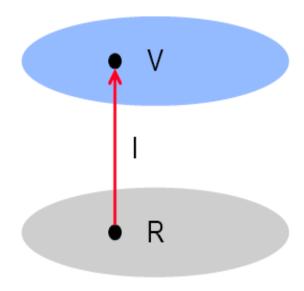
# Übungsblätter

- 13 Übungsblätter
- Ab dem 3. praktische Arbeit am PC
- 5 Hausaufgaben
- 1-4 Punkte pro Hausaufgabe
- 12 von 20 Punkten zur Klausurzulassung


# Darstellung von Zeichen und Zahlen

### Information und Repräsentation

- V = Menge von *Werten* (Interpretationen, Bedeutungen)
- R = Menge von Repräsentationen (Darstellungswerten)
- Abbildung

 $I: R \rightarrow V$  Interpretation

Umkehrung zur Interpretation: Repräsentationsbeziehung I<sup>-1</sup>: V → R

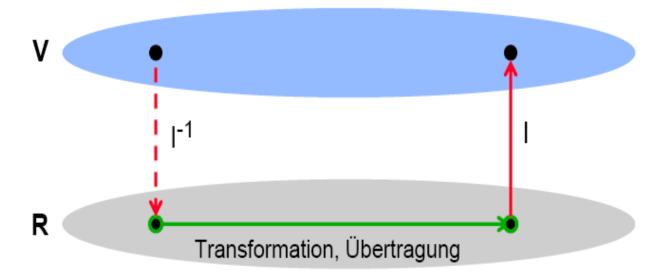


Klassische Beispiele:

V = Zahlwerte, R = Binärzahlen

V = Abbildungen, R = Programme

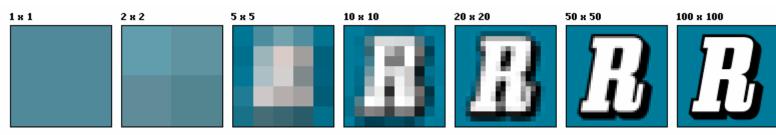
Hier betrachtete Beispiele:


V = textuelle Aussagen (z.B.)

R = Bilder, R = Klänge, ...

(nach Broy: Informatik Teil I)

### Informationsverarbeitung


- Information ist ein abstrakter Begriff.
- Computer verarbeiten immer Repräsentationen.
- Informationsverarbeitung ist Repräsentationsverarbeitung.
- Medien sind spezielle Repräsentationen von Information.



# Speicherplatz

### Aufgabe a)

- 1024 px x 768 = 786432 px
- 786432 px \* 24 bit/px = 18874368 bit
- 18874368 bit / 8 = 2359296 byte
- 2359296 / 1024 = 2304 KByte
- 2304 / 1024 = 2,25 <u>M</u>B
- als JPEG ca. 50 KB



### Aufgabe b)

- 320 px x 240 = 76800 px
- 76800 px \* 24 bit/px = 1843200 bit (1 Bild)
- 1843200 bit \* 30 fps = 55296000 bps
- 55296000 / 1024 = 54000 Kbps
- 54000 / 1024 ~= 52,73 Mbps = 6,6 MBps
- normales Fernsehen 768x576 Pixel

### Aufgabe c)

- Aus b) 1 Bild = 1843200 bit
- 15 fps \* 3 \* 60s = 2700 Frames
- Bildmaterial = 1843200 \* 2700 = 593 MB
- Audio: 180 s \* 22000 1/s \* 16 b =
- 7,55 MB
- Zusammen: 593 + 7,55 = ca. 600 MB
- für 3 Minuten! Ohne Kompression nicht möglich

# Lauflängencodierung

• Text kürzen, Repräsentation erhalten

#### **AAAAABBBBB**

wird mit Hilfe einer Konvention zu

#A5#B5

### Aufgabe 2

- 1110 0000 00FF FFFF FFFF 5656 6556 ABBA
   CBBB BBBB B773 3333
- wird zu

**#13 #07 #F9** F 56566556ABBAC **#B8**77 **#35** 

60 Zeichen zu 31 Zeichen zusammengefasst

### Lauflängencodierung

- Konvention muss genau sein!
- Was passiert beim # Zeichen
- Was passiert bei 20 mal dem selben Zeichen?
- Qualität der Lauflängencodierung schlecht bei 1212121212.
- Abhilfe schafft die Wörterbuchkompression (LZW).

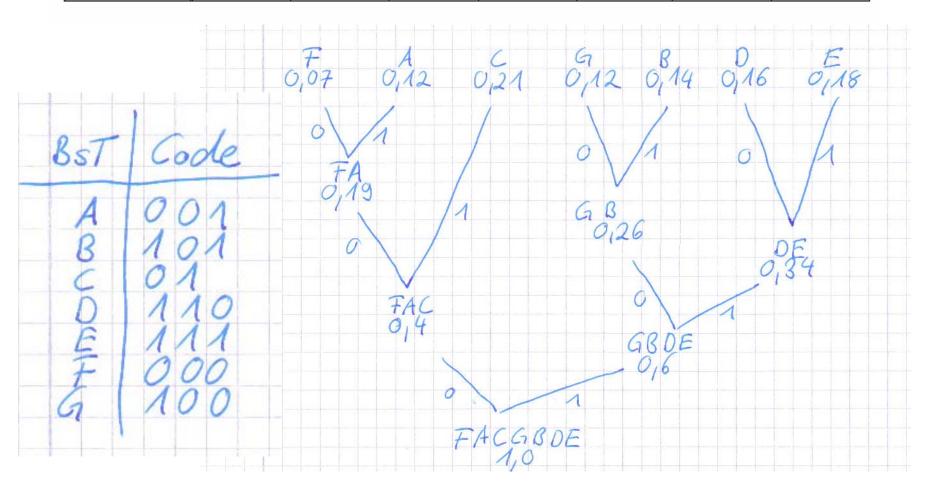
### Kompressionsverfahren: Übersicht

- Klassifikationen:
  - Universell vs. speziell (für bestimmte Informationstypen)
  - Verlustfrei vs. verlustbehaftet
  - In diesem Kapitel: nur universelle & verlustfreie Verfahren
- Im folgenden vorgestellte Verfahren:
  - Statistische Verfahren:
    - » Huffman-Codierung



- » Arithmetische Codierung
- Zeichenorientierte Verfahren:
  - » Lauflängencodierung (RLE Run Length Encoding)
  - » LZW-Codierung

# Huffman Codierung


### Aufgabe 3

| Zeichen    | A    | В    | С    | D    | Е    | F    | G    |
|------------|------|------|------|------|------|------|------|
| Häufigkeit | 0,12 | 0,14 | 0,21 | 0,16 | 0,18 | 0,07 | 0,12 |

- a) Geben Sie die zugehörige Huffman-Codierung an.
- b) Berechnen Sie die Redundanz des Codes.
- c) Codieren Sie die folgenden Zeichenreihe: DCBDAGFD
- d) Berechnen Sie die Entropie der Nachrichtenquelle.
- e) Ist der Code optimal?

### Code-Baum und Tabelle

| Zeichen    | A    | В    | C    | D    | Е    | F    | G    |
|------------|------|------|------|------|------|------|------|
| Häufigkeit | 0,12 | 0,14 | 0,21 | 0,16 | 0,18 | 0,07 | 0,12 |



### Aufgabe 3b)

| Zeichen    | A    | В    | C    | D    | Е    | F    | G    |
|------------|------|------|------|------|------|------|------|
| Häufigkeit | 0,12 | 0,14 | 0,21 | 0,16 | 0,18 | 0,07 | 0,12 |

Redundanz = L - H

durchschnittliche Wortlänge L

$$L = \sum_{a \in A} p_a \left| c(a) \right|$$

Entropie

$$H = \sum_{a \in A} p_a \, ld \left( \frac{1}{p_a} \right)$$

| BST      | Code                                         |
|----------|----------------------------------------------|
| ABUDELLG | 001<br>101<br>01<br>110<br>111<br>000<br>100 |

| L = 0, 12 · 3 (A) |
|-------------------|
| +0,18 · 3 (B)     |
| +0,21.2 (c)       |
| to, 16 · 3 (v)    |
| +0,18 · 3 (E)     |
| +0,07 · 3 (F)     |
| +0,16 -3 -(G)     |
| =0,79.3+0,21.2    |
| = 2,79            |

### Aufgabe 3b)

Entropie ganz genau in "Diskrete Strukturen"

#### Entropie (2)

Durchschnittlicher Entscheidungsgehalt je Zeichen: Entropie H

$$H = \sum_{a \in A} p_a \, ld \left( \frac{1}{p_a} \right) \qquad \text{mit } x_a = \text{Id } (1/p_a) \colon \ H = \sum_{a \in A} p_a x_a$$
 Quelle 1 
$$\frac{\text{Zeichen } a}{\text{Häufigk. } p_a} \frac{A}{1} \quad 0 \quad 0 \quad 0 \quad 0 \quad H = 0$$
 Quelle 2 
$$\frac{\text{Zeichen } a}{\text{Häufigk. } p_a} \frac{A}{0.25} \frac{B}{0.25} \frac{C}{0.25} \frac{D}{0.25} \quad H = 0$$
 Quelle 3 
$$\frac{\text{Zeichen } a}{\text{Häufigk. } p_a} \frac{A}{0.5} \frac{B}{0.25} \frac{C}{0.125} \frac{D}{0.125} \frac$$

Entropie ist Maß für "Unordnung", "Zufälligkeit"

### Aufgabe 3b)

| Zeichen    | A    | В    | C    | D    | Е    | F    | G    |
|------------|------|------|------|------|------|------|------|
| Häufigkeit | 0,12 | 0,14 | 0,21 | 0,16 | 0,18 | 0,07 | 0,12 |

#### Entropie

$$H = \sum_{a \in A} p_a \, ld \left( \frac{1}{p_a} \right)$$

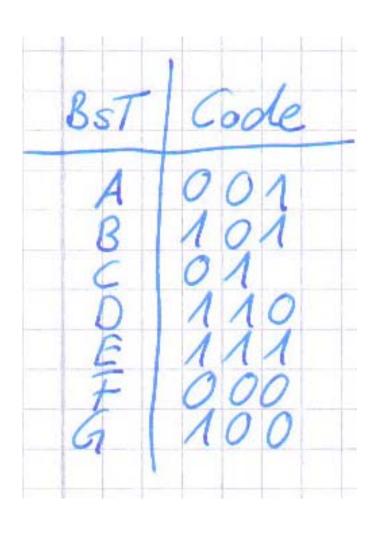
$$H = 0,12 \cdot 3,059 \quad (A) \approx 0,36$$

$$= +0,14 \cdot 2,837 \quad (B) + 0,397$$

$$+0,21 \cdot 2,252 \quad (C) + 0,473$$

$$+0,16 \cdot 2,644 \quad (D) + 0,423$$

$$+0,18 \cdot 2,474 \quad (E) + 0,445$$


$$+0,12 \cdot 3,837 \quad (F) + 0,269$$

$$+0,12 \cdot 3,059 \quad (G) + 0,36$$

$$\approx 2,74$$

$$R = 2 - H$$
  
 $R = 2,79 - 2,79 = 0,05$ 

# Aufgabe 3c)



### DCBDAGFD

- wird zu
- 110
- 01
- 101
- 110
- 001
- 100
- 000
- 110

### Aufgabe 3e)

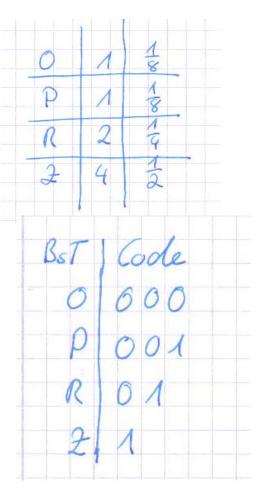
Ist der Code optimal?

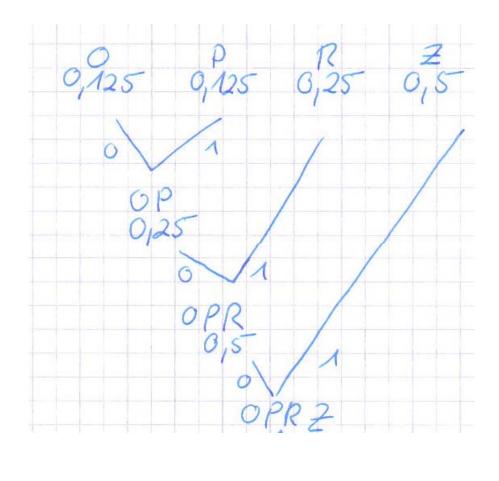
$$R = 2 - H$$

$$R = 2,79 - 2,79 = 0.05$$

- Wann wird der Code optimal?
- Wenn die Auftrittswahrscheinlichkeiten umgekehrte Potenzen von 2 sind. Also ½, ¼, 1/8, 1/16 usw.

#### Aufgabe 4 (optional): Huffman-Codierung


Gegeben sei die folgende Nachricht:


#### **RZROZPZZ**

- a) Geben Sie die zugehörige Huffman-Codierung an.
- b) Ermitteln Sie durch Rechnung, ob es sich dabei um einen optimalen Code handelt und begründen Sie das Ergebnis. Welche Regel trifft hier zu?

# Aufgabe 4a)

### RZROZPZZ





#### Aufgabe 4 (optional): Huffman-Codierung

Gegeben sei die folgende Nachricht:

#### RZROZPZZ

- a) Geben Sie die zugehörige Huffman-Codierung an.
- b) Ermitteln Sie durch Rechnung, ob es sich dabei um einen optimalen Code handelt und begründen Sie das Ergebnis. Welche Regel trifft hier zu?

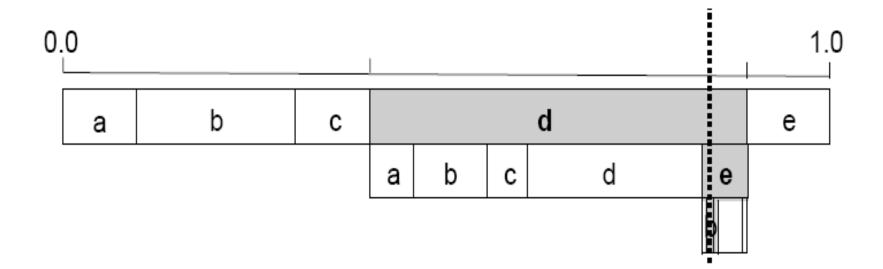
#### Fano-Bedingung!

### Huffman Codierung

- Huffman Codierung
  - Vorteil: einfach, schnell
  - Nachteil: nicht immer optimal

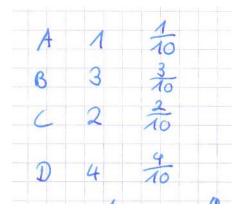
- Arithmetische Codierung
  - Vorteil: immer optimal, theoretisch die Beste
  - Nachteil: Patent der Firmen IBM, AT& und Mitsubishi

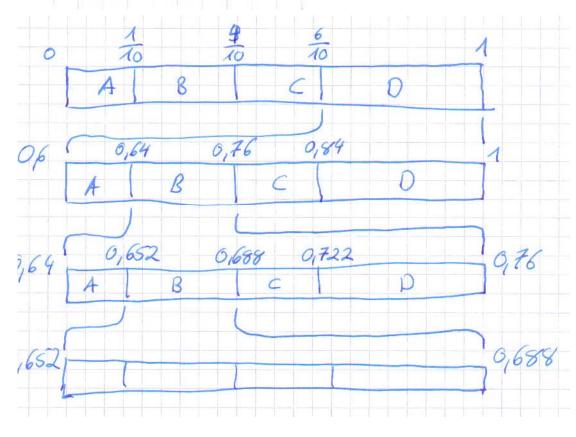
#### **Aufgabe 5: Arithmetische Codierung**


Es sei folgende Nachricht gegeben:

#### DBBDADBDCC

- a) Veranschaulichen Sie die arithmetische Codierung, indem Sie für die ersten 3 Zeichen der Nachricht die Aufteilung in Intervalle graphisch darstellen.
- b) Codieren Sie die gesamte Nachricht mittels des Algorithmus der arithmetischen Codierung.


### Arithmetische Codierung (1)


- Gegeben: Zeichenvorrat und Häufigkeitsverteilung
- Ziel: Bessere Eignung für Häufigkeiten, die keine Kehrwerte von Zweierpotenzen sind
- Patentiertes Verfahren; nur mit Lizenz verwendbar
- Grundidee:
  - Code = Gleitkommazahl berechnet aus den Zeichenhäufigkeiten
  - Jedes Eingabezeichen bestimmt ein Teilintervall



# Aufgabe 5a)

DBBDADB DCC





### Aufgabe 5b)

```
real L = 0.0; real R = 1.0;
Solange Zeichen vorhanden wiederhole
  Lies Zeichen und bestimme Zeichenindex i;
  real B = (R-L);
  R = L + B*R_i;
  L = L + B^*L_i;
Ende Wiederholung;
Code des Textes ist Zahl im Intervall [L, R]
```

### Aufgabe 5b)

| Zeichen      | A   | B   | C   | D   |
|--------------|-----|-----|-----|-----|
| Harfigk (p;) | 0,1 | 0,3 | 0,2 | 0,4 |
| linher Rand  |     | 0,1 | 0,4 | 0,6 |
| rechter Rand | 0,1 | 0,3 | 0,6 | 1   |

| real L = 0.0; real R = 1.0;               |  |  |  |  |  |  |  |
|-------------------------------------------|--|--|--|--|--|--|--|
| Solange Zeichen vorhanden wiederhole      |  |  |  |  |  |  |  |
| Lies Zeichen und bestimme Zeichenindex i; |  |  |  |  |  |  |  |
| real $B = (R-L)$ ;                        |  |  |  |  |  |  |  |
| R = L + B*Ri;                             |  |  |  |  |  |  |  |
| $L = L + B*L_i;$                          |  |  |  |  |  |  |  |

|   | В |              | L |              | R |              |
|---|---|--------------|---|--------------|---|--------------|
|   |   |              |   | 0            |   | 1            |
| D |   | 1,0000000000 |   | 0,600000000  |   | 1,0000000000 |
| В |   | 0,400000000  |   | 0,640000000  |   | 0,7600000000 |
| В |   | 0,1200000000 |   | 0,6520000000 |   | 0,6880000000 |
| D |   | 0,0360000000 |   | 0,6736000000 |   | 0,6880000000 |
| Α |   | 0,0144000000 |   | 0,6736000000 |   | 0,6750400000 |
| D |   | 0,0014400000 |   | 0,6744640000 |   | 0,6750400000 |
| В |   | 0,0005760000 |   | 0,6745216000 |   | 0,6746944000 |
| D |   | 0,0001728000 |   | 0,6746252800 |   | 0,6746944000 |
| C |   | 0,0000691200 |   | 0,6746529280 |   | 0,6746667520 |
| С |   | 0,0000138240 |   | 0,6746584576 |   | 0,6746612224 |

Ende Wiederholung;

Code des Textes ist Zahl im Intervall [L, R]

**Codiert: 0,67466**