Vorlesung Mensch-Maschine-Interaktion

Albrecht Schmidt

Embedded Interaction Research Group LFE Medieninformatik Ludwig-Maximilians-Universität München http://www.hcilab.org/albrecht/

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design Space for Input/Output

The solution space

- What technologies are available to create interactive electronic products?
 - Software
 - Hardware
 - Systems
- How can users communicate and interact with electronic products?
 - Input mechanisms
 - · Options for output
- Approaches to Interaction
 - Immediate "real-time" interaction
 - Batch / offline interaction

Motivation: 1D Pointing Device

- Interface to move up and down
- Visualization of rainforest vegetation at the selected height
- Exhibition scenario
- Users: kids 4-8

Motivation: 1D Pointing Device Example: Computer Rope Interface

- Interface to move up and down
- Visualization of rainforest vegetation at the selected height
- Exhibition scenario
- Users: kids 4-8

http://web.media.mit.edu/~win/Canopy%20Climb/Index.htm

Example: Computer Rope Interface

http://web.media.mit.edu/~win/Canopy%20Climb/Treemovie.avi

Chapter 4 Analyzing the Requirements and Understanding the Design Space 1. 3.1 Factors that Influence the User Interface 2. 3.2 Analyzing work processes and interaction 3.3 Conceptual Models – How the users see it 3.4 Analyzing existing systems 3.5 Describing the results of the Analysis 3.6 Describing the results of the Analysis 3.7 Design space for input/output, technologies 3.7.1 2D input 3.7.2 3D input 3.7.2 3D input 3.7.4 Force feedback 3.7.5 Further forms of input and capture 3.7.6 Visual and audio output 3.7.7 Printed (2D/3D) output

3.7.8 Further output options

Design Space and Technologies Why do we need to know about technologies? • For standard applications • Understanding the differences in systems potential users may have to access / use once software product • For specific custom made applications • Understanding options that are available • Creating a different experience (e.g. for exhibition, trade fare, museum, ...)

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction 3.3 Conceptual Models How the users see it

- 3.4 Analyzing existing systems
 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 3.7.1 2D input
 3.7.2 3D input

 - 3.7.3 Force feedback
 3.7.4 Input device taxonomy

 - 3.7.5 Further forms of input and capture 3.7.6 Visual and audio output 3.7.7 Printed (2D/3D) output

 - 3.7.8 Further output options
- Albrecht Schmidt
 Embedded Interaction Research Group
 University of Munich Garmany

Pointing Devices with 2DOF

- Pointing devices such as
 - Mouse
 - Track ball
 - Touch screen
 - · Eye gaze
- · Off the desktop other technologies and methods are required
 - Virtual touch screen
 - · Converting surfaces into input devices
 - Smart Board
 - Human view

Classification of Pointing devices

- Dimensions
 - 1D / 2D / 3D
- Direct vs. indirect

 → integration with the visual representation
 - Touch screen is direct
 - Mouse is indirect
- Discreet vs. continuous → resolution of the sensing
- Touch screen is discreet
- Mouse is continuous
- Absolute vs. Relative →movement/position used as input
 - Touch screen is absolute
 - · Mouse is relative

Examples of Pointing Devices (most with additional functionality) ei

Virtual Touch Screen

- Surfaces are converted into touch
- Image/video is projected onto the
- Using a camera (or other tracking technology) gestures are recognized
- Interpretation by software
 - simple where is someone pointing to
 - complex gestures, sign language
- - Kiosk application where vandalism is an issue
 - · Research prototypes ...

Performance depends on transfer function and resistance Transfer function Transfer func

Stationary devices (II)

- isometric device (used with rate control) offers the following advantages:
 - Reduced fatigue, since the user's arm can be rested on the desktop.
 - Increased coordination. The integral transformation in rate control makes the actual cursor movement a step removed from the hand anatomy.
 - Smoother and more steady cursor movement. The rate control mechanism (integration) is a low pass filter, reducing high frequency noises.
 - Device persistence and faster acquisition. Since these devices stay stationary on the desktop, they can be acquired more easily.
- isometric rate control devices may have the following disadvantages:
 - Rate control is an acquired skill. A user typically takes tens of minutes, to gain controllability of isometric rate control devices.
 - Lack of control feel. Since an isometric device feels completely rigid
- Albrecht Schmidt
 Embedded Interaction Research Group
 University of Munich Germany

5/2006

Slide 36

Multi DOF Armatures

- multi DOF input devices are mechanical armatures
- the armature is actually a hybrid between a flying-mouse type of device and
- Can be seen as a are near isotonic with exceptional singularity positions position control device (like a flying mouse)
- has the following particular advantages:
 - Not susceptible to interference

 - Less delay: response is usually better than most flying mouse technology
 Can be configured to "stay put", when friction on joints is adjusted and therefore
 better for device acquisition.
- drawbacks:

 - Fatigue: as with flying mouse.

 Constrained operation. The user has to carry the mechanical arm to operate, At certain singular points, position/orientation is awkward.
- This class of devices can also be equipped with force feedback, see later Phantom Device

Technology Examples Data Glove

- Data glove to input information about
 - Orientation, (roll, pitch)
 - Angle of joints
 - Sometimes position (external
- Time resolution about. 150...200 Hz

Abrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

- Precision (price dependent):
 Up to 0,5 ° for expensive devices (> 10.000 €)
 - Cheap devices (€100) much

Technology Examples 3D-Mouse

Spacemouse und Spaceball:

Object (e.g. Ball) is elastically mounted Serial 5000

- · Pressure, pull, torsion are measured
- Dynamic positioning

6DOF

http://www.alsos.com/Products/Devices/SpaceBall.html

Technology Examples 3D-Graphic Tablet

- Graphic tablets with 3 dimensions
- Tracking to acquire spatial position (e.g. using Ultrasound)

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 3.7.1 2D input
 3.7.2 3D input

 - 3.7.2 3D input

 3.7.3 Force feedback

 3.7.4 Input device taxonomy

 - 3.7.5 Further forms of input and capture 3.7.6 Visual and audio output 3.7.7 Printed (2D/3D) output

 - 3.7.8 Further output options

Force Feedback Mouse

- Pointing devices with force feedback:
 - · Feeling a resistance that is controllable
 - · Active force of the device
 - · Common in game controllers (often very simple vibration motors)

- · Menu slots that snap in
- · feel icons
- · Feel different surfaces
- Can be used to increase accessibility for visually impaired
- Logitech iFeel Mouse http://www.dansdata.com/ifeel.htm

Phantom - Haptic Device

- high-fidelity 3D force-feedback input device with 6DOF
- GHOST SDK to program it

www.sensable.com

Specification: PHANTOM® Omni™ **Haptic Device**

Footprint (Physical area device base occupies on desk)	6 5/8 W x 8 D in. ~168 W x 203 D mm.
Range of motion	Hand movement pivoting at wrist
Nominal position resolution	> 450 dpi. ~ 0.055 mm.
Maximum exertable force at nominal (orthogonal arms) position	0.75 lbf. (3.3 N)
Force feedback	x, y, z
Position sensing [Stylus gimbal]	x, y, z (digital encoders) [Pitch, roll, yaw (± 5% linearity potentiometers)
Applications	Selected Types of Haptic Research and The FreeForm® Concept™ system
Albrecht Schmidt	Olida 45

Examples:

Programming Abstractions for haptic devices

- GHOST SDK http://www.sensable.com/products/phantom_gho st/ghost.asp
- OpenHaptics™ Toolkit http://www.sensable.com/products/phantom_ghost/OpenHapticsToolkit-intro.asp
 - toolkit is patterned after the OpenGL® API
 - · Using existing OpenGL code for specifying geometry, and supplement it with OpenHaptics commands to simulate haptic material properties such as friction and stiffness

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 3.7.1 2D input
 3.7.2 3D input

- 3.7.3 Force feedback
 3.7.4 Input device taxonomy
- 3.7.5 Further forms of input and capture 3.7.6 Visual and audio output 3.7.7 Printed (2D/3D) output
- 3.7.8 Further output options

Taxonomy for Input Devices (Buxton)

- continuous vs discrete?
- agent of control (hand, foot, voice, eyes ...)?
- what is being sensed (position, motion or pressure), and
- the number of dimensions being sensed (1, 2 or 3)
- devices that are operated using similar motor skills
- devices that are operated by touch vs. those that require a mechanical intermediary between the hand and the sensing mechanism

Physical Properties used by Input devices (Card91) Linear Rotary **Position** Absolute P (Position) R (Rotation) Relative dR **Force** Absolute F (Force) T (Torque) Relative dF dΤ Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122

Chapter 4 Analyzing the Requirements and Understanding the Design Space - 3.1 Factors that Influence the User Interface - 3.2 Analyzing work processes and interaction - 3.3 Conceptual Models – How the users see it - 3.4 Analyzing existing systems - 3.5 Describing the results of the Analysis - 3.6 Understanding the Solution Space - 3.7 Design space for input/output, technologies - 3.7.1 2D input - 3.7.2 Sip input - 3.7.3 Force feedback - 3.7.4 Input device taxonomy - 3.7.5 Further forms of input and capture - 3.7.6 Visual and audio output - 3.7.7 Printed (2D/3D) output - 3.7.8 Further output options

