
LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020 1

https://commons.wikimedia.org/wiki/File:Stanford_bunny_qem.png

Ludwig-Maximilians-Universität München
Summer semester 2020

Prof. Dr.-Ing. Andreas Butz
lecture additions by Dr. Michael Krone, Univ. Stuttgart

Computer Graphics 1

https://commons.wikimedia.org/wiki/File:Stanford_bunny_qem.png

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Chapter 5 – 3D Camera & Rasterization
• Classical Viewing Taxonomy
• 3D Camera Model
• Optimizations for the Camera
• How to Deal with Occlusion
• Rasterization

• Clipping
• Drawing lines
• Filling areas

2

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Classical Views of 3D Scenes
•As used in arts, architecture, and engineering

• Traditional terminology has emerged

• Varying support by 3D graphics SW and HW

•Assumptions:

• Objects constructed from flat faces (polygons)

• Projection surface is a flat plane

• Nonplanar projections also exist in special cases

•General situation:

• Scene consisting of 3D objects

• Viewer with defined position and projection
surface

• Projectors (Projektionsstrahlen) are lines going 
from objects to the projection surface

•Main classification:

• Parallel projectors or converging projectors

3

http://www.techpin.com/2008/08/page/18/

http://www.semioticon.com/seo/P/images/perspective_1.jpg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Classical Views of 3D Scenes
•As used in arts, architecture, and engineering

• Traditional terminology has emerged

• Varying support by 3D graphics SW and HW

•Assumptions:

• Objects constructed from flat faces (polygons)

• Projection surface is a flat plane

• Nonplanar projections also exist in special cases

•General situation:

• Scene consisting of 3D objects

• Viewer with defined position and projection
surface

• Projectors (Projektionsstrahlen) are lines going 
from objects to the projection surface

•Main classification:

• Parallel projectors or converging projectors

4

http://cobweb.cs.uga.edu/~maria/classes/2016-CompPhoto/

http://www.semioticon.com/seo/P/images/perspective_1.jpg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Taxonomy of Views

[Angel 2012]

5

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Orthographic Projection
• Projectors are orthogonal to the

projection plane
• In the “pure” case, projection

plane is parallel to a coordinate
plane
• top/front/side view
• Often used as a multi-view

combination
• Often together with overview 

(e.g. isometric view)

• Advantage:
• No distortions
• Can be used for  

measurements
6

[Angel 2012]

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Axonometric Projections
• Using orthographic projection, but with  

arbitrary placement of projection plane
• Classification of special cases:

• Look at a corner of a projected cube
• How many angles are identical?

• None: trimetric
• Two: dimetric
• Three: isometric

• Advantage:
• Preserves lines
• Somehow realistic

• Disadvantage:
• Angles not preserved

7

[Angel 2012]

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Optical Illusions in Isometric Projections

Source:

Wikipedia

8

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Oblique Projection (Schiefe Parallelprojektion)
• Projectors are not orthogonal

to projection plane
• Usually projection plane parallel

to one coordinate plane

• Traditional subclasses:
• Cavalier perspective

• Constant angle (usually 30° or
45°) between direction of
projectors (DoP) and projection
plane

• No foreshortening
• Cabinet perspective

• Constant angle (30°/45°/63.4°)
between DoP and projection
plane

• Foreshortening (Verkürzung) (of
depth) by factor 0.5

9

Images: Wikipedia

[Angel 2012]

Cavalier projection Cabinet projection

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Perspective Projection (Perspektivische Projektion)
• Projectors converge at center of projection (cop)
• Parallel lines appear to converge in a vanishing point (Fluchtpunkt)

• Exception: Lines that are parallel to projection plane

• Advantage:
• Very realistic

• Disadvantage:
• Non-uniform foreshortening
• Only few angles preserved

10

[Angel 2012]

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Number of Vanishing Points in Perspective Projection

One point Two points Three points

11

http://mathworld.wolfram.com/Perspective.html

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

How to Realize Projection in Three.js?
• Parallel / Orthographic projections: 
g THREE.OrthographicCamera(left, right, top, bottom, near, far);  
 
var camera = new THREE.OrthographicCamera(w/-2, w/2, h/2, h/-2, 1, 1000);  
scene.add(camera);

• Perspective projections: 
g THREE.PerspectiveCamera(field of view (angle), aspect ratio, near,
far);  
 
var camera = new THREE.PerspectiveCamera(45, w/h, 1, 1000);  
scene.add(camera);

12

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Chapter 5 – 3D Camera & Rasterization
• Classical Viewing Taxonomy
• 3D Camera Model
• Optimizations for the Camera
• How to Deal with Occlusion
• Rasterization

• Clipping
• Drawing lines
• Filling areas

13

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

The 3D rendering pipeline (our version for this class)

3D models in

model coordinates
3D models in world

coordinates
2D Polygons in

camera coordinates
Pixels in image

coordinates

Scene graph Camera Rasterization

Animation,
Interaction

Lights

14

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Perspective Projection and Photography
• In photography, we usually have the center of projection (CoP)

between the object and the image plane
• Image on film/sensor is upside down

• In CG perspective projection, the image plane is in front of the
camera!

15

CoP

Photography

CoP

d

CG Perspective Projection

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

The Mathematical Camera Model for Perspective Projection
• The camera looks along the negative Z axis (by definition)
• Image plane at z = -1
• 2D image coordinates

• -1 < x < 1,
• -1 < y < 1

• Two steps
• Projection matrix
• Perspective division

16

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Projection Matrix (one possibility)
• x and y remain unchanged
• z is preserved as well
• 4th (homogeneous) coordinate w ≠ 1

• Transformation from world coordinates into view coordinates
• This means that this is not a regular 3D point

• otherwise the 4th component w would be = 1

• View coordinates are helpful for culling (see later)

17

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Perspective Division
• Divide each point by its 4th coordinate w

• Transformation from view coordinates into image coordinates
• Since w = -z and we are looking along the negative Z axis, we are

dividing by a positive value
• Hence the sign of x and y remain unchanged

• Points further away (larger absolute z value) will have smaller x and y
• this means that distant things will get smaller
• points on the optical axis will remain in the middle of the image

18

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Controlling the Camera
• So far we can only look along negative z

• Other camera positions and orientations:
• Let C be the transformation matrix that describes the camera‘s position and

orientation in world coordinates
• C is composed from a translation and a rotation, hence can be inverted
• Transform the entire world by C-1 and apply the camera we know

• Other camera view angles?
• If we adjust this coefficient

• Scaling factor will be different
• Larger absolute value means ________ angle
• Could also be done in the division step

19

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

From Image to Screen Coordinates
•

-1

-1

1

1

(xmin,ymin)

w

h

20

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Chapter 5 – 3D Camera & Rasterization
• Classical Viewing Taxonomy
• 3D Camera Model
• Optimizations for the Camera
• How to Deal with Occlusion
• Rasterization

• Clipping
• Drawing lines
• Filling areas

21

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Optimizations in the Camera: Culling
• View frustum culling
• Back face culling
• Occlusion culling

22

http://en.wikipedia.org/wiki/File:At_the_drafting_race_from_The_Powerhouse_Museum_Collection.jpg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

View Frustum Culling
•

23

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Optimization: Octrees Speed up View Frustum Culling
• Naive frustum culling needs O(n) tests

• Where n = number of objects

• Divide entire space into 8 cubes
• See which objects are inside each cube

• Subdivide each cube again
• Repeat recursively until cube contains  

less than k objects

• Instead of culling objects, cull cubes
• Needs O(log n) tests

• There are more space-partitioning data structures (kd-/BSP-tree,  
bounding volume hierarchy,…)

24

http://en.wikipedia.org/wiki/File:Octree2.svg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Back-face Culling
• Idea: polygons on the back side of objects don‘t need to be drawn
• Polygons on the back side of objects face backwards
• Use the Polygon normal to check for orientation

• Normals are often stored in face mesh structure,
• Otherwise can be computed as cross product of 2 triangle edges
• Normal faces backwards if angle with optical axis is < 90° (i.e. scalar product > 0)

g Alternative: Use vertex order (winding, clockwise or counter-clockwise)!

25

θ

A

B

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Occlusion Culling
• Idea: objects that are hidden behind others don‘t need to be drawn
• Efficient algorithm using an occlusion buffer, similar to a Z-buffer

26

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Chapter 5 – 3D Camera & Rasterization
• Classical Viewing Taxonomy
• 3D Camera Model
• Optimizations for the Camera
• How to Deal with Occlusion
• Rasterization

• Clipping
• Drawing lines
• Filling areas

27

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Occlusion: The Problem Space in General
• Need to determine which objects occlude which others objects
• Want to draw only the frontmost (parts of) objects

• Culling worked at the object level, now look at the polygons

• More general: draw the frontmost polygons…
• …or maybe parts of polygons?

• Occlusion is an important depth cue for humans
• Need to get this really correct!

28

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Occlusion – Simple Solution: Depth-sort + ordered rendering
• Regularly used in 2D vector graphics
• Sort polygons according to their z position in  

view coordinates
• Draw all polygons from back to front

• Back polygons will be overdrawn
• Front polygons will remain visible

g "Painter’s algorithm”

• Problem 1: Self-occlusion
• Not a problem with triangles

• Problem 2: Circular occlusion
• Think of a pin wheel!

29

http://view.stern.de/de/original/1732381/Windrad-
Gozo-Malta-Windbrunnen-windrad-Blau-Technik--
Verkehr.jpg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Occlusion – Better Solution: Z-Buffer
• Idea: Compute depth not per polygon, but per pixel!
• Approach: for each pixel of the rendered image (frame buffer)

keep also a depth value (Z-buffer)
• Initialize the Z-buffer with zfar, which is the far clipping plane and

hence the furthest distance we need to care about
• Loop over all polygons

• Determine which pixels are filled by the polygon
• For each pixel

• Compute the z value (depth) at that position
• If z > value stored in Z-buffer (remember: negative z!)

• Draw the pixel in the image
• Set Z-buffer value to z

30

http://de.wikipedia.org/w/index.php?title=Datei:Z-buffer.svg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Z-Buffer Example

31

g In contrast to OpenGL, this example uses positive z-values (and thus tests for z <= Z-buffer-value)!

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Z-Buffer: Tips and Tricks
• Z-Buffer normally built into graphics hardware
• Limited precision (e.g., 16 bit)

• Potential problems with large models
• Set clipping planes wisely!
• Never have 2 polygons in the exact same place
• Otherwise typical errors (striped objects)

• Z-Buffer can be initialized partially to something else than xfar

• At pixels initialized to xnear no polygons will be drawn
• Use to cut out holes in objects
• Then re-render the objects you want to see through these holes

32

http://www.youtube.com/watch?v=TogP1J9iUcE

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Chapter 5 – 3D Camera & Rasterization
• Classical Viewing Taxonomy
• 3D Camera Model
• Optimizations for the Camera
• How to Deal with Occlusion
• Rasterization

• Clipping
• Drawing lines
• Filling areas

33

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

The 3D rendering pipeline (our version for this class)

3D models in

model coordinates
3D models in world

coordinates
2D Polygons in

camera coordinates
Pixels in image

coordinates

Scene graph Camera Rasterization

Animation,
Interaction

Lights

34

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Rasterization: The Problems
• Clipping: Before we draw a polygon, we need to make sure it is

completely inside the image
• If it already is: OK
• If it is completely outside: even better! ;-)
• If it intersects the image border: need to do clipping!

• Drawing lines: How do we convert all those polygon  
edges into lines of pixels?

• Filling areas: How do we determine which screen  
pixels belong to the area of a polygon?

• This is done automatically by the GPU!
• Part of this will be needed again later in the  

semester for the shading/rendering chapter!
35

http://iloveshaders.blogspot.de/2011/05/
how-rasterization-process-works.html

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Clipping (Cohen & Sutherland)
• Clip lines against a rectangle
• For end points P and Q of a line

• Determine a 4 bit code each
• 10xx = point is above rectangle
• 01xx = point is below rectangle
• xx01 = point is left of rectangle
• xx10 = point is right of rectangle
• Easy to do with simple comparisons

• Now do a simple distinction of cases (bit-wise operations=:
• P OR Q = 0000: line is completely inside: draw as is (Example A)
• P AND Q != 0000: line lies completely on one side of rectangle: skip (Ex. B)
• P != 0000: intersect line with all reachable rectangle borders (Ex. C+D+E)

• If intersection point exists, split line accordingly
• Q != 0000: intersect line with all reachable rectangle borders (Ex. C+D+E)

• If intersection point exists, split line accordingly
36

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Drawing a Line: Naïve Approach
• Line from (x1,y1) to (x2, y2)

• Set dx := x2 - x1,  
 dy := y2 - y1,  
 m := dy/dx

• Assume x2 > x1, otherwise switch endpoints

• Assume -1 < m < 1, otherwise swap x and y
• Loop over y and compute x

for (x from 0 to dx) {
 setPixel (x1 + x, y1 + m * x)

}

• In each step:
• 1 float multiplication, 2 additions
• 1 round to integer

top figure from http://de.wikipedia.org/w/index.php?
title=Datei:Line_drawing_symmetry.svg

37

dx

dy

http://de.wikipedia.org/w/index.php?title=Datei:Line_drawing_symmetry.svg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Drawing a Line: Bresenham‘s Algorithm
• Idea: Go in incremental steps
• Accumulate error to ideal line

• Go one pixel up if error beyond a limit

• Uses only integer arithmetic
• In each step:

• 2 comparisons
• 2 or 3 additions

dx := x2-x1;
dy := y2-y1;
d := 2*dy – dx;
DO := 2*dy;
dNO := 2*(dy - dx);
x := x1;
y := y1;
setpixel (x,y);
fehler := d;
WHILE (x < x2) {
 x := x + 1;
 IF (fehler <= 0) {
 fehler := fehler +
DO
 } ELSE {
 y := y + 1;
 fehler = fehler +
dNO
 }
 setpixel (x,y);
} 38

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Antialiased Lines
• Problem: Bresenham‘s lines contain

visible steps (aliasing effects)
• Opportunity: we can usually display at

least greyscale

• Idea: Use different shades of grey as
different visual weights
• instead of filling half a pixel with black,

fill entire pixel with 50% grey

• Different algorithms exist
• Gupta-Sproull for 1 pixel wide lines
• Wu for infinitely thin lines

39

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Wu‘s Antialiasing Approach
• Loop over all x values
• Determine 2 pixels closest to ideal line

• Usually slightly above and below

• Depending on distance, choose grey values
• One is perfectly on line: 100% and 0%
• Equal distance: 50% and 50%

• Set gray values for these 2 pixels

40

http://de.wikipedia.org/w/index.php?
title=Datei:Wu_line_drawing.svg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Antialiasing in General
• Problem: Hard edges in computer graphics
• Correspond to infinitely high spatial frequency
• Violate sampling theorem (Nyquist, Shannon)

• Re-read 1st lecture „Digitale Medien“

• Most general technique: Supersampling
• Idea:

• Render an image at a higher resolution
• This way, effectively sample at a higher resolution

• Scale it down to intended size
• Interpolate pixel values

• This way, effectively use a low pass filter
g Supported in OpenGL

41

http://de.wikipedia.org/w/index.php?title=Datei:EasterEgg_anti-
aliasing.png

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Line Drawing: Summary
• With culling and clipping, we made sure all lines are inside the image
• With algorithms so far we can draw lines in the image

• Even antialiased lines directly

• This means we can draw arbitrary polygons now (in black and white)

• All algorithms extend to color
• Just modify the setPixel(x,y) implementation
• Choice of color not always obvious (think through!)
• How about transparency?

• All these algorithms implemented in hardware
• Other algorithms exist for curved lines

• Mostly relevant for 2D graphics

42

http://en.wikipedia.org/wiki/File:Bresenham_circle.svg

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Filling a Polygon: Scan Line Algorithm
• Define parity of a point in 2D:

• Send a ray from this point to infinity
• Direction irrelevant (!)
• Count number of lines it crosses

• If 0 or even: even parity (outside)
• If odd: odd parity (inside)

• Determine polygon area (xmin, xmax, ymin, ymax)

• Scan the polygon area line by line
• Within each line, scan pixels from left to right

• Start with parity = 0 (even)
• Switch parity each time we cross a line
• Set all pixels with odd parity

43

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020

Rasterization Summary
• Now we can draw lines and fill polygons
• All algorithms also generalize to color
• Ho do we determine the shade of color?

• This is called shading and will be discussed in the rendering section

44

