7 Multimedia Content Production and Management

- 7.1 Content for Network-Based Delivery
- 7.2 Encoding and Transcoding
- 7.3 Media Production Chains
- 7.4 Media Asset Management

Literature:

Tobias Künkel: Streaming Media – Technologien, Standards, Anwendungen, Addison-Wesley 2001

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 1

Types of Multimedia Content for Streaming

- · Dynamic Text
 - Low bandwidth
 - Proprietary formats (e.g. by RealNetworks)
- Audic
 - Bandwidth unproblematic in modern broadband networks (e.g. DSL access), but still an issue in older network technologies (e.g. 28 kBit/s modem)
 - Proprietary and standard formats (e.g. MP3, MPEG-4 AAC)
- Video
 - Bandwidth is a serious issue
 - Proprietary and standard formats (e.g. MPEG-1/2/4, H.264)
- · Vector animations
 - Bandwidth mainly unproblematic
 - Proprietary formats (mainly Shockwave Flash SWF)
 - Download & play approach is sufficient

Ludwig-Maximilians-Universität München

Prof. Hußmann

Supporting Good Video Compression

- Already when capturing a video source, good later compression can be prepared:
- · High-quality capturing and storing equipment with low video noise
 - Noise (grain) may disturb compression algorithms (high frequencies)
- · Simple pictures with little detail
 - No total views of large scenes
 - Few objects in large scale
- · Little movement
 - Camera movement, object movement, zoom lead to worse compression
- Good lighting
 - Sharp edges and high contrast assist the compression algorithms
- · No fine-grain patterns
 - High picture frequencies are problematic in compression
 - E.g. Uni-colour clothes instead of patterned ones

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 3

Supporting Low Audio Bandwidth

- Preparing audio content with low bandwidth requirements, a set of tips by Chris Priestman
- · Halve your data by using mono unless stereo is really important.
- Halve it again by cutting the sample rate to 22.05 kHz for streams of 28.8 kbps and less.
- · Lose the very top of the hearing range (above 10 kHz).
- Preserve detail across the tonal range by keeping resolution at 16 bits (unless for speech at less than 16 kpbs)

Video Capturing

- Modern standard computer interfaces (e.g. USB, FireWire)
 - Enable import of video data in compressed raw format with limited quality (e.g. DV standard)
 - Capturing is computing-intensive, CPU has to be shared between capturing and compression (e.g. MPEG)
 - Live streaming only with low-quality input (e.g. WebCam)
- Specialized video capturing hardware for PCs (card or external device)
 - Enable real-time encoding with less CPU load
 - Support various physical video connection standards
 - Limitations in quality (picture size, frame rate)
- Professional video capturing/encoding systems
 - Expensive
 - Able to deal with uncompressed or only mildly compressed video
 - Live compression, often in hardware (e.g. MPEG-4, H.264)
- · Possible trend:
 - Video surveillance mass market leads to affordable high-quality encoders

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 5

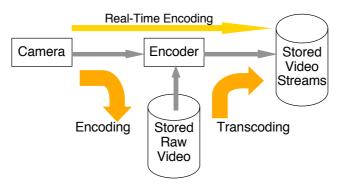
7 Multimedia Content Production and Management

- 7.1 Content for Network-Based Delivery
- 7.2 Encoding and Transcoding
- 7.3 Media Production Chains
- 7.4 Media Asset Management

Literature:

David Austerberry: The Technology of Video & Audio Streaming, Focal Press 2002

Gregory C. Demetriades: Streaming Media, Wiley 2003


Tobias Künkel: Streaming Media – Technologien, Standards,

Anwendungen, Addison-Wesley 2001

Ludwig-Maximilians-Universität München

Prof. Hußmann

Encoding and Transcoding

- · Audio and video needs to be converted for streaming delivery
 - Compression, proprietary formats
- · Transcoding: Conversion of media files from one format to another
- · Repurposing: Using existing content for new purposes
 - e.g. using TV ads as streaming content

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 7

Factors Determining Video Bandwidth

- · Physical resolution (number of pixels)
 - Determines picture size in standard rendering resolution (e.g. 72 dpi)
 - Dependent on playback device
 - » "Set Top Box" for TV set requires full-screen TV signal
 - » Video window on PC can be adjusted in size
- Frame rate
 - Desirable: 25 fps
 - Over low-bandwidth links often only smaller rates possible (e.g. 10 fps)
- · Colour (sub)sampling
- · Audio quality
 - Sampling rate, resolution (e.g. speech vs. CD quality)
 - Mono, stereo, multi-channel
- · Degree of compression
 - Determines appearance of compression artefacts

Ludwig-Maximilians-Universität München

Prof. Hußmann

Network Limitations

· Bandwidth towards receiver is limited:

· Effective bandwidths for various access network technologies:

- 28.8 modem: 20 - 23 Kbps
- 56.6 modem: 32 - 35 Kbps
- ISDN: 45 - 55 Kbps
- Dual-ISDN: 80 - 100 Kbps
- DSL: 300 Kbps and more

Cable modem: 600 KbpsLAN: >1000 Kbps

- · Compromise between bandwidth limitations and quality:
 - Picture format
 - » E.g. for 28.8 modem picture format 176 x 144 pixel (QCIF)
 - » E.g. for DSL picture format 360 x 288 pixel (CIF)
 - Plus other factors

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 9

Example: Multiple Bit Rate Encodings

	Video source	Broadcast (DVB)	DSL/ cable modem	Modem
Target data rate	(270 Mbit/s)	4 Mbit/s	500 kbit/s	35 kbit/s
Reqd. data reduction		40:1	330:1	4700:1
Frame size	720 x 480 (CCIR 601)	720 x 480	192 x 144	160 x 120
Frame rate	30	30	15	5
Colour sampling	4:2:2	4:2:0	YUV12	YUV12
Uncompressed data rate (Mbit/s)	166	124	5	1.15
Fraction of original data rate		1:1.33	1:33	1:144
Reqd. compression		30:1	10:1	30:1

From: D. Austerberry

Common Video Image Formats

Format	Resolution	Frame rate	Sub- sampling	Application
CCIR 601 (NTSC)	720 x 480	30	4:2:2	Broadcast (DVB),
		interlaced		DVD
CCIR 601 (PAL)	720 x 576	25	4:2:2	
		interlaced		
SIF (NTSC)	352 x 240	30	4:2:0	CD-ROM
Standard Interchange Format		progressive		
SIF (PAL)	352 x 288	25	4:2:0	
		progressive		
CIF	352 x 288	30	4:2:0	Videoconference,
Common Intc. Format		progressive		streaming
QCIF	176 x 144	30	4:2:0	Videoconference,
Quarter CIF		progressive		streaming

From: D. Austerberry

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 11

Multiple Bitrate Encoding

- In general, the same content has to be encoded in several qualities/bitrates
- · File allocation:
 - One file multiplexing several qualities, or
 - Several files
- · Selection of appropriate quality/bitrate:
 - Dependent on network access technology and dynamic network load
 - Manual selection: Through different alternatives on Web page, or
 - Automatic selection:
 - » Using streaming server software and adequate client
 - » Often access network type stored in user preferences for client software

Ludwig-Maximilians-Universität München

Prof. Hußmann

Reminder: A Sample SMIL File

From: Digitale Medien

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 13

SMIL and Bandwidth Selection

Example:

```
<smil>
  <body>
    <par>
      <switch>
        <audio src="http://www.providerxy.com/datei1.rm"</pre>
          system-bitrate="250000"/>
        <audio src="http://www.providerxy.com/datei2.rm"</pre>
          system-bitrate="100000"/>
        <audio src="http://www.providerxy.com/datei3.rm"</pre>
          system-bitrate="40000"/>
        <audio src="http://www.providerxy.com/datei4.rm"</pre>
          system-bitrate="1000"/>
       </switch>
    </par>
  </body>
</smil>
```

- · RealPlayer supports SMIL
 - Selects first stream which is smaller than bandwidth from user preferences

Ludwig-Maximilians-Universität München

Prof. Hußmann

Network-Based Interactive Video Delivery

- · Using the advantages of interactivity and media composition
 - Making a difference between net-based media and traditional media
 - Leveraging the technical potential for better business opportunities
- · Example:
 - User is interested in skiing and selects a skiing video from a Video on Demand repository
 - Show him or her in parallel or interleaved an ad for snowboards
 - Provide him or her with an option to enrol in a drawing for a ski-weekend getaway (and collect personal data for later advertising)
 - Allow him or her a one-click opportunity for lift tickets at a nearby resort
 - Provide him or her with links to further video material (e.g. skiing courses, travel guides to skiing regions), which cost a viewing fee

Ludwig-Maximilians-Universität München

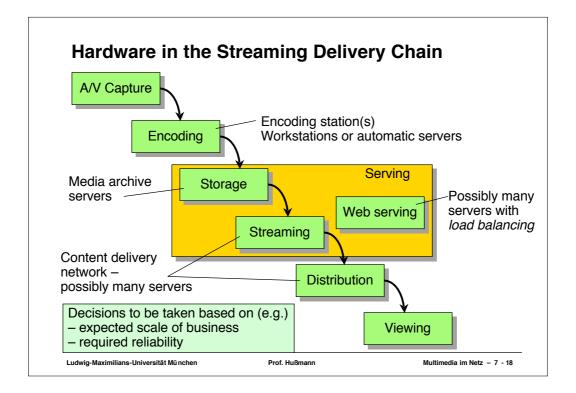
Prof. Hußmann

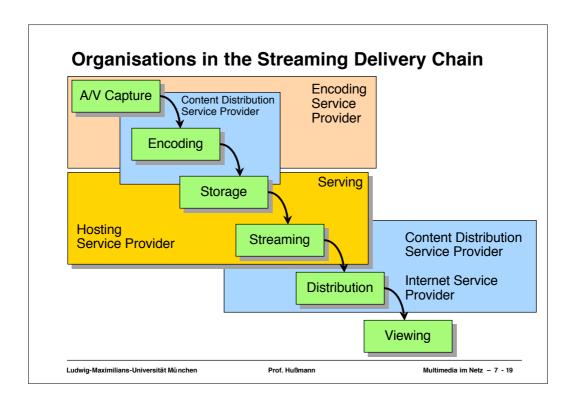
Multimedia im Netz - 7 - 15

Combining Media Elements to Compound Media

- Combining video streams, audio streams, text captions, graphics, links to Web locations
 - In space on the screen (e.g. video with banner advertisement)
 - Temporally (e.g. "pre-roll advertisement" with video streams)
- · Enhancing interactivity and flexibility
 - E.g. free navigation
 - E.g. language options
- · Technological basis:
 - Spatio-temporally structured compound multimedia documents
 - with high degree of interactivity
 - Example technologies:
 - » SMIL in RealPlayer
 - » MPEG-4

7 Multimedia Content Production and Management


- 7.1 Content for Network-Based Delivery
- 7.2 Encoding and Transcoding
- 7.3 Media Production Chains
- 7.4 Media Asset Management


Literature:

Gregory C. Demetriades: Streaming Media, Wiley 2003 Jürgen Mayer (Hrsg.): streaming media - Internet bewegter, bunter, lauter. Markt&Technik 2001

Ludwig-Maximilians-Universität München

Prof. Hußmann

Case Study: "Big Brother" 2000

- Encoding: provided by TV1.de (10 encoding servers)
- · Serving:
 - 50 million streaming requests...
 - World Online
 - » specially developed load balancing solution using global load balancing (based on BGP) and local load balancing among streaming servers
 - plus distributed server farm in the network of Deutsche Telekom
- · Internet service provider: Nacamar

Automated Transcoding

- · Example 1: Publishing Multiple Formats
 - Broadcaster is creating 8 hours of content per day
 - Repurposing into streaming media for Web-based Video-on-Demand
 - Live capturing, encoding (e.g. MPEG)
 - After program end: transcoding to different bitrates, delivery to streaming server
- · Example 2: Flipping on Demand
 - Media archive for a cable channel to be made available through Web
 - Media kept in single, high-quality format
 - On demand (request), files are transcoded, watermarked, streamed
- Example 3: Collaboration Distribution
 - Large company working on marketing materials
 - One rough cut of a new commercial to be distributed to 100 clients with varying quality expectations and platforms
 - Content distribution service transcodes according to client requirements
- · Example product: Telestream FlipFactory (www.telestream.net)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 21

Case Study: Discovery Channel

- Using the Web presence to support the TV program:
 - Automatically created "On TV previews", based on air date and time
 - » Created by automated indexing techniques
 - Automatic insertion of streaming ads before previews
- Using the TV program to support the Web presence:
 - On-line shop for video cassettes and DVDs derived from the TV content
 - Video is "at stage centre" in the Web presence
- · Key technologies:
 - "Vertical integration of metadata"
 - » Non-linear access to video
 - » Media synchronization
 - Streaming

Case Study: Major League Baseball

- Major League baseball Advanced media (MLBAM)
 - Audio and video indexing techniques
 - Searchable interactive video database (see MLB.com)

Ludwig-Maximilians-Universität München

Prof. Hußmann

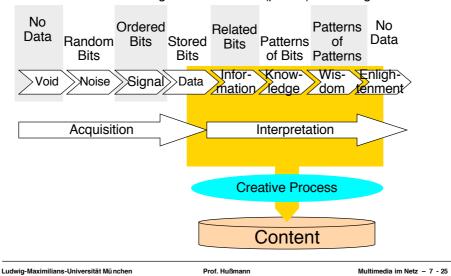
Multimedia im Netz - 7 - 23

7 Multimedia Content Production and Management

- 7.1 Content for Network-Based Delivery
- 7.2 Encoding and Transcoding
- 7.3 Media Production Chains
- 7.4 Media Asset Management

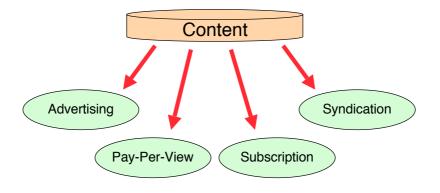
Literature:

Gregory C. Demetriades: Streaming Media, Wiley 2003


Rosenblatt et al., Chapter 10

Ludwig-Maximilians-Universität München

Prof. Hußmann


Information Progression and Content

• A holistic view according to Demetriades (p. 189) and Virage Inc.:

Content Monetization

- There are several traditional models for gaining a return on investment on content
 - Network-based media enable the integration of all models

Ludwig-Maximilians-Universität München

Prof. Hußmann

Digital Asset Management

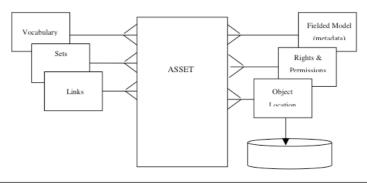
- · Very similar acronyms:
 - Digital Asset Management DAM
 - Media Asset Management MAM
 - » Rich Media Asset Management RMAM
 - Digital Media Management DMM
- · Basic idea:
 - To make the right media material (media assets) available for each specific use, in the right version and the right format
- Integration technology:
 - Workflow integration
 - Integration with various media processing tools
 - Integration with content management and syndication solutions
- · Broad range of product offerings
 - From large IT companies (IBM, EMC) to niche vendors

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 7 - 27

Example: Artesia TEAMS


- · Digital Asset Management product, see www.artesia.com
- · Media ingestion:
 - Various import tools, e.g. hot folders, email
- · Media file storage, access and delivery
- · Complete workflow coverage:
 - Individual activities of team members
 - Group projects
- · Individual view:
 - "Inbox" What are the tasks I am assigned to, which dates, which assets
- · Project view:
 - Participants, status, associated assets, events (milestones, new versions)
- · Asset management view:
 - Asset-centric, navigation to various projects
 - History: "where used", "who used", "how used"

Ludwig-Maximilians-Universität München

Prof. Hußmann

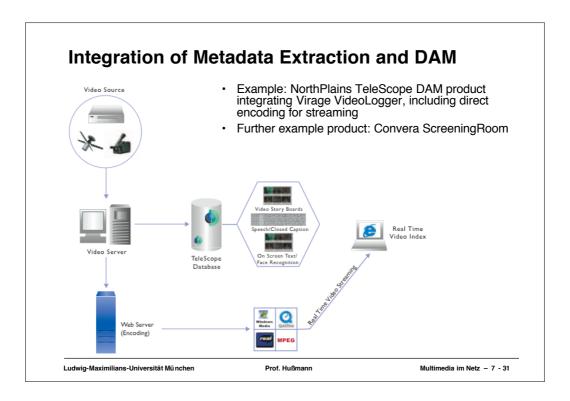
Asset Management, Rights and Metadata

- Quotations from Artesia White Paper "The Essential Characteristics of Enterprise Digital Asset Management":
 - "The defining characteristic of a digital asset is that is an asset."
 - "There is general agreement that an asset is the asset's content plus metadata (or data about the content). Metadata include information about ... rights and permissions ..."

Ludwig-Maximilians-Universität München

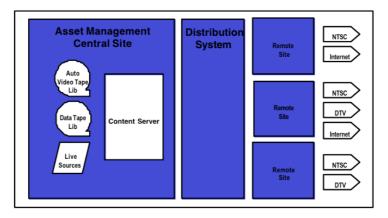
Prof. Hußmann

Multimedia im Netz - 7 - 29


The Generality of Digital Asset Management

	Video	XML	Quark
Ingest	Encode and log	Parse and validate	Decompose
Index	Metadata and closed captions	Structure, attributes and content	Extracted content
Store	Media-server and HSM support	Fragments	de-binerize
Metadata	Format and codex dependent	Semantic web, RDF and industry specific DTD support	Extract
Model	Clips, tracks, key frames and storyboard	DTD or schema	decompose
Search	Visual search, frame accurate, offsets, metadata	Contextual within DTD structure, and metadata	Content and metadata
Navigate	Storyboard, low resolution versions	Xlink, Xpointer	component
Preview	Clip sequencing	XSLT, CSS styles/gist generation	page preview
Export	SMIL, play decision lists	Transform via XSLT, DOM, etc.	re-assemble
Distribute	Transcode, stream	Metadata wrappers	Insert into production

Source: Artesia


Ludwig-Maximilians-Universität München

Prof. Hußmann

Centralcasting

- Production of various programmes on various distribution channels out of a central content server
- · Source: Artesia Technologies

Ludwig-Maximilians-Universität München

Prof. Hußmann