
Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 1

3 Development process for
multimedia projects

3.1 Modeling of multimedia applications
3.2 Classical models of the software development process
3.3 Special aspects of multimedia development projects
3.4 Example: The SMART process
3.5 Agile development/Extreme Programming for multimedia

projects

Literature:
M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML Glasklar,

Hanser Wissenschaft Muenchen, 2003
David Frankel: Model Driven Architecture, OMG Press, 2003

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 2

Outline

1. Example technology: Macromedia Flash & ActionScript
1.1 Multimedia authoring tools - Example Macromedia Flash
1.2 Elementary concepts of ActionScript
1.3 Interaction in ActionScript
1.4 Media classes in ActionScript

2. Animation techniques in computer game programming
2.1 Computer games: History and classification
2.2 Design and animation of game characters
2.3 Game physics

3. Development process for multimedia projects
3.1 Modeling of multimedia applications
3.2 Classical models of the software development process
3.3 Special aspects of multimedia development projects
3.4 Example: The SMART process
3.5 Agile development/Extreme Programming for multimedia projects

4. Overview on approaches to multimedia programming
4.1 History of multimedia programming
4.2 Squeak and Smalltalk: An alternative vision
4.3 Frameworks for multimedia programming
4.4 Summary and trends

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 3

Development Process
• How to develope (large) interactive multimedia applications in a team?
• In Software Development: Development Methodologies
• Goals:

– Remind on all required steps based on experience from previous projects
– Structure process and allow scheduling of single steps
– Enhance structure and quality of results

Tool supportNotation
• Syntax for documents
• Types of diagrams
• E.g.; UML class diagram

Methods
• Analysis
• Transformations
• E.g: Object

oriented design

Process model
• Steps
• Order
• Results
• E.g: RUP

Development-
Methodology

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 4

Concrete Example for Your Project Work
• Popular example (method & notation): Object-oriented design-phase

using the Unified Modeling Language (UML)
• Basically, independent from selection of process model
• Advantages of visual modeling languages like UML:

– More precise and compact than informal documents like text or pictures
– Less complex and difficult to understand than formal methods like predicate

logic
• In this lesson we discuss design-phase for multimedia applications using

visual modeling languages
– Should be used for your project
– Provides an abstract overview (in terms of models) on the concepts shown in

the previous chapters on the example technology Flash
• Discussion of alternatives and process models in the subsequent

lessons

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 5

Are Software Engineering Concepts sufficient for
Multimedia Application Development?
• Basically, an interactive multimedia application could be regarded as

software
• Characteristics:

– Integration of media objects like sound, video, animation, 3D graphics, etc.
– High importance of the user interface
– High degree of interaction

• Consequence: Different kinds of design in multimedia development
– Software design
– But also very important: User Interface Design
– But also very important: Media Design (may require huge effort!)

• Plain UML not sufficient:
– Low support for user interface elements
– Barely support for media objects

• Required: Modeling language adapted to the characteristics of
multimedia applications

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 6

A Modeling Language for Multimedia Applications
• No standard available
• One research approach considered here: Multimedia Modeling Language (MML)
• MML is an independent modeling language which reuses concepts from UML
• Problem: Tool support
• Solution: Provided as a Profile („plug-in“) for UML

– Many UML tools support UML Profiles
– MML available as Profile for the UML tool MagicDraw

• Most important element in a UML Profile: Stereotype
– Extends or adapts an existing UML model element for a specific purpose
– Example: UML Profile for Java contains a Stereotype <<JavaClass>> (in contrast to

UML classes, Java classes do not support multiple inheritance)
– Stereotypes denoted in guillemets «»

• Diagrams on the following slides are taken from MagicDraw (using MML-plugin)
– For explanation purposes, all Stereotypes are visible in the diagrams
– To get clearer diagrams it is also possible to hide Stereotypes in MagicDraw diagrams

<<JavaClass>>
Account

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 7

Example Application: Break Out Game

• (Smaller) games are good examples for interactive multimedia
applications

– They traditionally make intensive use of media objects, interaction and
complex user interfaces

– Their functionality can be easily understood without specific domain
knowledge

Ball

Paddle

Bricks

Off field

Wall

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 8

Abstract User Interface
Diagram

Diagrams in MML

Structure

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 9

Abstract User Interface
Diagram

Diagrams in MML

Structure

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 10

Application Structure Diagram
Motivation:
• Structure of application logic in terms of a domain model analogous to

conventional applications
• In addition: media components as core assets of the application as

– Usage of specific media types is often a core requirement for the application
– Provision of media objects can be a appreciable part of the development process

• Integration of media components and application logic
– Can require a specific inner structure of a media component

Parts:
• Application Entities for application logic
• Media components
• Scene classes (see Scene Model)

Notation:
• UML class diagram, extended with elements for media components

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 11

Application Structure: Application Entities
Example

<<ApplicationEntity>>
Player

-lives : int
-score : int

+getLives() : int
+increaseScore(increment : int)
+decreaseLives()

<<ApplicationEntity>>
Ball

+startMoving()
+move()
+init()
+rebound()

<<ApplicationEntity>>
BlockOut

<<ApplicationEntity>>
Level

-number : int

+countBricks() : int

<<ApplicationEntity>>
Brick

+hit()

<<ApplicationEntity>>
Paddle

-leftRight : int

+reboundBall()
+move()

1

+level
1

-bricks

0..*-level
1

+ball
1

+level
1

+level
0..*

+blockOut
1

+player1

+blockOut

1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 12

Application Structure: Application Entities
Model Elements
• Analoguous to UML class diagram
• Classes for application logic marked as application entities to distinguish

them from other kinds of classes
• Classes with attributes and operations

– Attributes have a type and a default value
– Operations may have parameters and a return value

• Associations between classes
– Have a role name at each end
– Have a multiplicity at each end, e.g. ‚1‘, ‚0..2‘ or ‚*‘ (default: 1)
– Arrows show which ends are naviable (no arrows: bidirectional)
– Aggregation or composition

• Generalizations between classes

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 13

Application Structure: Media Components
Example

<<Graphics>>
LevelGraphic

<<Graphics>>
Wall

<<Graphics>>
OffField

<<ApplicationEntity>>
Player

-lives : int
-score : int

+getLives() : int
+increaseScore(increment : int)
+decreaseLives()

<<Animation2D>>
PaddleAnimation

<<ApplicationEntity>>
Ball

+startMoving()
+move()
+init()
+rebound()

<<ApplicationEntity>>
BlockOut

<<ApplicationEntity>>
Level

-number : int

+countBricks() : int

<<ApplicationEntity>>
Brick

+hit()

<<ApplicationEntity>>
Paddle

-leftRight : int

+reboundBall()
+move()

<<Animation2D>>
BallAnimation

<<Animation2D>>
BrickAnimation

<<Audio>>
BrickSound

<<MediaRepresentation>>
leftRight

<<MediaRepresentation>>

1

+level
1

-bricks

0..*-level
1

+ball
1

+level
1

+level
0..*

+blockOut
1

<<MediaRepresentation>>
1

<<MediaRepresentation>>
hit

+player1

+blockOut

1

<<MediaRepresentation>>

<<MediaComposition>><<MediaComposition>>

3

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 14

Application Structure: Media Components
Model Elements (1)
• Media component is type of 2D-animation (i.e. MovieClip in Flash), 3D-

animation, audio, video, text, image, graphics
• A media component includes (automatically) the standard functionality to

present (and eventually manipulate) the media object
– Image is decoded and displayed
– Video can be played, paused, stopped etc.

• Each media component represents an application entity
– Specfied in the model by Media-Representation relationship between

application entity and media component
– Media-Representation may have multiplicities if an object is represented by

multiple media components or if a media component represents multiple
objects

– Can be annotated with a specific attribute or operation represented by the
media component, e.g. PaddleAnimation represents the value leftRight from
Paddle

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 15

Application Structure: Media Components
Model Elements (2)
• Inner structure of media components can be specified if necessary

– Only necessary if application logic must access inner parts of the component
– Additional example: the wheels of an animated racing car should turn when the car

drives through a corner
• Inner components are connected with their parent by Media-Composition

relationship
• Media Components can provide operations, e.g. play() for a video or run() and

jump() for an animated character

• Hierarchy of Sub-Components
• Media-Composition my have

multiplicity to specify e.g. a flexible
number of children

• (In MagicDraw: Sterotypes
SubAnimation and
MediaComposition have to be added
manually)

<<Animation2D>>
Character

<<SubAnimation2D>>
Head

<<SubAnimation2D>>
Body

<<SubAnimation2D>>
Arm

<<SubAnimation2D>>
Leg

<<SubAnimation2D>>
Hand

<<SubAnimation2D>>
Foot

22

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 16

Abstract User Interface
Diagram

Diagrams in MML

Structure

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 17

Scene Diagram
Motivation:
• Overall behavior and navigation
• Captures ideas e.g. from storyboards or derived from task models
• Shows the different “screens” of the application and the navigation

between them
– (however as MML is platform independent: a scene must not be necessarily

be realized by a visual “screen”, for instance think of speech dialogue
applications)

Parts:
• Scenes an Transitions between them

Notation:
• Adapted UML state charts

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 18

Scenes
Example

Help
<<Scene>>

Menu
<<Scene>>

Game
<<Scene>>

Score
<<Scene>>

HighScore
<<Scene>>

startState endState

<<history>>

<<history>>

<<history>>

<<history>>

startGame(p : Player, hasSound : Boolean)

resumeMenu()

resumeMenu()

initialMenu()

levelFinished(p : Player)

nextLevel() [p.lives>0]

menuHelp() gameOver(p : Player)resumeMenu()

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 19

Scenes in the Scene Diagram
• Scene: represents a specific state of the user interface (e.g. a ‚screen‘)

– Can have an internal state, i.e. class properties
• Entry-Operations, Exit-Operations: specific kind of operations of a scene

which are executed when scene is entered/exited
• Transitions between scenes correspond to execution of exit-operation in

the source scene and entry-operation in the target scene.
– Name of addressed entry-operation is denoted next to the transition

• History: Entry into a scene might sometimes require to resume the last
state of the scene.

– Example: the user views a video, leaves scene to view the help, and wants
to continue the video afterwards.

– Keyword history specifies that an entry-operation of a scene resumes the
scene‘s previous state.

• Scenes can have attributes and operations => additionally modeled as
classes in the class diagram tagged with the keyword scene.

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 20

Scenes in the Application Structure Diagram
• In addition, scenes are modeled in the application structure diagram to

specify their attributes and operations
– Entry-Operations with parameters to initialize the scene
– Exit-Operations which clean up the scene and invoke the subsequent scene

• Basically, scenes can be part of the structure diagram like application
entities

– Additional attributes and operations required for functionality of the scene
– Scenes may be associated with media components

» Example: An application starts with a intro video. As the intro video does
not represent an application entity, it is associated with a corresponding
scene „Intro“

• Recommendation: If possible, try to separate scenes from application
logic

– Scenes can receive required objects through parameters of their eintry-
operations

– Like in the block-out example, there is a separate scene „Game“ instead of
defining „Level“ as a scene

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 21

Application Structure Diagram enhanced with Scenes

<<Scene>>
Game

+nextLevel()
+startGame(p : Player, hasSound : Boolean)

<<Graphics>>
LevelGraphic

<<Graphics>>
Wall

<<Graphics>>
OffField

<<ApplicationEntity>>
Player

-lives : int
-score : int

+getLives() : int
+increaseScore(increment : int)
+decreaseLives()

<<Scene>>
Score

+levelFinished(p : Player)

<<Scene>>
Help

+menuHelp()

<<Scene>>
HighScore

+gameOver(p : Player)

<<Scene>>
Menu

+initialMenu()
+resumeMenu()

<<ApplicationEntity>>
BlockOut

<<ApplicationEntity>>
Level

-number : int

+countBricks() : int

+level
0..*

+blockOut
1

+player1

+blockOut

1

<<MediaRepresentation>>

<<MediaComposition>>

3

<<MediaComposition>>

…

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 22

Abstract User Interface
Diagram

Diagrams in MML

Structure

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 23

Abstract User Interface Diagram
Motivation:
• Platform independent specification of a scene‘s user interface in terms of abstract user

interface components
• Specifies the elements required to allow the user to fulfill all his task
• Derived e.g. from task analysis, storyboards, mock-ups, etc.
• User interface components represent application entities from the application structure

diagram
• In a multimedia application, user interface components are partially realized by media

components
• Temporal media components may cause additional events beside events from user

interface components (e.g. termination of a video, collision of an animation)

Parts:
• For each scene:

– User interface components and UI-Representations
– Media Components and UI-Realizations
– Sensors

Notation:
• Similar to various user interface modeling languages (no corresponding UML diagram type)
• Can be combined with additional diagrams (e.g. concrete presentation diagram) or

sketches to document a corresponding specific idea of the concrete layout

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 24

Abstract User Interface: User Interface Components
Example for Scene Game

<<UIContainer>>
Level

<<OutputComponent>>
LevelNumber

<<OutputComponent>>
PlayerScore

<<OutputComponent>>
PlayerLives

<<OutputComponent>>
Ball

<<OutputComponent>>
Brick

<<ActionComponent>>
startMoving

<<InputComponent>>
PaddleLeftRight

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 25

Abstract User Interface: User Interface Components
Model Elements
• Each Scene has exactly one presentation unit containing the scene‘s

user interface in terms of abstract User Interface Components
• Abstract User Interface Components (UIC):

– Input-Components: Allows the User to input data (like a textfield)
– Output-Component: Provides Information to the User (like a text label)
– Edit-Component: Provides the User information and allows to edit it (like a

textfield containing text)
– Action-Component: Allows the User to invoke an Action without data input

(like a button)
– Selection-Component: Specialization of Edit-Component which allows the

user to select from a set of items
– Notification-Component: Specialization of Output-Component used to notify

the user on specific situations (like a message box)
– UI-Container used to structure UICs (like a Panel)

• UIC can have multiplicity to specify the number of its instances in the
presentation unit (default: 1)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 26

Abstract User Interface: UI-Representations
Example for Scene Game

<<UIContainer>>
Level

<<OutputComponent>>
LevelNumber

<<OutputComponent>>
PlayerScore

<<OutputComponent>>
PlayerLives

<<OutputComponent>>
Ball

<<OutputComponent>>
Brick

<<ActionComponent>>
startMoving

<<InputComponent>>
PaddleLeftRight

<<ApplicationEntity>>
Player

-lives : int
-score : int

<<ApplicationEntity>>
Ball

<<ApplicationEntity>>
Paddle

-leftRight : int

+reboundBall()
+move()

<<ApplicationEntity>>
Brick

<<ApplicationEntity>>
Level

-number : int

<<ApplicationEntity>>
Ball

+startMoving()
+move()
+init()
+rebound()

<<UIRepresentation>>
startMoving

<<UIRepresentation>>
number

<<UIRepresentation>>
score

<<UIRepresentation>>
lives

<<UIRepresentation>> <<UIRepresentation>>
leftRight

<<UIRepresentation>>
0..*

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 27

Abstract User Interface
Model Elements
• UICs represent application logic (application entities) from the application

structure diagram
• UI-Representation relationship analogous to Media-Representations in

the application structure diagram
– Can have multiplicities
– Can specify an attribute or operation which is represented by the UIC

• Hint for usage of modeling tools (like MagicDraw):
– Complete overall model is contained in repository („Containment-Tree“,

„Explorer-Window“)
– Each diagram is just a specific view on the overall model
– One model element can be visible in multiple diagrams and multiple times

within one digram
– To reuse application entities within the user interface diagram, just drag them

from the containment tree into the user interface diagram
– Important conclusion: to delete a model element from the overall model, it

must be deleted from the repository (not just delete it from a diagram!)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 28

Abstract User Interface: UI-Realizations
Example for Scene Game

<<UIContainer>>
Level

<<OutputComponent>>
LevelNumber

<<OutputComponent>>
PlayerScore

<<OutputComponent>>
PlayerLives

<<OutputComponent>>
Ball

<<OutputComponent>>
Brick

<<ActionComponent>>
startMoving

<<InputComponent>>
PaddleLeftRight

<<Graphics>>
LevelGraphic

<<Graphics>>
Wall

<<Graphics>>
OffField

<<Animation2D>>
PaddleAnimation

<<Animation2D>>
BallAnimation

<<Animation2D>>
BrickAnimation

<<Audio>>
BrickSound

<<UIRealization>>

<<UIRealization>>

<<UIRealization>>

3

<<UIRealization>>
<<UIRealization>>

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 29

Abstract User Interface: UI-Realizations
Model Elements
• Media Components from application structure diagram can realize UICs
• Specified by UI-Realization relationship
• Consequence for implementation:

– UICs realized by media components means that the media component is
used on this user interface and (in addition) provides the functionality of the
respective UIC (e.g. listens to mouse events)

– Remaining UICs are implemented by conventional widgets (buttons,
textfields, checkbox, etc.)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 30

Abstract User Interface: Sensors
Example for Scene Game

<<UIContainer>>
Level

<<OutputComponent>>
LevelNumber

<<OutputComponent>>
PlayerScore

<<OutputComponent>>
PlayerLives

<<OutputComponent>>
Ball

<<OutputComponent>>
Brick

<<ActionComponent>>
startMoving

<<InputComponent>>
PaddleLeftRight

<<Graphics>>
LevelGraphic

<<Graphics>>
Wall

<<Graphics>>
OffField

<<Animation2D>>
PaddleAnimation

<<CollisionSensor>>
WallCollision

<<CollisionSensor>>
OffFieldCollision

<<CollisionSensor>>
BrickCollision

<<CollisionSensor>>
PaddleCollision

<<Animation2D>>
BallAnimation

<<Animation2D>>
BrickAnimation

<<Audio>>
BrickSound

test

test

<<UIRealization>>

<<UIRealization>>

<<UIRealization>>

3

test test

<<UIRealization>>
<<UIRealization>>

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 31

Abstract User Interface: Sensors
Model Elements
• Temporal media components may cause additional events beside events

from user interface components (e.g. termination of a video, collision of
an animation)

• Time Sensor: notifies about temporal events
– End of a video
– Specific time interval

• Collision Sensor: notifies about collision of animations with other media
components

– Relationship test specifies which other media components are observed
• Visibility Sensor: notifies if a media objects becomes visible/invisible

(e.g. if a media object becomes masked by a moving animation)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 32

Abstract User Interface
Diagram

Diagrams in MML

Structure

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 33

Interaction Diagram
Motivation
• Overall interaction flow/dialogue between the user and the application
• Integrates events from UICs and sensors with the application logic

Parts:
• For each scene an activity

Notation:
• UML activity diagram with limited set of actions and with references to

AUIs and sensors from the media user interface

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 34

Interaction Diagram
Example for Scene Game

<<structured>>

<<CallOperationAction>>
move_ball

<<CallOperationAction>>
move_paddle

Collision_Paddle Collision_OffieldCollision_Wall Collision_Brick

<<AcceptUIInputAction>>
leftRight_input

<<AcceptUIInputAction>>
startmoving_input

<<CallOperationAction>>
init_Ball

<<CallOperationAction>>
dcrlives_Player

<<CallOperationAction>>
hit_Brick

<<CallOperationAction>>
startmoving_ball

<<CallOperationAction>>
reboundBall_Paddle

…

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 35

Interaction Diagram
Model Elements (1)
• Program flow is specified like in UML

Activity Diagrams
– Start Node and End Node
– Decision Node and Merge Node for

decisions („if“)
– Fork Node and Join Node for parallel

actions

• Action in MML: Calls an operation
from the structural model (all Actions
in MML are from type
CallOperationAction)

• In MagicDraw: Target operation is
specified in the Action‘s property
window (see figure: operation init()
from application entity Ball)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 36

Interaction Diagram
Model Elements (2)
• In addition, program flow is influenced by events from UICs or sensors
• Types of events (signals):

– SendUIOutputAction: sends an output to an AUI from the media user
interface diagram

– AcceptUIInputAction: receives an input from an AUI from the media user
interface diagram

– AcceptsSensorEventAction: receives an event from a sensor from the media
user interface

• „OnEnterFrame()“ in Flash can be modeled using a time sensor

• By default, an action with multiple incoming
flows waits until all preceding actions/events
are executed

• An interruption region is used to specify that
all its contained actions can be interrupted
by an event (use “Strukturierter
Aktivitätsknoten” in MagicDraw)

<<AcceptUIInputAction>>
startmoving_input

<<CallOperationAction>>
init_Ball

<<CallOperationAction>>
startmoving_ball

<<structured>>

<<AcceptSensorEventAction>>

<<CallOperationAction>> <<CallOperationAction>>

<<CallOperationAction>>

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 37

MML: Summary

+ Behavior:
• Scene Diagram for behavior between scenes
• Interaction Diagram for behavior within scenes

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 38

Code Generation:
Integration of authoring tools

Structure and integration
managed in model

• How to integrate – for the creative design tasks - the powerful multimedia
authoring tools into the model-driven development process?

Generate code for:
• Classes and class attributes
• Overall behavior
• Integration of media objects and the user interface
Generate placeholders for:
• Class operations
• Media objects
• User interface objects and layout

Creative design
performed in
authoring tools

MML
Model

Flash

Director

SVG/JavaScript

…

Manual Completion
in Authoring Tool

Manual Completion
in Authoring Tool

Manual Completion
in Authoring Tool

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 39

Transformation into Code-Skeletons

• FLA-File
• ActionScript Class which loads the single scenes according to the
scene diagram

Multimedia
Application

• Placeholders on the stage in the related scene; if a media component
realizes the AUI, then the media component (from the library) is placed
on the stage
• ActionScript Class (‘View’, ‘Observer’)

Abstract UI
Components

• FLA-File containing placeholders for all media components in its
library; library will be used as shared library for the different scenes
• ActionScript Class (‘View’, ‘Observer’)

Media Components

• FLA-File showing the scene‘s user interface,
• ActionScript Class (‘Controller‘): entryOperations, exitOperations, code
for interaction

Scenes
Placeholders for operation bodiesClass Operations
ActionScript Classes (‘Model’, ‘Observable’)Classes

Generated CodeModel

