Standards for Multimedia Conferencing

Literature:

James R. Wilcox: Videoconferencing, the whole picture, 3rd ed,

CMP Media 2000

John Rhodes: Videoconferencing for the Real World,

Focal Press 2001

Application: PARC Media Spaces

- Xerox PARC System Concepts Laboratory, mid 1980-s
 - Geographical split between Palo Alto/California and Portland/Oregon
 - To maintain a single group and explore technologies for collaborative work
- Offices and meeting rooms connected by audio/video links
 - Local panels to configure connection configuration
- Positive effects:
 - Awareness of remote situation (e.g. presence of people at remote site)
 - Enabling informal encounters across sites
- Problems:
 - Boundaries of personal and private space
 - Integration into daily work life
 - » Placement of communication devices
 - » Integration into work flow and daily routine

Application: Preventing Nuclear Destruction

- Videoconference technology helped to protect the world during the year 2000 date rollover
 - To avoid control problems of nuclear power stations
 - Videoconference link between
 - » Emergency Center of the U.S. Department of Energy (Washington)
 - » Situation and Crisis Center of MinAtom (Moscow)
 - Expert exchange: Experts of the remote side present locally
- T1 line (24 phone lines bandwidth), off-the-shelf video codecs, LCD projectors etc.
- Newly developed (UNIX-based) video transmission software

Application: Distance Learning

- Lectures transmitted to remote students
 - Training of staff in businesses
 - Home-learning

 Integration of remote guest speakers in meetings

www.sllboces.org

Application: Telemedicine

(According to Wilcox, p. 37)

- Remote consultation of medical specialists
 - Military health care for patients on remote bases
 - Health care services for prison inmates
 - Rapid emergency response
 - Specialist support during critical operations
- Visiting nurses video-consulting with patients
 - Allows reduction of physical visits
- Additional data:
 - Pictures: X-ray, tomography, ...
 - Lab results
 - Current vital data

Pictures: Radvision

Application: Video Surveillance

- Remote surveillance is very similar to videoconferencing
 - Use of similar equipment and/or software
 - Video surveillance over IP
- Examples:
 - Security control of entrances, halls, ...
 - Surveillance of public spaces (train stations etc)
 - Traffic control
 - Remote control of automatic bridges
- Bidirectional communication useful in some situations

www.vsoip.com

12 Multimedia Conferencing

- 12.1 Multimedia Conferencing:
 Service Definition and Equipment
- 12.2 Application Examples
- 12.3 Typology of Multi-Point Conferences
- 12.4 Standards for Multimedia Conferencing

Literature:

James R. Wilcox: Videoconferencing, the whole picture, 3rd ed,

CMP Media 2000

John Rhodes: Videoconferencing for the Real World,

Focal Press 2001

Types of Multi-Point Conferences

- Meet-Me Conference
- Ad-Hoc Conference
- Interactive-Broadcast Conference

Meet-Me Conference

- Conference is pre-arranged
 - Time and address of bridge are known to participants
- Participants call the bridge to enter the conference
 - Bridge may also call out to participants
- Central conference bridge is a resource owned by a network or service provider
 - Mixes and distributes audio and video signals
- Examples: Telephone conference services, Skype conference call

Multi-Point Control Unit (MCU)

- Traditional name for conference bridges in telephone/ISDN networks
- Mixes the voice signals coming from participants
 - One consistent joint signal distributed to all partners
 - Partner may be silenced until sound level exceeds some threshold
- Determines the video signal to be sent to the participants (in case of audio/video conference)
 - Often, video source of participant with highest voice energy is chosen

Ad-Hoc Conference

- Conference starts as a point-to-point conversation
- Grows to a multi-point conference when participants invite other people by calling their terminals
- Conference is usually not pre-arranged
- Example: Three-way call in ISDN/private telephone exchanges
 - A talks to B
 - A puts B on hold
 - A calls C
 - A joins B and C into a three-way call
- User originating the conference call must be able to provide the necessary bridge functionality
 - Bridge outside the public network, e.g. in a private network
 - Capacity limited (e.g. in number of participants)

Interactive-Broadcast Conference

- Asymmetric conference
 - Master distributes media and signaling to many terminals
 - Terminals have a much simpler back channel to the master (e.g. just signaling or a plain text stream)
- Scales to thousands of terminals
- Typical applications: tele-teaching, business TV

Network Configurations for Multipoint Conferences

- Multi-Unicast
- Multicast
- Master-Slave

Multi-Unicast Network Configuration

- Difficult to implement, no single point of failure, high bandwidth usage
- Suitable for ad-hoc conferences with low participant numbers

Multicast Network Configuration

- Uses multicast addresses
- Difficult to implement, no single point of failure, bandwidth-efficient
- Suitable for interactive broadcasts with high number of participants

Master-Slave Network Configuration

- Easy to implement, single point of failure, medium bandwidth-efficiency
- Suitable for meet-me and ad-hoc conferences of medium size
- Note: Hybrid forms may use different configurations for signaling and media!
 - H.323: Master-Slave signaling, master-slave or multicast media distribution

12 Multimedia Conferencing

- 12.1 Multimedia Conferencing: Service Definition and Equipment
- 12.2 Application Examples
- 12.3 Typology of Multi-Point Conferences
- 12.4 Standards for Multimedia Conferencing

Literature:

James R. Wilcox: Videoconferencing, the whole picture, 3rd ed, CMP Media 2000

H.32X Family

- H.323: ITU-T standard "Visual Telephone Terminals over Non-Guaranteed QoS Service LANs"
- Components:
 - Terminals: PCs, workstations, videophones (must support voice-data)
 - Gatekeeper: Access control, address administration
 - Gateway: E.g. interoperability between IP networks and ISDN
 - Multipoint controller: To support multi-point conferences
- H.324: ITU-T standard "Terminal for Low Bit-Rate Multimedia Communication"
 - Point-to-point audio and video over telephone lines
 - Comprises H.263 video compression
- More recent video standard:
 - H.264 video compression, identical to MPEG-4 AVC

Audiographic Conferencing

- Document or data conferencing: collaboration on documents
 - Audio conference plus additional information
- ITU-T standard T.120 ("Transmission Protocols for Multimedia Data"), 1996
 - Point-to-point and multi-point document conferencing
 - Main applications: shared whiteboard, multi-point file access
 - Additional applications: online chat, multi-party games, VR simulation
- Main features:
 - High resolution graphics transfer
 - Pointing
 - Annotation
- Enhanced audio conferencing is the mainstream conferencing use in industry today
 - T.120 standard rarely used

Speech Codec Technology

- General idea:
 - Speech has limited frequency bandwidth (< 4 kHz)
 - Speech has specific waveforms (due to human physiology)
 - » Relatively high degree of *predictability* of (parts of) signal
- Main types of codecs:
 - Waveform codec
 - Source codec (Vocoder, speech synthesis)
 - Hybrid codecs

http://www-mobile.ecs.soton.ac.uk/speech_codecs

Waveform Speech Codecs

- Waveform codecs
 - Using pulse code modulation (PCM)
 - Differential encoding (prediction) of samples (DPCM)
 - Adaption to characteristics of actual speech bein coded (ADPCM)
 - Sub-Band Coding (SBC): Different emphasis to separate sub-bands
 - Adaptive Transform Coding (ATC): Using transformation to frequency space
- μ -law and A-law:
 - Compander methods (dynamic compressor and expander)
 - Basic idea: loud signals are more strongly compressed than low signals
 - » Signal-noise ratio kept linear over the dynamic range

Hybrid Codecs

- Basic idea:
 - Based on speech synthesis using model of sound generation in vocal tract
 - Synthesize speech in parallel to analysing the input
 - Adapt synthesis parameters to minimize difference between synthesized and original signal
- Main technologies:
 - CELP
 - RPE

"analysis-by-synthesis"

Standard Codecs

- G.711: 64 kbit PCM (e.g. ISDN)
- G.721, G.726, G.727: ADPCM with various bit rates
- G.728: Backward adaptive CELP (hybrid) codec, 2 ms delay, 16 kBit/s
- G.729: CELP codec with 8 kBit/s, optimized against packet loss
- GSM (mobile phones):
 - Simple hybrid codec (RPE)
- DoD Federal Standard 1016
 - 4,8 kBit/s CELP codec
- Codecs created by "Global IP Sound"
 - iLBC (standardized as RFC 3951, 3952): block independent linear predictive coding
 - iSAC: adaptive in packet size and bit rate
 - Resistence against packet loss

Conclusions...

- Advanced conferencing:
 - Virtual Collaborative Spaces
 - 2D or 3D, participants may be represented by avatars
 - » E.g. using *Second Life* for conference meetings
 - Embedded into physical environment (Augmented Reality, Instrumented Rooms)
- Innovation Processes:
 - Uptake of applications into social life takes much longer time than pure technological innovation
 - Innovators often fail when introducing new technology & applications
 - Many small steps, sometimes new combinations of technologies, finally introduce the new ideas
 - » Example video telephony --> Skype, Apple FaceTime
- "When we stop talking about the technology, that's when it will be here."
 Norman Gaut