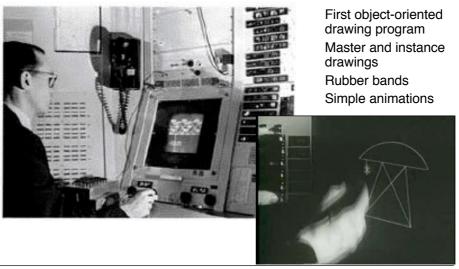
4 Overview on Approaches to Multimedia Programming

- 4.1 Historical Roots of Multimedia Programming
- 4.2 Squeak and Smalltalk: An Alternative Vision
- 4.3 Frameworks for Multimedia Programming
- 4.4 Further Approaches & Systematic Overview

Literature:

Alan Kay: Doing with Images Makes Symbols Pt 1 (1987)
Video lecture available at
http://www.archive.org/details/AlanKeyD1987

Mark Guzdial: History of Squeak


Lecture notes at http://coweb.cc.gatech.edu/cs2340/3608 http://wiki.squeak.org/squeak/3139

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 1

Ivan Sutherland's Sketchpad, 1963

Ludwig-Maximilians-Universität München

Prof. Hußmann

Douglas C. Engelbart 1962

- Born 1925, Ph.D. Berkeley 1955
- Influenced by Vennevar Bush's article "As We May Think" (1945)
- 1962: Research Project at SRI (Stanford Research Institute): "Augmenting Human Intellect: A Conceptual Framework"
 - Research support triggered by the "Sputnik shock" (1957)
- · Basic ideas:
 - Computer supported learning
 - Computer supported collaboration
 - Seamless integration of computer interaction into workflows
- Development of the "NLS" (oNLine System)
 - Demonstrated 1968 in Brooks Hall, San Francisco
- 1970: Patent application for "X-Y pointing device" (mouse)

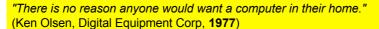
http://www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html

Ludwig-Maximilians-Universität München

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 3


Multimedia-Programmierung - 4 - 4

Prof. Hußmann

Alan C. Kay

- · U. Utah PhD student in 1966
 - Read Sketchpad, Ported Simula
- · Saw "objects" as the future of computer science
- · His dissertation:
 - Flex, an object-oriented personal computer
 - A personal computer was a radical idea then
 - How radical?

Further stations of Alan Kay's life:

- Stanford Artificial Intelligence Laboratory
- Xerox PARC
- Atari
- Apple
- Disney Interactive
- Viewpoints Research Institute
- Hewlett-Packard

from M. Guzdial

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung – 4 - 5

The Dynabook Vision

- Small, handheld, wireless(!) device a new medium
- Can be used creatively by everybody, in particular children, for learning
- · Xerox PARC Learning Research Group, early 70s

Ludwig-Maximilians-Universität München

Prof. Hußmann

Xerox PARC Learning Research Group: Smalltalk-72

- Object-oriented programming system
 - Mouse
 - Windows
 - Icons
 - Pop-up menus
- Uses simple objectoriented language "Smalltalk"
- Idea of user interface: Make computers easy to use for everybody
- Idea of language: make programming both more simple and more powerful (e.g. include multimedia: sound)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung – 4 - 7

The Alto

- The machine the prototype of which impressed Steve Jobs so much that he decided to produce the Lisa/Macintosh kind of computers for the mass market (1979)
 - Graphical user interface
 - Networked via Ethernet
 - Programming language Smalltalk

Ludwig-Maximilians-Universität München

Prof. Hußmann

Animation Software on the Alto

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung – 4 - 9

4 Overview on Approaches to Multimedia Programming

- 4.1 Historical Roots of Multimedia Programming
- 4.2 Squeak and Smalltalk: An Alternative Vision

EToys: Visual Programming in Squeak

Introduction to Smalltalk

Multimedia in Squeak

- 4.3 Frameworks for Multimedia Programming
- 4.4 Further Approaches & Systematic Overview

Literature:

http://www.squeakland.org

Ludwig-Maximilians-Universität München

Prof. Hußmann

Back to the Future: Squeak

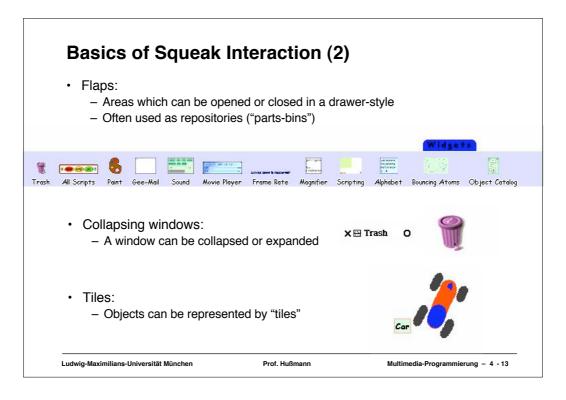
- · Smalltalk:
 - Developed 1972
 - Commercial versions from 1980 on
- · 1995: Alan Kay, Dan Ingalls, Ted Kaehler at Apple
 - Build on Open Source Software strengths
 - » Use the distributed power of Internet-based programmers
 - Available Smalltalk versions had lost many media capabilities
- · Later on, the Squeak team moves to Disney
 - "Its all about media"
- · Multimedia in Squeak:
 - 16 voice music synthesis
 - 3-D graphics, MIDI, Flash, sound recording
 - Network: Web, POP/SMTP, zip compression/decompress

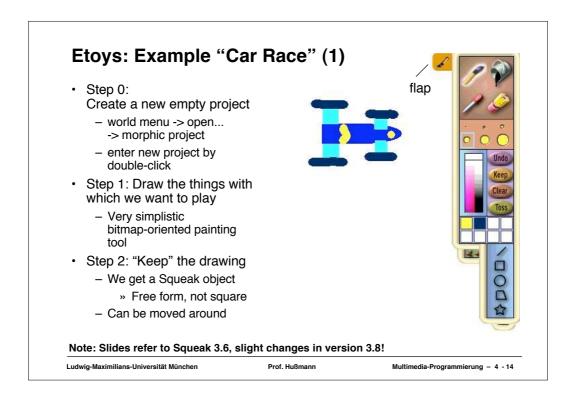
Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 11

Basics of Squeak Interaction (1)


- · Squeak assumes a three-button mouse
- · Menus are invoked by clicking on objects
 - clicking on surface opens "world" menus
- "Red"
 - Windows: left-button click
 - MacOS: simple click
- "Yellow"
 - Windows: middle-button click
 - MacOS: option + click
- · "Blue"
 - Windows: right-button click
 - MacOS: **€**+ click



mapping...)

Ludwig-Maximilians-Universität München

Prof. Hußmann

"Halo" of a Squeak Object

- The "halo" is a circular graphic menu which can be invoked on any object by a mouse click
 - "blue" click
 - special "playfield configuration" (preferences): invoked just by mouse over

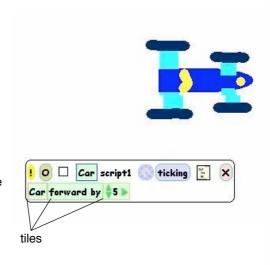
Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 15

Squeak Viewers

- Step 3: Create a viewer (e.g. via the object's halo)
 - Special flap for quickly showing and hiding the viewer
 - Rename sketch in viewer e.g. to "Car"
- Shows categories of properties and commands for objects
 - Categories: Object is derived from a subclass in a complex class hierarchy
 - Viewer can show many different categories in parallel
- Commands can be immediately executed (exclamation mark button)
 - Car can be moved, turned (Note: Orientation to be set in "rotate" mode to define direction of movement)

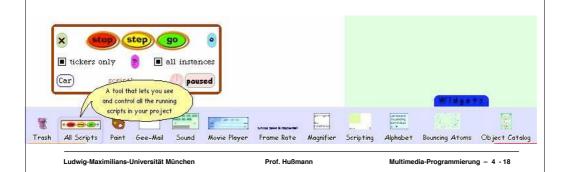


Ludwig-Maximilians-Universität München

Prof. Hußmann

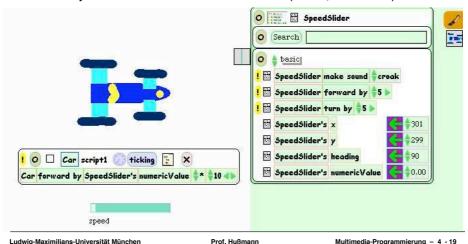
Squeak Scripts

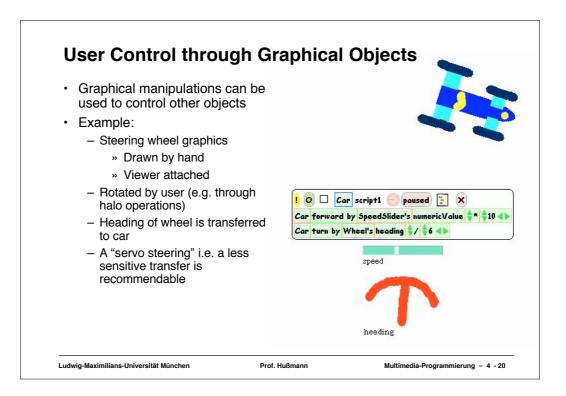
- · Script.
 - simple sequence of commands
 - executed under user control or automatically through a timer ("ticking").
- · Represented by windows
 - created by drag-and-drop
 - "Tiles" represent objects and actions
- Step 4: Create a script
 - "add new script" in viewer
 - drag "empty script" onto surface
- Step 5: Add forward command
 - drag it from the Car viewer
 - adjust the parameter(s)


Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 17


Running a Script

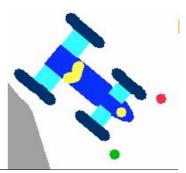

- · Step 6: To control all scripts, use a new script control object.
 - To be found under the "Widgets" flap, like many other helpful tools
- All scripts of the project are simultaneously started and stopped through one button
 - Again just one drag operation to instantiate the object
- Example: Now car can be "driven" forward (till the border of the screen)

Object Interaction in Scripts

- Parameters of script commands can be computed from other objects' properties (by dragging the property onto the parameter location)
- Local adjustments can be added at the end (factor, offset etc.)

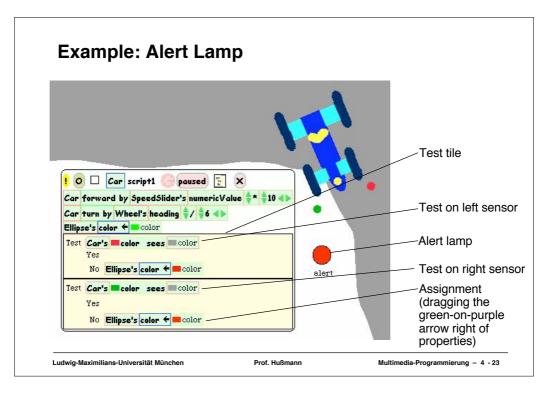
Watcher

- The values of object properties can be easily shown on the screen
 - Updated regularly and automatically
- · Technically, this is an "Observer" mechanism
 - Hidden behind simple drag&drop interface
- · Watcher:
 - Simple watcher (value), Detailed watcher (value plus label)
 - Can be obtained from menu left of property (in viewer)
 - Can be placed anywhere on screen


Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 21


Sensors for Environment

- · Squeak objects can easily observe where they are currently located
 - Through coordinates
 - Simpler: through colours
- · Sensors:
 - Realizable as special parts of the graphics with a unique colour
 - "color x sees color y" test: Which colour is below the sensor?
- · Example:
 - Grey road, car with two sensors
 - Alert lamp shall go red when one of the sensors is not on road


Ludwig-Maximilians-Universität München

Prof. Hußmann

Example: Auto-Steering

- Interaction among objects can be designed in control loops
- Example:
 - Car automatically moves forward
 - Sensor detects border of road
 - Car automatically steers to stay on the road
- Enables complex interactive learning experiences (setting up feedback loops)

Wheel control better removed at this stage?

Ludwig-Maximilians-Universität München

Prof. Hußmann

4 Overview on Approaches to Multimedia Programming

- 4.1 History of Multimedia Programming
- 4.2 Squeak and Smalltalk: An Alternative Vision

EToys: Visual Programming in Squeak

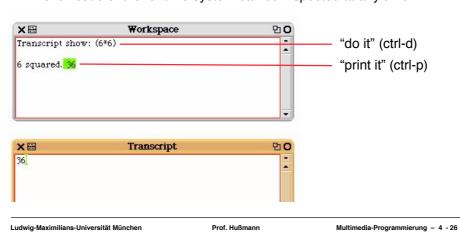
Introduction to Smalltalk

Multimedia in Squeak

- 4.3 Frameworks for Multimedia Programming
- 4.4 Further Approaches & Systematic Overview

Literature:

http://www.squeak.org (tutorials)


Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 25

Smalltalk Programming is Open & Interactive

- Smalltalk programs are always ready for execution, even small parts of the code can be evaluated instantly
- The interpreter state is saved/loaded in an "image" file.
- The full code of the runtime system can be inspected at any time.

Basic Rules of Smalltalk

- · Every variable is an object.
 - There are no basic types which are not objects!
 - Even classes are objects!
- · Code is always triggered by sending a message to an object.
- · All methods return a value.
- · There are three types of messages
 - Unary, e.g. 3 negated.
 - Binary, e.g. a + b.
 - Keyword, e.g. Transcript show: a.
 - » show message with parameter a is sent to object Transcript
- All code is evaluated from left to right.
 - Unary messages first, then binary, then keyword messages
 - There are no operator precedence rules.
- Assignment evaluates right hand side and assigns the result to left hand side.

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 27

Smalltalk Blocks

```
• a := [2 + 3].
a value. Result: 5
```

Assignment either by typing ":=" or by typing "_"

• c := [:a :b | a + b].

c value: 5 value: 7. Result: 12

(a multiple-part message)

x := 3.y := 5.(x = y)

ifTrue: [Transcript show: 'equal']

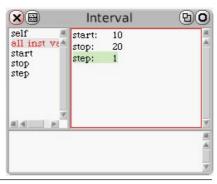
ifFalse: [Transcript show: 'not equal'].

Control flow realized by message passing mechanism

Ludwig-Maximilians-Universität München

Prof. Hußmann

Interval Objects and Loops


· An Interval object:

```
a := 10 to: 20.
```

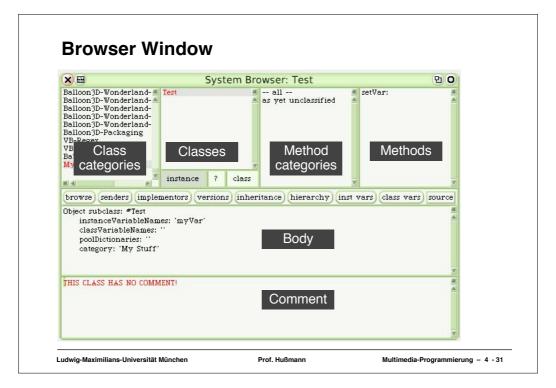
a inspect.

· Looping through the interval:

```
a do: [:i | Transcript show: i; cr].
```


Ludwig-Maximilians-Universität München

Prof. Hußmann


Multimedia-Programmierung – 4 - 29

Advanced Language Constructs in Squeak

- · Infinite number precision
 - 1000 factorial / 999 factorial. 1000
 - -(1/3) + (2/3).1
 - Float infinity + 1. Infinity
 - Float infinity / Float infinity. NaN
- · Lazy evaluation
- · High level iterators
 - -a := #(1 2 3).
 - a collect: $[:x \mid x*2]$. $\#(2 \ 4 \ 6)$
 - a reject: [:x | x odd]. #(2)

Ludwig-Maximilians-Universität München

Prof. Hußmann

BankAccount Example

- · Constructed interactively
 - Create new class template
 - Fill in instance variable (balance)
 - Fill in methods
 - » initialize
 - » deposit
 - » withdraw
- At any point in time, creation of objects and inspection is possible
- (Credits for the example: John Maloney)

Defining Classes: BankAccount

```
Object subclass: #BankAccount
   instanceVariableNames: 'balance'
balance
  ^ balance.
initialize
  balance := 0.
deposit: amount
  balance := balance + amount.
withdraw: amount
   (amount > balance)
      ifTrue: [^ self inform: 'No more money!'].
      balance := balance - amount.
Ludwig-Maximilians-Universität München
                             Prof. Hußmann
                                                Multimedia-Programmierung - 4 - 33
```

BankAccount with History

```
· Extend class with history variable
```

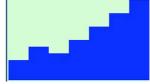
- Initialize with empty ordered collection

history := OrderedCollection new.

· Update history

```
balance: newBalance
 balance := newBalance.
 history addLast: newBalance.
deposit: amount
 self balance: (balance + amount).
withdraw: amount
  (amount > balance)
  ifTrue: [^self inform: 'No more money!'].
 self balance: (balance - amount).
```

Ludwig-Maximilians-Universität München


Prof. Hußmann

Graphical Object (Morph) for BankAccount

```
historyMorph
  "displays account history as barchart"
  | bars m |
 bars := history collect:
                    [:v | Morph new extent: 30@v].
 m := AlignmentMorph newRow
          hResizing: #shrinkWrap;
          vResizing: #shrinkWrap;
          cellPositioning: #bottomRight.
 m addAllMorphs: bars.
  ^m.
```

Make visible by:

acc historyMorph openInWorld.

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung – 4 - 35

Event Handling in Morphs

Morph subclass: #TestMorph category: 'My Stuff'

handlesMouseDown: evt

^ true

mouseDown: evt

self position: self position + (10 @ 0).

TestMorph new openInWorld.

Ludwig-Maximilians-Universität München

Prof. Hußmann

EToys and Smalltalk

- · Squeak contains a full Smalltalk development system
- EToy scripts can be switched between iconic or textual representation
- · EToy scripts are found in the browser hierarchy
- · EToy scripts are just shortcuts in writing Smalltalk

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia-Programmierung - 4 - 37

4 Overview on Approaches to Multimedia Programming

- 4.1 History of Multimedia Programming
- 4.2 Squeak and Smalltalk: An Alternative Vision

Squeak

EToys: Visual Programming in Squeak

Introduction to Smalltalk

Multimedia in Squeak

- 4.3 Frameworks for Multimedia Programming
- 4.4 Further Approaches & Systematic Overview

Literature:

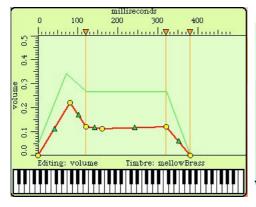
http://www.squeak.org

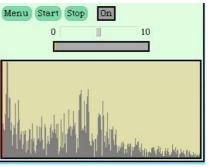
Ludwig-Maximilians-Universität München

Prof. Hußmann

Wonderland: 3D Worlds in Squeak

- 3D objects can be moved around in intuitively simple manner
 - Prefabricated models
 - Simple self-drawn sketches ("Pooh drawings")
- 3D objects are EToys.
- 3D objects can be manipulated with Smalltalk programs.


Ludwig-Maximilians-Universität München


Prof. Hußmann

Multimedia-Programmierung - 4 - 39

Squeak as a Multimedia Experimentation Platform

· Example: Sound in Squeak

Ludwig-Maximilians-Universität München

Prof. Hußmann

Example: Playing Musical Notes in Smalltalk

Ludwig-Maximilians-Universität München

Prof. Hußmann