
Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 74

2 Development process for
multimedia projects

2.1 Classical models of the software development process

2.2 Special aspects of multimedia development projects

2.3 Example: The SMART process

2.4 Agile Development and Extreme Programming
for multimedia projects

2.5 Modeling of multimedia applications
Models in the software development process
Specification of modeling languages
MML: A modeling language for multimedia applications

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 75

Models

• How to denote the concepts found during analysis and design phase of
the software development process?
a) Non-formal: e.g. in natural language.

– Pro: easy to read and write
– Contra: large descriptions, often inconsistent and ambiguous

b) Formal: e.g. with mathematical formulas
– Pro: formal proof of correctness and consistency possible
– Contra: requires expert knowledge

c) Semi-formal: e.g. graphical models
– Compromise between both

• Model: ‘a simplified image of a system’
• Different views on a system, e.g. structure vs. behavior
• Different levels of abstraction, e.g. use case vs. program flow
• Notation: for software development often graphical models (e.g. UML).

Advantage: compact, (relatively) easy to understand

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 76

Example: Unified Modeling Language

• Specified by Object Management Group (OMG)
• Unifies 13 different types of diagrams (version 2.0)
• Example here: Class diagram

Seminartyp
titel

Veranstaltung
datum

ort
kapazität

erfassen()
anbieten()
prüfen()

stornieren()

Buchung
datum
status

bestätigen()
stornieren()

Kunde
umsatz

Person
name

adresse

drucken()

Dozent
honorarsatz

bucht

1 1
belegt

bietet an

führt durch

**

*1 *

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 77

Model-Driven Development
• Model-Driven Development (often referred to as Model-Driven Engineering):

Development process with models as core assets
• Idea:

– ‘Programming’ on an abstract conceptual level using models
– Implementation code is generated automatically from models
– Expert knowledge about implementation details is put into the code generator

• Ideal case:
– Complete development process is covered by models
– No manual completion of code required; code is completely represented by models (on

the required level of abstraction)
• Requirements:

– Various models available to cover development process:
» Different levels of abstraction during development
» Different views on the system to cover all aspects of the system

– Transformations (mappings) between the models
» Forward, to derive more concrete models from earlier models in a consistent way

and to increase efficiency
» Backwards, to allow iterations (discussed later)

• Transformations specified explicitly and treated as assets of their own
– Customizable

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 78

Model-Driven Architecture
• Model-Driven Architecture (MDA): A concrete framework defined by the

OMG for the realization of MDD
• CIM: Computation independent model
• PIM: Platform independent model
• PSM: Platform specific model

PSM 1 Code
(Platform 1)

Transfor-
mation 1-2

CIM PIM

Transfor-
mation 0

PSM n Code
(Platform n)

Transfor-
mation n-2

…

Transfor-
mation 1-1

Transfor-
mation n-1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 79

2 Development process for
multimedia projects

2.1 Classical models of the software development process
2.2 Special aspects of multimedia development projects
2.3 Example: The SMART process
2.4 Agile Development and Extreme Programming

for multimedia projects
2.5 Modeling of multimedia applications

Models in the software development process
Specification of modeling languages
MML: A modeling language for multimedia applications

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 80

Customization of Modeling Languages
• Model-driven development requires a set of models customized for the different

development tasks
• Aspects of the required modeling language:

– Application domain, e.g. business application or multimedia application
– Level of abstraction, e.g. for analysis level or implementation level
– On low abstraction levels: target platform

» Implementation technology, e.g. programming languages or frameworks like
Enterprise Java Beans

» Device, e.g. mobile phone or PDA
• Plain UML does not always address all these aspects in an optimized way

=> definition of customized languages
• How to define a (graphical) modeling language?

– Many possible options: Context-free grammars, EBNF, …
– Idea in modeling community: Define the modeling language by a model itself!

• Metamodel: model which specifies a modeling language. Contained elements
often called metaclasses

• OMG defined Four-Layer-Architecture as framework for the definition of
metamodels and models
– Allows compliant models, tools and interchange formats

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 81

The OMG Four-Layer-Architecture
• Layer M1: models, e.g. conventional

UML model (or any other
customized model)

• Layer M0: the running application,
consisting of concrete instances of
the model (i.e. objects which are
instances from classes of an UML
class diagram)

• Layer M2: metamodel, e.g. the UML
metamodel which specifies the UML

• Layer M3: meta-metamodel, defined
by OMG, called MOF (meta object
facility)

• Metamodel defines only ‘abstract
syntax’ of a modeling language

• A complete definition of a modeling
language requires additional rules
(well-formedness rules), and a
definition of the semantics and the
notation of the modeling elements

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 82

Options for the Specification of Modeling Languages
in the OMG Four-Layer Architecture
1. Specification of a new, independent metamodel from scratch

• E.g. using MOF or similar
• Pro: no restrictions for optimized customization of the language
• Contra: much effort, difficult for large modeling languages

2. Customization or extension of the UML metamodel
• Adding metaclasses to the UML metamodel
• Pro: UML metamodel well-defined by experts and widely known
• Contra: might lead to metamodels which do not optimally fit to the own

problem (e.g. too large or to few difference from UML)

3. Specification of an extension of UML using the built-in UML extension
mechanisms
• A UML Profile is kind of “plug-in“ to customize the UML (see next slide)
• Pro: UML tools with UML profile support can be used as modeling tool for

the customized modeling language
• Contra: Limited customization, only specialization of existing UML

metaclasses

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 83

UML Built-in Extension Mechanisms

• A Stereotype defines a new, specific subtype of an existing UML metaclass.
• Properties of a stereotype:

– Name
– Base class, i.e. the UML class which is extended through the stereotype
– Attributes; primitive types or references to other metaclasses
– Optionally a graphical icon which represents the stereotype in a model

• Application: in a model a stereotype is denoted like ist base class, branded with the name
of the stereotypes (in guillemets «») and an optional icon.

• Example: Stereotype «JavaClass» to model a class in the programming language Java
(difference to plain UML e.g.: no multi-inheritance, property final)

• A Profile (i.e. a specific package) contains a set of stereotypes for a specific purpose (e.g.
for a Java-specific model)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 84

2 Development process for
multimedia projects

2.1 Classical models of the software development process
2.2 Special aspects of multimedia development projects
2.3 Example: The SMART process
2.4 Agile Development and Extreme Programming

for multimedia projects
2.5 Modeling of multimedia applications

Models in the software development process
Specification of modeling languages
MML: A modeling language for multimedia applications

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 85

Specific Challenges in Multimedia Development

General goals:
• Efficient and well-structured development methods
• Application of software engineering principles

Main challenges (in contrast to conventional applications):
1. Importance of creative design tasks

�Multimedia authoring tools which are oriented towards creative design
aspects (e.g. allow visual composition of the application)

�Problem: Low support for software design phase and for structuring the
application

2. Requires knowledge about media design, user interface design, and
software design
�Different developer groups involved in development process
�Problem: Integration, e.g. by clearly specified interfaces

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 86

Solution Approach

Derived from conventional software development:
• Design phase using an abstract visual model of the application (e.g.

Unified Modeling Language)
• Generation of application code (skeletons) from the models (Model

Driven Development)

Resulting benefits for multimedia applications:
• Specification of platform independent concepts of the application
• Better structured applications
• Integration of different developer groups
• Concrete realization can still be done in authoring tool with visual support

for creative design tasks

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 87

Modeling of Multimedia Applications
• Specific characteristics of multimedia applications:

– Integration of media objects like sound, video, animation, 3D graphics, etc.
– High importance of the user interface
– High degree of interaction

• Plain UML lacks of sufficient support for these characteristics
• Several modeling approaches (mainly in research):

– Modeling of User Interfaces (e.g. UsiXML, CanonSketch, UMLi, …)
– Modeling the integration of media objects (e.g. OMMMA)

• Example (shown here): Multimedia Modeling Language (MML):
• Modeling language, based on UML 2.0, customized for modeling interactive

multimedia applications
• Specified as metamodel which extends the UML metamodel
• Aims to integrate software design, user interface design, and media design
• Four kinds of diagrams:

– Application structure
– Scenes
– Abstract User Interface
– Interaction

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 88

Example Application: Break Out Game

• Not all kind of gaming applications are expected to be developed using a
modeling language like MML (e.g. high-end 3D games)

• But: (Smaller) games are a good example to show the modeling
language as

– They traditionally make intensive use of media objects, interaction and
complex user interfaces

– They main requirements for the application are usually easy to understand

Ball

Paddle

Bricks

Off field

Wall

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 89

Application Structure Diagram
Motivation:
• Structure of application logic in terms of a domain model analogous to conventional

applications
• In addition: media components as core assets of the application as

– Usage of specific media types is often a core requirement for the application
– Provision of media objects can be a appreciable part of the development process

• Integration of media components and application logic
– Can require a specific inner structure of a media component

Notation:
• UML class diagram, extended with elements for media components
Specific model elements:
• Domain model classes referred to as application entities to distinguish from other kinds of

classes
• Media components representing a specific media type, like Animation2D, Animation3D,

Audio, Video, …
• Media Representation: Relationship which specifies that an application entity is

represented by a media component
– Multiplicities to specify relationships other than 1:1

• Inner structure of media components denoted as a hierarchical tree (similar to a scene
graph for 3D applications) within the media component

– Edges can be branded with a multiplicity

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 90

Example: Application structure
for Break Out Game Application Media

ComponentMedia
Representation

Inner
Structure

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 91

Metamodel for class diagram (extract)
Relationship

Type TypedElement
0..1

+type

0..1

AggregationKind
none
shared
composite

<<enumeration>>

Property owned by Association => not
navigable from class;
Property owned by class => navigable

LiteralSpecification

LiteralBoolean
value : Boolean

Li teralString
value : String

LiteralInteger
value : Integer

LiteralNullPrimitiveType EnumerationLiteral

Enumeration

0..n

0..1

+literal0..n

+enumeration
0..1

DataType

LiteralUnlimitedNatural
value : UnlimitedNatural

OpaqueExpression
body : String
language : String

Association

MultiplicityElement

Generalization

Property
aggregation : AggregationKind = none
visibility : VisibilityKind = public
isStatic : Boolean = false

0..10..n

+owningAssociation

0..1

+ownedEnd
0..n

0..12..n
+association

0..1
+memberEnd

2..n

ValueSpecification

0..1

0..1

+defaultValue
0..1

+owningProperty
0..1

0..10..1
+upperValue

0..1
+ownerUpper

0..1

0..10..1
+lowerValue

0..1
+ownerLower

0..1

Class
isAbstract : Boolean = false

0..n

1

+generalization
0..n

+specific
11

+general
1 0..1

0..n

+class

0..1

+owned
Attribute

0..n

Parameter

0..1

0..1

+defaultValue
0..1

+owningP
arameter
0..1

Operation
visibility : VisibilityKind = public
isStatic : Boolean = false0..n

0..1

+ownedOperation
0..n

+class
0..1

0..n

0..1 +formalParameter

0..n+operation

0..1

0..1

0..1 +returnResult
0..1

+ownerReturnParameter0..1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 92

Metamodel for media components

SubGraphics

ImageRegion

TextGraphicsImage

DiscreteMediaMediaTemporalMediaCuePoint

Video Audio Animation

Light3DCamera3D

Transformation3D

Object3D

Viewpoint3D

Animation3D

AnimationPart3D

SubAnimation2D

Transformation2D

Animation2D

AnimationPart2D

+part0..n

+part 0..n

+owner1

0..n

1
+owner 1

0..n

1

+media 0..n
+temporal

Media

1

+cuePoint

0..n0..n 1

+owner0..1

+part 0..n0..n

0..1

+child
0..n0..n

0..1

+parent

0..1

+owner0..1

+part0..n0..n

0..1

+child
0..n0..n

0..1

+parent

0..1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 93

Scene Diagram
Motivation:
• Structure of the overall behavior
• Captures ideas e.g. from Storyboards

Notation:
• Adapted UML state charts

Specific model elements:
• Scene: represents a specific state of the user interface (e.g. a ‚screen‘)

– Can have an internal state, i.e. class properties
• EntryOperations, ExitOperations: operations of a scene which are executed when scene is

entered/exited
• History: Entry into a scene might sometimes require to resume the last state of the scene.

Example: the user views a video, leaves scene to view the help, and wants to continue the
video afterwards. The Keyword history specifies that a entryOperation of a scene resumes
the scene‘s previous state.

• Transitions between scenes correspond to execution of exitOperation in the source scene
and entryOperation in the target scene.

– Name of addressed entryOperation is denoted next to the transition
• Scenes can have attributes and operations => additionally modeled as classes in the class

diagram tagged with the keyword scene.

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 94

Example: Scenes
for Break Out Game Application

Scene

Transition

EntryOperation of
Scene ‘Game‘

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 95

Metamodel for scene diagram

State

ApplicationStart ApplicationExit

StartState

1

1

+applicationStart 1

+startState 1

EndState

1

1

+applicationExit1

+endState1

MultimediaApplication

1

1

+startState 1

+multimediaApplication

1

1

1

+endState1

+multimediaApplication

1

EntryOperation

Scene
1

1..n

+scene

1
{redefines class}

+entryOperation
1..n

ExitOperation

1

1..n

+scene

1

{redefines class}

+exitOperation
1..n

{derived} Constraint

State

StateEntry

Transition

0..1
0..1

0..1
0..1

1..n1
+/incoming

1..n
+/source
1

1..n1
+/outgoing

1..n
+/target
1

1

0..n

+callee 1

0..n

StateExit

1

1

1

+trigger1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 96

Metamodel for MML-specific classes

ApplicationEntity

EntryOperation
+ history : Boolean

ExitOperation

Scene

Class
(from uml)

MMA_Class

Operation
(from uml)

MultimediaApplication Association
(from uml)

DataType
(from uml)

+entryOperation1..n

+exitOperation
1..n

+scene
1 {redefines class}

1..n

1+scene 1
{redefines class}

1..n

1

+mma_Class 0..n

+multimedia
Application

1

+multimedia
Application

1
+multimedia
Application

1

0..n

1

+association

0..n0..n1

+data
Type

0..n0..n 1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 97

Abstract User Interface Diagram
Motivation:
• Platform independent specification of a scene‘s user interface in terms of abstract user

interface components
• Captures interaction elements resulting from the tasks to be fulfilled from the user or from

user interface sketches
• User interface elements are related to elements from the application structure diagram

Notation:
• Similar to various user interface modeling languages (no corresponding UML diagram type)
• Can be combined with additional diagrams (e.g. concrete presentation diagram) or

sketches to document a corresponding specific idea of the concrete layout
Specific model elements:
• Abstract user interface components (AUIs):

– Input Component: allows the user to input some data; Output Component: presents data to the
user; Edit Component: Combination of input and output component; Action Component: allows the
user to invoke an action (without data input)

– Multiplicity to specify multiple occurrence of an AUI
• UIRepresentation: relationship which specifies that an AUI is associated with a class

(application entity or scene), class property, or class operation from the application
structure diagram

– Multiplicities to specify relationships other than 1:1
• Presentation Unit: Top-most container for the AUIs; assigned to a scene
• UI container: to be used for further structuring of the AUIs

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 98

Example: Abstract User Interface
for Scene ‘Game’

Output
Component

Edit
Component

Action
Component

Presentation
Unit

Multiplicity

Assigned
Class/Property

/Operation

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 99

Metamodel for abstract user interface components

InputCompo
nent

OutputComp
onent

ActionComponent

EditCompo
nent

NotificationCo
mponent

SelectionComp
onent

MultiplicityElement
(from uml)

Scene

Presentatio
nUnit

0..1

1

+present
ationUnit 0..1

+scene 1

UIContainer

AbstractUIComponent

0..n

1

+aUIComponent
0..n+present

ationUnit

1

0..n

0..1

+containedAUI
0..n

+container
0..1

0..n
1

+layoutProperties

+owner
1

+realizedAUI
1

BoundingBox
x : int
y : int
width : int
height : int

SpacialProp
erties

1

1

+boundingBox 1

+owner 1

RectangleBox

EllipseBox

LayoutProperties

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 100

Metamodel for UIRepresentation and MediaRepresentation

Relationship
(from uml)

MultiplicityElementMultiplicityElement

AbstractUIComponent

UIRepresentationClassEnd UIRepresentationUIEnd

Media

UIRepresentation

Property
(from uml)

MediaRepresentationClassEnd MediaRepresentationMediaEnd

Operation
(from uml)

MediaRepresentation

MMA_Class

+uiElement1

+classEnd

1

+representation1

1

1+uiElementEnd
1

+m edia1

+uiRepres
entation

11

1

+uiRepresentation
1

1

1

+represented
Property

0..n0..n

+represented
Property

0..n

0..n
+classEnd

1
+representation1

1

1

+mediaEnd
1

+represented
Operation0..n0..n

+represented
Operation

0..n
0..n

+mediaRepr
esentation

11

1
+mediaRep
resentation

1

1

1

0..n

0..n

1

0..n

+represented
Class 1

+represented
Class

1

0..n

1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 101

Media User Interface
Motivation:
• Integration of media and user interface elements
• Some of the elements found during user interface design are realized by the

application‘s media components, others are realized in no specific way (they can
be realized by common standard widgets for the respective taget platform)

• The integration of temporal media components can lead to additional events not
triggered from the user (e.g. collision of animations or end of a video)

Notation:
• Abstract user interface diagram extended with realitionships to media

components and with sensors

Specific model elements:
• UIRealization: Relationship which specifies that an AUI is realized by a media

component from the application structure diagram
• Sensor: assigned to a media component to specify that the media component

can trigger additional events

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 102

Example: Media User Interface
for Scene ‘Game’

UI
Realization

Sensor

AUIs without
specific realization

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 103

Metamodel for UIRealization and sensors

AbstractUIComponent

+owner

MediaUIRealization0..n1
+realization

0..n

+realizedAUI
1

1

0..n

+realizingMedia

1
+realization

0..n

Relationship
(from uml)

AudioVideo

TimeSensorTemporalMedia

VisibilitySensor

Sensor
+timeS
ensor

0..n+temporal
Media

1

{redefines media}

0..n
1

Animation 0..n1

+visibility
Sensor

0..n
+animation

1

{redefines media}

CollisionSensor
0..n

1 +collisionSensor
0..n{redefines media}

1+animation MediaUnit

1..n1..n

+opponent

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 104

Interaction Diagram
Motivation
• Overall interaction flow/dialogue between user and application
• Integrates events from AUIs/media components with the application logic

Notation:
• UML activity diagram with limited set of actions and with references to AUIs and

sensors from the media user interface

Specific model elements:
• CallOperationActions: calls an operation from the application structure diagram
• SendUIOutputAction: sends an output to an AUI from the media user interface

diagram
• AcceptUIInputAction: receives an input from an AUI from the media user

interface diagram
• AcceptsSensorEventAction: receives an event from a sensor from the media

user interface
• To allow automatic code generation, no other kinds of (UML) actions are allowed

to be used in the diagram

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 105

Example: Interaction diagram
for Scene ‘Game’

…

CallOperation
Action

UIInputEvent

Sensor Event

Object (property
of the scene)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 106

Metamodel for MML-specific elements

Action
(from uml)

Operation
(from uml)

CallOperation
Action

1+operation 1

Activity
(from uml)

Scene

0..1

1

+activity
0..1

+scene1

Sensor

AcceptSensorEvent
Action

1+sensor 1

AcceptUIInput
Action

AbstractUIComponent

1
+uiComponent

1

SendUIOutput
Action

1..n
+uiComponent

1..n

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 107

Design process:
Integration of the different developer groups

MML Model

Structural Model

Application Entities Media Components

Scene Model

Abstract UI Model

Media UI Model

Interaction Model

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 108

Code Generation:
Integration of authoring tools

Structure and integration
managed in model

• How to integrate – for the creative design tasks - the powerful multimedia
authoring tools into the model-driven development process?

Generate code for:
• Classes and class attributes
• Overall behavior
• Integration of media objects and the user interface
Generate placeholders for:
• Class operations
• Media objects
• User interface objects and layout

Creative design
performed in
authoring tools

MML
Model

Flash

Director

SVG/JavaScript

…

Manual Completion
in Authoring Tool

Manual Completion
in Authoring Tool

Manual Completion
in Authoring Tool

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 109

Details of Transformation into Code-Skeletons

• FLA-File
• ActionScript Class which loads the single scenes according to the
scene diagram

Multimedia
Application

• Placeholders on the stage in the related scene; if a media component
realizes the AUI, then the media component (from the library) is placed
on the stage
• ActionScript Class (‘View’, ‘Observer’)

Abstract UI
Components

• FLA-File containing placeholders for all media components in its
library; library will be used as shared library for the different scenes
• ActionScript Class (‘View’, ‘Observer’)

Media Components

• FLA-File showing the scene‘s user interface,
• ActionScript Class (‘Controller‘): entryOperations, exitOperations, code
for interaction

Scenes
Placeholders for operation bodiesClass Operations
ActionScript Classes (‘Model’, ‘Observable’)Classes

Generated CodeModel

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 110

Synchronization of Model and Code

• If the generated code is modified in the authoring tool, then the platform-
independent model is deprecated

• Consequence: Model has to be updated when changes in the generated code
occur

• Problem: Next iteration of code generation can overwrite manual completions (of
placeholders) in the authoring tool

• Consequence: code generator must only overwrite the old generated code but
must not touch information added by the developer/authoring tool

• Possible solution: Round-Trip-Engineering
– Authoring tool observes changes in the generated code and provides a command

which updates the model (e.g. a plug-in for the authoring tool)
– Modeling tool observes changes in the model and performs only those changes in the

generated code.

• Advanced solution: integration of modeling tool and authoring tool:
– direct synchronization of model and code
– model and code act as two different views on a single system
– developer switches between the two views whenever he wants

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 111

Model-Driven Development vs. Extreme Programming

• However: Executable models (i.e. containing the complete information about the
application) also allow applying the XP principles (agile MDA)

Use abstract model to optimize structure
from start

Design as simple as possible

Documentation of the system based on
abstract diagrams; good understanding

Documentation system based on the
code itself; always up-to-date

Model can be used to divide system and
distribute responsibility on the team
members

Collective ownership of code; team
members work on several (all) parts of
the system

No specific team sizeRestricted to small teams

Focus from start on the end productFocus restricted on the next steps

Modeling phase between requirement
analysis and implementation

Implementation directly after requirement
analysis

MDDXP

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 2 - 112

Integration in the Development Process

Phase 1:
Strategy

Phase 2:
Creation

Phase 3:
Conception

Development of Global Goals
Finding Creative Ideas

Graphical Realization
Technical Realization

Time und Quality Management

Iteration 1 2 3 4 5

Overall
Planning:

Goals, Team,
Size...

Brain-
storming,
First small
Prototypes

First Model Iterative
improvements of
model and resulting
implementation

Modeling the Application

Filling the gaps in the
code resulting from
the model (leads to
first version)

