4 Overview on Approaches to
Multimedia Programming

4.1 History of Multimedia Programming

4.2 Squeak and Smalltalk: An Alternative Vision

4.3 Director and Lingo: Advanced Multimedia Authoring
4.4 Frameworks for Multimedia Programming

Overview of Java Media APIs

Architectures for Extended Graphics APIs

Examples for Java Animation APIs
JGoodies, SceneBeans, Piccolo

4.5 Summary and Trends

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 69

Java Media APIs

Java was from its beginnings intended as a multimedia programming
language:

— “Oak”, Java’s predecessor:
designed to control Set Top Boxes for Interactive TV

Java Media APlIs
— Loose collection of APIs defined and maintained by Sun
— Main APIs: Advanced Imaging (JAl), Java Media Framework (JMF), Java 3D
— APIs which have become part of standard distribution: Java 2D, Java Sound
Style rather heterogeneous
Not all multimedia programming tasks covered
— E.g. animation
— “Unofficial” APls and implementations try to fill the gap

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -70

Java Media APIs

Media types
Java 2D / ’ \Java Sound Java 3D
Still 2D images «<—— Moving 2D images —— Sound 3D Scenes
/ \ includes /\ includes /\
vector sampled vector sampled MIDI sampled
graphics graphics

Java Media Framework

Playback Create Process

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 71

Summary on Java Media APIs

Main application areas:
— Creation of media creation and editing software
— Not targeted for individual creation of multimedia applications
Architectural principles:
— Processing chains
— Prefabricated components for dealing with complex media types (e.g. video)
— Realized by various software design patterns
» Strategy objects encapsulating e.g. a single filter function
» Pipeline architectures
» Event handling for synchronisation
Programming style:
— Low-level, rather tedious, many technical details
EXxpressive power:
— Very high power when using very low level description (e.g. sound synthesis)
— Limited power when using pre-fabricated media-processing components

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -72

4 Overview on Approaches to
Multimedia Programming

4.1 History of Multimedia Programming

4.2 Squeak and Smalltalk: An Alternative Vision

4.3 Director and Lingo: Advanced Multimedia Authoring
4.4 Frameworks for Multimedia Programming

Overview of Java Media APIs

Architectures for Extended Graphics APls

Examples for Java Animation APIs
JGoodies, SceneBeans, Piccolo

Literature:
B. Bederson, J. Grosjean, J. Meyer: Toolkit Design for Interactive
Structured Graphics, IEEE Trans. Software Engineering, Vol. 30,
No. 8, August 2004

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -73

Vector Animation Framework

Still 2D images «—— Moving 2D images ——— Sound 3D Scenes
/ \ includes / includes / \
vector sampled vector sampled MIDI sampled
graphics graphics

A A
Playback Create Process

Examples (Non-official, not widespread!):
JGoodies Animation (www.jgoodies.com)
SceneBeans (www-dse.doc.ic.ac.uk/Software/SceneBeans)
Piccolo & Jazz (www.cs.umd.edu/hcil/piccolo/)

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -74

How to Design an Interaction/Animation
Framework for Vector Graphics?

Key concepts needed:
— Time-dependency: clocks, timers
— New variants of graphics objects
» Dynamic, behaviour
Basic design idea:
— Graph of objects rendered in a time-dependent way
How to integrate time- and interaction-dependent behaviour?
— (Swing) layout + global structured timeline (similar to SMIL)
» “Time containers”, composed at compile time by method callss
— e.g. in JGoodies Animation
— Scene graphs with local time-dependent interpolators (similar to VRML)
—> e.g. in SceneBeans

Please note the analogy to timeline-based vs. script-based animation in
Flash!

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -75

4 Overview on Approaches to
Multimedia Programming

4.1 History of Multimedia Programming

4.2 Squeak and Smalltalk: An Alternative Vision

4.3 Director and Lingo: Advanced Multimedia Authoring
4.4 Frameworks for Multimedia Programming

Overview of Java Media APIs

Architectures for Extended Graphics APls

Examples for Java Animation APIs
JGoodies, SceneBeans, Piccolo

4.5 Summary and Trends

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -76

JGoodies Example (1)

private Animation createAnimation () ({
Animation welcome =
BaiggziffAﬁ;matlon.defaultFade(Locaﬂoninlayout
2500, Duration
"Welcome To",
Color.darkGray) ;

Animation theJGoodiesAnimation =
BasicTextAnimation.defaultFade (
labell,
3000,
"The JGoodies Animation",
Color.darkGray) ;

Animation description =
BasicTextAnimations.defaultFade (
labell,
label2,
2000,
-100,
"An open source framework|" +
"for time-based|real-time animations|in Java.",
Color.darkGray); ... } ... }

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung - 4 -77

JGoodies Example (2)

Animation all
Animations.sequential (new Animation[] ({
Animations.pause (1000),
welcome,
Animations.pause (1000),
theJGoodiesAnimation,
Animations.pause (1000),
description,
Animations.pause (1000),
features,
Animations.pause (1000),
featurelist,
Animations.pause (1500),
});

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -78

Methods of JGoodies “Animations” Class

« QOffset
— beginTime
Parallel

Pause
— duration

Repeat
Reverse
- Sequential

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -79

Scene Beans

- SceneBeans defines a graphical display using a “scene graph’.

— A Java Bean is a simple software component in Java following naming
conventions to enable manipulation in authoring systems.

Graphical scenes

described by a

directed acyclic graph

of Java Beans

Leaves of the

graph represent

Parent nodes modify

Or compose scenes
defined by children

primitive shapes, ——> Q

text or images

A scene graph
defines a tree of
nested coordinate
spaces.

Material on SceneBeans adapted from Nat Bryce

Ludwig-Maximilians-Universitat Minchen

Prof. HuBmann

Multimedia-Programmierung — 4 - 80

Example: Spinning Square

@ Rectangle

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 81

Example: Spinning Square

e RGBAColor
e Rectangle

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 82

Example: Spinning Square

0 Translate
e RGBAColor
e Rectangle

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 83

Example: Spinning Square

0 Rotate

e Rectangle

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -84

Example: Spinning Square

0 Rotate

Loop

e Rectangle

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -85

Composable Animations in SceneBeans

An Animation object encapsulates a scene

subgraphs

—>{ SceneGraph graph and the behaviours that animate it
kK
| activities
— Composite Activity <>x< ActivityRunner
A K./
A |
I ,’/
1 7’
Can itself be embedded in Animation Animation objects are the
a scene graph and run as units of animation design
an activity and reuse

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 86

Monolithic and Polylithic Class Hierarchies

« Monolithic: Primarily uses compile-time inheritance to structure and

extend functionality

 Polylithic: Primarily uses run-time composition to structure and extend

functionality

— More flexible, but creation of MANY objects

Node

P4

Polylithic

Rectangle Fade

‘Root

/\

:Fade - :Fade

‘Rectangle ‘Rectangle

Monolithic

Node

7

Rectangle

7

FadeRect

‘Root

/\

‘FadeRect

‘FadeRect

Ludwig-Maximilians-Universitat Minchen

Prof. HuBmann

Multimedia-Programmierung — 4 - 87

University of Maryland “Piccolo” Framework

- “A revolutionary way to create robust, full-featured graphical applications
in Java and C#, with striking visual effects such as zooming, animation
and multiple representations.”

— Piccolo is a layer built on top of a lower level graphics API.
— Piccolo.Java is written in 100% java, and is based on the Java2D API.

— Piccolo uses a "scenegraph" model, this means that Piccolo keeps a
hierarchical structure of objects and cameras.

- “History”:
— Ken Perlin, New York University: “Pad” zoomable interface
— Ben Bederson, Jim Hollan, Bellcore: “Pad++”
— Ben Bederson et al, UMD: Jazz
» Many objects
— Ben Bederson, Jesse Grosjean, UMD: Piccolo

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 88

Piccolo Terminology

PNode: Any object that wants to paint itself on the screen should inherit

from the node class. In addition to painting on the screen all nodes may
have other "child" nodes added to them.

PCamera: Cameras are nodes that have an additional view transform
and a collection of layers.

PLayer: Layer nodes are nodes that can be viewed by a one or more
cameras. They maintain a list of the cameras that are viewing them,
and notify these cameras when they are repainted.

PRoot: The PRoot serves as the topmost node in the Piccolo runtime
structure.

PCanvas: The Pcanvas views the scene PROoT
graph through a PCamera. It forwards input ey
events to that camera, and uses that camera PLayer|[PCamera
to draw itself. 2 Ty
FProde FPlmage
27 T
PText FPPath

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -89

Activities in Piccolo

« Activities control some time-dependent aspect of the Piccolo system,
usually some part of a node.

 This behavior may be of fixed duration or may continue until some
termination condition is met (or perhaps forever).

- Activities are scheduled by the PRoot until they have completed.

- Each activity has a start time and a duration, that together determine
when an activity starts stepping and how long it continues to step.

— PActivity public Pactivity
(long aDuration, long aStepRate,long aStartTime)

— aDuration: —1 for infinite
— aStepRate: the maximum rate that this activity should receive step events

— aStartTime: the time (relative to System.currentTimeMillis()) that this
activity should start

e protected void activityStep(long elapsedTime)
— Execution of activity

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 90

Example: Animation in Piccolo (1)

package edu.umd.cs.piccolo. tutorial;

import

import
import
import
import

public

java.awt.Color;

edu.
edu.
edu.
edu.

umd.
umd.
umd.
umd.

cs.piccolo. *;
cs.piccolo.activities.*;
cs.piccolo.nodes. *;
cs.piccolox. *;

class EffectsFrame extends PFrame {
public void initialize() {
// Create the Target for our Activities.

// Create a new node that we will apply different

// activities to, place that node at location 200, 200.
final PNode aNode =

PPath.createRectangle (0, 0, 100, 80);

PLayer layer = getCanvas () .getLayer()

layer.addChild (aNode) ;

aNode. setOffset (200, 200) ;

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann

Multimedia-Programmierung — 4 - 91

Example: Animation in Piccolo (2)

// Extend PActivity.
// Store the current time in milliseconds for use below.

long currentTime = System.currentTimeMillis () ;

// Create a new custom "flash" activity.
PActivity flash =
new PActivity (-1, 500, currentTime + 5000) ({

boolean fRed = true;

protected void activityStep (long elapsedTime) ({
super.activityStep (elapsedTime) ;

if (fRed) {
aNode. setPaint (Color.red) ;
} else {

aNode.setPaint (Color.green) ;

}

fRed = !'fRed;

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 92

Example: Animation in Piccolo (3)

getCanvas () .getRoot () .addActivity (flash) ;
// Schedule it

PActivity al =
aNode.animateToPositionScaleRotation
(0, 0, 0.5, 0, 5000);
PActivity a2 =
aNode.animateToPositionScaleRotation
(100, 0, 1.5, Math.toRadians (110), 5000) ;
PActivity a3 =
aNode.animateToPositionScaleRotation

' (200, 100, 1, O, 5000);
al.setStartTime (currentTime) ; // Schedule it
a2.startAfter (al) ; // Schedule it
a3.startAfter (a2); // Schedule it

public static void main(String[] args) {
new EffectsFrame () ;
}

}

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 93

4 Overview on Approaches to
Multimedia Programming

4.1 History of Multimedia Programming

4.2 Squeak and Smalltalk: An Alternative Vision

4.3 Director and Lingo: Advanced Multimedia Authoring
4.4 Frameworks for Multimedia Programming

4.5 Summary and Trends

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 94

Summary

- Development process
— lterative development vs. stable design
— Graphical design vs. program design

« Technologies
— Either based on programming or on graphical design
— Integration between both worlds still doubtful
— Vision:
» Authoring system for (platform-independent) animations
» Direct representation in programming language
» Easy round trip engineering (Design -> Code -> Design -> ...)

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 95

Trend: Steady Increase of Multimedia
Development

+ Presentations: Multimedia usage steadily increasing

« Web sites:
— Presentations required to differ from competitors, elegance
— Work environment replacing desktop

- Mobility:

— XVLAN, UMTS enable powerful interactive applications for small portable
evices

— User interface required to be simple and independent of keyboard input
 Innovative user interfaces:

— E.g. VR and AR partially based on multimedia technology
- Visualization of results of complex measurements, simulations, etc.

- There is no “multimedia revolution” but multimedia elements are slowly
entering many traditional areas of computing

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 96

Trend: Increasing Level of Abstraction
in Programming

- Machine language, assembler, high-level programming languages
— What is the next step?
 Alternatives
— Authoring tools?
— Code libraries?
— Component systems and frameworks?
« Abstract models of multimedia applications
— Helpful or not?

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 - 97

Various Representations of Same Concept

<layout>
<region id="“rl”
</layout>
<body>
<seqg>
...framel
. ..frame2
</seq>
</body>

framef

Component rl = ...;
Animation framel .’
Animation frame?2 e
Animation all =
Animations.sequential (
new Animation[] {
framel, frame2});

frame2

r1

Ludwig-Maximilians-Universitat Minchen

Prof. HuBmann Multimedia-Programmierung — 4 - 98

Visions: Provocative Questions

What is special about multimedia programming?
— Are there special language concepts?
— Can multimedia make programming simpler (cf. the Squeak/EToys idea)?

- Will a future multimedia development tool still provide support for a
classical, text-based programming language?

— Is there a way for fully graphic “programming”?
— If yes, will it be really helpful?
- Will new paradigms supersede the object-oriented one?
— E.g. “aspects™?
— Is there a better, more abstract replacement for event handling?

- Which role will be played by abstract models of the underlying platform
and of the user interaction itself?

— WIill it ever be possible to develop a multimedia application in a platform-
independent way?

Ludwig-Maximilians-Universitat Minchen Prof. HuBmann Multimedia-Programmierung — 4 -99

